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Background: About 5%–10% of the breast cancer cases have a hereditary background,
and this subset is referred to as familial breast cancer (FBC). In this review, we summarize
the susceptibility genes and genetic syndromes associated with FBC and discuss the
FBC screening and high-risk patient consulting strategies for the Chinese population.

Methods: We searched the PubMed database for articles published between January
2000 and August 2021. Finally, 380 pieces of literature addressing the genes and genetic
syndromes related to FBC were included and reviewed.

Results: We identified 16 FBC-related genes and divided them into three types (high-,
medium-, and low-penetrance) of genes according to their relative risk ratios. In addition,
six genetic syndromes were found to be associated with FBC. We then summarized the
currently available screening strategies for FBC and discussed those available for high-risk
Chinese populations.

Conclusion: Multiple gene mutations and genetic disorders are closely related to FBC.
The National Comprehensive Cancer Network (NCCN) guidelines recommend
corresponding screening strategies for these genetic diseases. However, such
guidelines for the Chinese population are still lacking. For screening high-risk groups in
the Chinese population, genetic testing is recommended after genetic counseling.

Keywords: family history, familial breast cancer, gene mutations, genetic syndromes, screening,
genetic counseling
1 INTRODUCTION

As reported by the 2020 Cancer Statistics, the most common type of cancer diagnosed is breast
cancer (BC), with approximately 2.26 million new cases worldwide in 2020. In China, BC is the
fourth most commonly diagnosed malignancy (approximately 420,000 patients in 2020), after lung
cancer, colorectal cancer, and stomach cancer. Notably, BC is the most commonly diagnosed cancer
and the leading cause of death among women (1). BCs with a hereditary background are termed
familial breast cancers (FBCs) and receive significant focus because they make up about 5%–7%
of the BCs (2, 3). Many susceptibility genes, such as BRCA1/2, have been found to be related
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to FBC (4). Moreover, several genetic syndromes, such as
hereditary breast and ovarian cancer (HBOC) syndrome, have
also been associated with FBC (5). Due to the substantial
heterogeneity among patients with BC, the prevalence and
genetic susceptibility of BC in different races or regions vary
depending on the type of disease. At present, several disease-
related gene mutations have been confirmed in FBCs, and some
exist specifically in the Chinese population.

In this review, we aim to summarize the FBC-related
susceptibility genes and syndromes, introduce risk assessment
models and explore screening methods, such as genetic
counseling, for Chinese individuals with a potentially high risk
of FBC.
2 METHODS

We searched the literature published in PubMed between
January 2000 and August 2021 by searching the terms “familial
breast cancer,” “family breast cancer,” and “gene” in the title or
abstract. Subsequently, 380 studies addressing genetic mutations
in familial breast cancer were identified. Among those, we
excluded irrelevant articles and classified the remaining articles
(Figure 1). After analyzing the selected articles, we selected the
most relevant genes and searched the PubMed database to
acquire pertinent information.
3 RESULTS

3.1 Familial Breast Cancer (FBC)
Pathologically, BCs are classified into four subtypes: Luminal A,
Luminal B, HER2-positive, and triple-negative BC. The
treatment and prognosis of each subtype differ (6).
Epidemiologically, BCs are mainly divided into three
categories: 1) sporadic breast cancer (SBC), 2) hereditary breast
cancer (HBC), and 3) FBC (Figure 2) (7). HBC differs from FBC
and refers explicitly to patients with BC with definite genetic
factors, accounting for approximately 5%–10% of the BCs. About
10%–15% of the HBCs have a positive family history (FH) (8, 9).
Meanwhile, FBC is a subset of BC within a family, where the
underlying genetic cause is not entirely known. The incidence of
BC within a family is mainly due to genetic factors and partly due
to environmental factors (10, 11). Environmental factors come
from both shared and non-shared environments. The shared
environment includes eating habits and lifestyles. The non-
shared environment includes age at menarche, age at first full-
term pregnancy, and age at menopause (10).. According to the
prediction model proposed by Lichtenstein et al., the shared
environmental factors contributed 6%, and non-shared
environmental factors contributed 67% of the risk for
developing BC (12). In subsequent studies, the discovery of
low-penetrance genes reduced the influence rate of
environmental factors to 27% (11). Recent studies have focused
on the contribution of gene-environment interactions in familial
aggregation (13). Nevertheless, environmental factors are still a
major cause of FBC in various members of a family.
Frontiers in Oncology | www.frontiersin.org 2
The first typical case of FBC was reported by Broca in 1866. In
that case, ten females were diagnosed with BC among the thirty-
eight family members, which strongly suggested that the family
members carried specific BC susceptibility genes or were exposed
to the same environmental factors contributing to BC. In 1979,
Lynch defined FBC with clinical characteristics of earlier onset
age, two or more first-degree relatives with a history of BC, a
higher incidence of bilateral BC, and multicentric cancer (14). In
1988, Phipps revised the definition of FBC to include early age of
onset, excess bilaterality, specific tumor association with colon
and ovary, and vertical transmission (15). Presently, the criteria
for FBC diagnosis include (1) in addition to the first patient
(proband) in the family, there are more than three BCs in first-
degree relatives or: (2) in addition to the proband in a family,
there are more than 2 BCs in first-degree relatives, and at least
one of them meets one of the following conditions: age less than
40 years at the time of onset, simultaneous or heterochronous
bilateral BC, or simultaneous or heterochronous non-breast
repeat cancer (16).

The definitions of FBC and HBC are unclear and partially
overlapping. Many studies have not distinguished between FBC
and HBC in terms of clinical features and prognosis (17). One
important reason for distinguishing FBC from other types of BCs
is that it allows us to target the high-risk population and predict
the risk of BC based on FH. As early as 1972, Anderson reported
that first-degree relatives of patients with BC have a 2–3 times
higher risk of developing BC than those with no FH of BC; if the
patient has bilateral BC, the risk is about five times higher for
the relatives and if the patient has premenopausal bilateral BC,
the risk increases to 9 times higher for relatives (18). Recent
studies have found that as the number of first-degree relatives
with BC increases, the probability that women 20–80 years old
with an FH of BC may develop BC increases correspondingly
(19). Interestingly, a positive FH of BC appears to increase the
patient’s lifetime risk of FBC because FH may affect their BC
screening behaviors (20). With the combination of molecular
genetic techniques and knowledge of FH of BC, genetic
counselors can provide more precise disease risk prediction,
which is critical for the prevention and treatment of FBC.

3.2 Gene Mutations Related to FBC
Multiple genes have been identified to be associated with FBC.
For example, BRCA1/2 gene mutations account for 5% of the BC
mutant genes and can lead to 16% to 25% of the FBC cases (21,
22). Moreover, mutant genes associated with genetic syndromes,
such as TP53, PTEN, STK11, and CDH1, account for 5% of the
FBC risk. Moderate mutations in penetrance genes, such as ATM
gene mutations, also account for approximately 5% of the risk of
FBC. More than 180 low-sensitivity genes account for
approximately 18% of the FBC risk (23). However, the
remaining FBCs showed no mutations in any of these genes
and were therefore classified as BRCAX (BRCA1/2-negative,
high-risk) BCs (Figure 3). This type of FBC may carry one or
multiple unidentified genetic mutations (22, 24).

The gene penetration rate, which refers to the estimated risk
of a specific disease in the presence of this genotype of a
particular gene, is commonly used as a genetic biomarker to
December 2021 | Volume 11 | Article 740227
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predict cancer risk. Relative risk (RR) represents the risk of
obtaining a disease compared with the general population’s risk.
In general, BC susceptibility genes are associated with different
risk levels and are roughly divided into high- (RR ≥5.0),
moderate- (1.5≤ RR <5.0), and low-penetrance (1.0≤ RR <1.5)
alleles (25, 26) (Table 1).

People with high-penetrance alleles usually have a lifetime
risk of developing BC of more than 50%, those with moderate-
penetrance have a lifetime risk greater than 20%, and those with
Frontiers in Oncology | www.frontiersin.org 3
low-penetrance alleles have a lifetime risk of 10%–20% (27–29).
Thus, discovering the mutant genes highly related to BC is vital
for disease screening and prediction.

3.3 Genes With High Penetrance
3.3.1 BRCA1 and BRCA2
In 1990, chromosome 17q21.2 was identified to be related to FBC
(30), and the loss of 17q heterozygosity is frequently detected in
familial breast and ovarian tumors (31). Using positional
FIGURE 1 | Literature screening steps.
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cloning, the BC susceptibility gene BRCA1 was found to be
located on chromosome 17 at the 17q21 position (32). In 1995,
the BRCA2 gene was identified on chromosome 13q12.36 (7).
BRCA1 contains 24 exons and encodes a protein of 1,863 amino
acids. The exon contains three mutation domains: a central N-
terminal RING fingerprint domain (exons 2–7), a C-terminal
BRCT domain (exons 16–24), and exons 11–13. The N-terminal
RING fingerprint domain of BRCA1 binds to BRCA1-associated
RING domain protein 1 (BARD1) (33), and the C-terminal
BRCT domain binds to the phosphorylated protein (34, 35).
BRCA2 contains 27 exons and encodes a protein of 3,418 amino
acids. The N-terminal of BRCA2 contains the transcriptional
activation domain, the middle section includes eight conserved
motifs called BRC repeats that bind to RAD51, and the C-
terminal contains the DNA-binding domain, two nuclear
localization signals, and one TR2 (C-terminal RAD51 binding
site) (36). BRCA1 and BRCA2 participate in RAD51-mediated
homologous recombination (HR) for DNA repair. In the case of
DNA double-strand damage, BRCA1 can be accurately located
and phosphorylated at the damage site, and BRCA2 forms a
complex with RAD51 to move it from the site of synthesis to the
Frontiers in Oncology | www.frontiersin.org 4
site of DNA damage processing (37). Furthermore, PALB2 acts
as a bridge between BRCA1 and BRCA2. Its N-terminal coiled-
coil motif binds to the coiled-coil motif encoded by exon 11 of
BRCA1, and its C-terminal WD-40 repeats bind to the N-
terminal of BRCA2 to form the BRCA1/PALB2/BRCA2
complex (Figures 4, 5). This complex is critical for HR after
DNA double-strand breaks (38). In the absence of BRCA1 and
BRCA2, HR is suppressed. DNA damage repair is alternatively
carried out through the non-homologous end-joining pathway,
which is more error-prone and leads to genome instability (7,
39). As a result, BRCA1 and BRCA2 play an essential role in
maintaining genome integrity (40).

As tumor suppressor genes, mutations of BRCA1 (MIM
113705) and BRCA2 (MIM 600185) are closely related to the
development of BC (41, 42). Carriers of these mutations have a
10–20 times higher risk of developing BC than those without
BRCA mutations (43). Approximately 16%–25% of the FBC
cases harbor harmful variants of BRCA1 and BRCA2 (44, 45).
Although many genetic variants of BRCA1 and BRCA2 have been
recorded, approximately 53%–55% of the variants occur in only
one family. The most common BRCA1 variants were 185delAG
FIGURE 3 | The proportion of various gene mutations in FBCs. Related genetic syndrome genes refer to mutated genes found in genetic syndromes related to BC,
such as HBOC. Related genetic syndrome genes accounts for about 5% of whole mutation genes. Low-, moderate-, and high- penetrance genes are classified as
BC mutation genes based on lifetime risk of disease. The BRCAX family accounted for the largest proportion, reaching 47% of whole mutation genes. Patients belong to
The BRCAX family have not found any currently known disease-causing mutation genes.
FIGURE 2 | The proportion of three categories in BC.
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(16.5%), 5382insC (8.8%), and missense variant C61G (1.8%).
Meanwhile, the most frequently reported BRCA2 variants
include 6174delT (9.6%), K3326X (2.6%), 3036del4 (0.9%), and
6503delTT (0.8%) (46). Notably, the mutation spectrum of
BRCA1/BRCA2 varies significantly depending on geographic
origin or ethnicity (47). For example, in China, the mutation
rate of BRCA2 in FBC was higher than that of BRCA1 in the
Shandong Province (48). However, other studies including
different Chinese regions, such as Shanghai and the Henan
Province, showed that the mutation rate of BRCA1 in FBC is
higher than that of BRCA2 (49). The variant hotspots of BRCA1
in the Henan cohort were A3113G and A3780G, which was first
reported in this population (50). Moreover, in the participants
from Shanghai, two other new splice site variants in the BRCA1
gene (IVS17-1G>T, IVS21+1G>C) were discovered (51). BRCA2
gene mutations dominated in FBCs of the eastern Shandong
population, and three BRCA2 gene variants, 2001delTTAT,
4099C to T, and 5873C to A, were discovered for the first time
in this population (52). A new BRCA1 missense variant,
c.5191C>A, was identified in the Taiwanese population, but
whether it is pathogenic remains inconclusive (53). Moreover,
the recurrent variant of BRCA1, 1100delAT, was found in the
Shanghai, Jinan, Qingdao, and Shenyang populations (54), while
the BRCA1 c.470_471delCT and c.981_982delAT variants were
considered to be recurrent variants in the Hong Kong population
(55). Additionally, racial differences have an impact on gene
mutations. For example, a Singapore study that studied
individuals with a personal or FH of familial breast/ovarian
cancers (FBOCs) with the BRCA1 c.442-22_442-13del variant,
found that this variant was more common in patients of Chinese
origin. The study also implied that the BRCA1 c.442-22_442-
13del variant could be a founding variant in Chinese individuals
of ancient southern Han descent (56).

Recently, a study including 21,216 unselected patients with
BC and 6,434 healthy controls from 19 medical centers
throughout 11 Chinese provinces identified 1,958 BRAC1/2
variants through panel-based sequencing, of which 532 (27.2%)
were pathogenic variants, and 858 (43.8%) were pathogenic
Frontiers in Oncology | www.frontiersin.org 5
variants of uncertain significance. The remaining 568 variants
(29.0%) were benign. A total of 268 mutations in the BRCA1 gene
and 242 mutations in BRCA2 were found in Asian patients with
BC, most of which were meaningless mutations. Among these
variants, researchers found 13 types of high-frequency lesions:
p.Cys328fs, p.Asn704fs, p.Ser1862fs, and p.Ile1845fs in BRCA1;
p.Ala938fs, p.Gln1037*, p.Ser1722fs, p. Tyr1894*, p.Leu1908fs,
p.Glu2198fs, p.Ser2378*, p.Pro2802fs, and p.Thr3033fs in
BRCA2. Eight of these variants have not been reported as high-
frequency variants in Caucasians (57). Of note, single nucleotide
polymorphisms (SNPs), a single nucleotide substitution at a
specific position in the genome, may also contribute to BRCA1
changes. For example, two pathogenic SNPs were found on the
11th exon of BRCA1, which may be related to early-onset BC in
the Chinese population (58).

Although various BRCA1/BRCA2 mutations are currently
being investigated, variants of unknown significance that occur
in BRCA1/BRCA2 account for 12%–13% of the cases, the
functions of which are still unclear. Therefore, more research is
required to determine the clinical importance of variants of
unknown significance in BC (59).

3.3.2 TP53
The tumor suppressor gene TP53, located on chromosome
17p13.1, is the most commonly mutated gene in patients with
cancer (60). The TP53 gene encodes the cellular tumor antigen
p53, an intracellular transcription factor that controls multiple
tumor suppressive pathways (61, 62). TP53 is defined as the
“guardian of the genome” because of its role in conserving
stability by preventing genetic mutations. The germline loss of
TP53 can quickly lead to the formation of spontaneous cancers
(63, 64). Moreover, cancers with wild-type TP53 predict a good
prognosis (65), while those with mutant TP53 predict a worse
prognosis (66–68).

Notably, about 30% of the BCs have TP53 mutations (60),
most occurring in exons 5–8 (69). It has been reported that about
5% of the patients with BC with a positive FH and wild-type
BRCA1 and BRCA2 carried a mutation in either CHEK2 or TP53
(70). In patients with Li-Fraumeni syndrome (LFS) with TP53
mutations, the risk of developing BC under 45 years of age is 18–
60 times higher than that of the general population (71). One
study of 150 patients with familial and early-onset BC revealed
that the deletion variant of TP53 (643_660del18) appeared to
have occurred only in the Chinese population (72).

3.3.3 Phosphatase and Tensin Homolog (PTEN)
The PTEN gene is located on chromosome 10q23.31, which
encodes phosphatidylinositol 3,4,5-triphosphate 3-phosphatase.
This has lipid phosphatase activity and works antagonistically to
the PI3K signaling pathway. It also negatively regulates the
mitogen-activated protein kinase (MAPK) pathway through its
protein phosphatase activity (73). PTEN mutation is also
associated with Cowden syndrome, an autosomal dominant
genetic disease that increases the lifetime risk of BC. In PTEN
variant carriers, the lifetime risk of BC is estimated to be 67%–
85% (74).
TABLE 1 | Penetrance of genes in BC.

Penetrance Gene

High Penetrance (rare) BRCA1/BRCA2
(Related Genetic Syndrome)1 PALB2/FANCN

TP53
PTEN
CDH1
STK11

Moderate Penetrance (uncommon) NF1
CHEK2
ATM
NBN
RAD51C/D
MLH1

Low Penetrance (common) MSH2
MSH6
1TP53, PTEN, CDH1, STK11 belong to the category of high penetrance genes and are
related to genetic syndromes.
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3.3.4 PALB2/FANCN
PALB2 is located on chromosome 16p12.2 and encodes a
protein that interacts with BRCA2 as a functional partner.
Thus, PALB2 affects the nuclear localization and stability of
BRCA2 and can also act as a bridge between BRCA1 and
BRCA2 (38, 75). The biallelic PALB2 mutation causes a new
Fanconi anemia subtype, FA-N, also called FANCN (76, 77).
Recent studies have found that germline mutations of PALB2
exist in families with BC, indicating that PALB2 may be a
tumor suppressor for FBC (78, 79). Moreover, individuals with
PALB2 mutations have a 2.3 times higher risk of developing BC
(43). One study conducted in Finland showed that PALB2
Frontiers in Oncology | www.frontiersin.org 6
c.1592delT is a founder variant, which causes truncated protein
products with functional defects that cannot support BRCA2 to
complete DNA repair. As such, females with this PALB2mutation
have a four times higher risk of developing BC (80). By age 50, the
cumulative risk ofBC inwomenwith suchmutations is estimated to
be 14%, and by age 70, it increases to 35% (81). Zhang et al. also
identified three harmful variants (c.3271delC, c.103C>T, and
c.3035C>T) of PALB2 in 305 cases of FBC in China, and the
mutation rates were all 0.33% (82). In addition, studies have
found that women with PALB2 mutations from families with a
history of BC have a greater risk of BC than those with no FH of
BC (83).
FIGURE 4 | BRCA1/2 and PALB2 gene binding sites. (A) BRCA1 contains 3 mutation domains: a central N-terminal RING fingerprint domain (exons 2–7) that binds
to BARD, two nuclear localization signals (NLSs) (exons 11–13) that import BRCA1 into the nucleus, and a C-terminal BRCT domain (exons 16–24) that interact with
BRIP1. (B) The N-terminal region of BRCA2 interacts with PALB2. The N-terminal contains the topologically associating domain (TAD). Eight RAD51 binding sites
(BRC repeats) located on the central part and TR2 located on the C-terminal bind to RAD51 to promote the RAD51-mediated DNA strand exchange process. The
C-terminal contains the DNA binding domain (DBD), which includes 3 oligonucleotide/oligosaccharide-binding folds that bind to double-stranded DNA, two NLSs.
(C) The N-terminal coiled-coil motif of PALB2 binds to BRCA1; the C-terminal WD-40 repeats bind to BRCA2, forming the BRCA1/PALB2/BRCA2 complex.
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3.3.5 E-Cadherin (CDH1)
The CDH1 gene is located on chromosome 16q22.1 and encodes
the tumor suppressor, E-cadherin (a transmembrane calcium-
dependent protein involved in cell-cell adhesion) (84–87). CDH1
mutation is closely related to lobular breast cancer, and the
lifetime risk of developing BC in those with a CDH1 mutation is
approximately 39%. Moreover, somatic and epigenetic changes
in the CDH1 gene are frequently detected in sporadic tumors,
including BC, and are associated with worse survival rates (88,
89). Pathogenic mutations of CDH1 are also the leading cause of
hereditary diffuse gastric cancer (HDGC) (90), whose first
clinical manifestation could be lobular breast cancer (91).

3.3.6 Serine/Threonine Kinase 11/Liver Kinase B1
(STK11/LKB1)
The STK11 gene is located on chromosome 19p13.3 and encodes
a serine/threonine kinase that regulates many physiological
processes, including energy metabolism and cell polarity (92).
Most importantly, it is estimated that 32%–54% of the STK11
gene mutation carriers under 60 years of age have a high risk of
developing BC during their lifetime. The risk of developing BC
for these carriers is 8% at the age of 40, increasing to 32% at the
age of 60. Compared with the general population, the risk of BC
in this subpopulation is seven times higher (93).

3.4 Genes With Moderate Penetrance
3.4.1 Neurofibromatosis Type 1 (NF1)
The NF1 gene is located on chromosome 17q11.2 and encodes
neurofibromin, a cytoplasmic protein that regulates multiple
critical signaling pathways, such as the Ras-cAMP pathway
(94). Neurofibromin can increase the guanosine triphosphate
(GTP) hydrolytic rate of Ras and, thus, plays a tumor-
suppressive role by reducing Ras activity (95). Females under
the age of 50 with NF1 gene mutations have an up to five times
higher risk of BC morbidity and mortality (96), and the risk was
high among women under 40 years of age (97).
Frontiers in Oncology | www.frontiersin.org 7
3.4.2 Checkpoint Kinase 2 (CHEK2)
Cell cycle checkpoint kinase2 (CHEK2) is involved inDNAdamage
and replication checkpoint responses and has been widely
considered a BC-sensitive factor (98). The CHEK2 gene is located
on chromosome 22 and is critical for cell cycle regulation. The
pluripotent kinase CHEK2 is important for DNA damage response
by causing cell cycle arrest or apoptosis.CHEK2 phosphorylates the
TP53 tumor suppressorprotein andprevents its degradationduring
DNA damage, leading to G1 cell cycle arrest (99). In addition,
CHEK2 can induce cell apoptosis independent of TP53 by
phosphorylating the tumor suppressor, promyelocytic leukemia
protein (100).CHEK2.1100delC is a protein truncation variant first
found in a family with LFS (101). Moreover, CHEK2.1100delC can
be detected in 5.1% of the non-carriers of the BRCA1 or BRCA2
mutationswith FH in northern Europe (102), and suchmutation in
females can increase the risk of developing BC by 2–3 times, and by
10 times inmales (103, 104). A studybasedonaChinese population
with the CHEK2mutation in 74 patients with BC with FH and 50
control subjects identified that the missense variant of CHEK2 in
these caseswas 1111C>T (His371Tyr) instead ofCHEK2.1100delC,
which implies that theCHEK2.1100delC variant was relatively rare
in the Chinese population and that CHEK2 c.1111C>T mutation
might be related to the genetic susceptibility of BC (105). Another
study screened theCHEK2 coding sequence of 118 cases of Chinese
FBCnegative forBRCA1 andBRCA2mutations and confirmed that
the incidence ofCHEK2 c.1111C>T in FBCwas higher than that in
non-selective BC (4.24% vs. 1.76%) (106).

3.4.3 Ataxia Telangiectasia Mutated (ATM)
The ATM gene is located on chromosome 11q, which encodes a
phosphatase essential for substrate phosphorylation involved in
DNA repair and cell cycle regulation (107). The ATM gene
mutation rate in the general population is about 1%, and ATM
heterozygotes have an increased risk of developing BC (108),
especially women over 50 years of age (109). The lifetime risk of
developing BC in patients with ATM monoallelic mutations is
FIGURE 5 | RAD51-mediated homologous recombination (HR) for DNA repair. After detecting DNA double-strand damage, ATM is recruited and activated, leading
to the phosphorylation of downstream effectors, including BRCA1, p53, and CHEK2. After phosphorylation, BRCA1 and BRAD1 form a heterodimer; BRIP1 interacts
with BRCT repeats; which constitute a scaffold to recruit BRCA2, PALB2, and RAD51 to form a complex. This complex locates the DNA damage site and promotes
the HR process.
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about 17%–52% (110, 111). A recent meta-analysis showed that
the fully deleterious variants of ATM could cause a BC risk 2–4
times higher than that of the general population (112).

3.4.4 Nibrin (NBN)
The NBN gene is located on chromosome 8q21.3 and encodes
the Nibrin protein, responsible for interaction with DNA repair
proteins involved in DNA double-strand break signaling (113,
114). Carriers of NBNmonoallelic mutations have a significantly
increased risk of BC, with an estimated odds ratio of 3.1 (115).
Moreover, the truncated c.657del5 variant of NBN is also
regarded as a high-risk factor for BC (116).

3.4.5 RAD51C and RAD51D
Proteins encoded by the RAD51 gene are important for DNA
double-strand break repair. Seven RAD51 paralogs have been
identified in mammals, including RAD51, RAD51B, RAD51C,
RAD51D, XRCC2, XRCC3, and DMC1 (117). Based on the
present knowledge, mutations in RAD51C and RAD51D are
closely related to carcinogenesis (118, 119). For example,
RAD51C and RAD51D gene mutations can be detected in
patients with FBOC (120). One study from China conducted a
genetic analysis of 273 patients with BRCA1/2-negative FBC and
identified four previously unknown amino acid substitution
variants in the RAD51C gene, the 4C>G (R2G) located in exon 1,
635G>A (R212H), and 644A>G (D215G) in exon 4, and 882G>C
(Q294H) in exon 6. The R212H variant was unlikely to be
pathogenic, as it only existed in healthy individuals. However, the
R2G and D215G variants were suggested to be pathogenic to
Chinese women after analysis using the SIFT, PolyPhen, and
PMut algorithms (121). Moreover, a recent study showed that the
protein-truncating variants inRAD51C andRAD51D are related to
FBC. The estimated relative risks of BC associated with RAD51C
andRAD51Dmutationswere 1.99 and1.83, respectively.Therefore,
they were classified into the moderate-risk category based on the
currentNational Institute forHealthandCareExcellenceguidelines
(57, 122).

3.5 Genes With Low Penetrance
3.5.1 MLH1, MSH2, MSH6, and PMS2
MLH1, MSH2, MSH6, and PMS2 encode DNA mismatch repair
(MMR) proteins responsible for DNA mismatch repair (123,
124). Mutations in these genes can cause Lynch syndrome.
Several studies have found that MMR gene mutations
frequently exist in patients with BC (125), but the association
between Lynch syndrome and BC is unclear (126).

With the widespread application of high-throughput
sequencing, a large number of genes related to BC risk have
been identified, such as BAP1, PPM1D, and ABRAXAS1 (127,
128). However, their exact connection with BC and its
penetrance remains unclear.

3.6 Gene Mutations in Chinese Patients
with BC
Gene mutations related to BC are thought to vary among patients
from different regions and races. Specifically, several gene
mutations occurred mainly in Chinese populations (Table 2).
Frontiers in Oncology | www.frontiersin.org 8
Generally, most mutations in BRCA1/2 genes exist in Chinese
populations; however, ATM, CHEK2, PALB2, and BRIP1 have
more pathogenic mutations among non- BRCA1/2 carriers
(137).. One study conducted a 27-gene panel analysis of 120
patients with BC and 120 high-risk women with first-degree or
second-degree relatives. The study identified that 12 genes
contained harmful mutations in the Chinese population,
including BRCA1, BRCA2, MUTYH, CHEK, PALB2, ATM,
BARD1, NBN, RAD51C, TP53, BRIP1, and CDH1 (133).

One study conducted in Hunan, China, first reported
two variants in the PTEN gene (225A> C (T160P) and
IVS5 +13T> C) and two variants in the NBS1 gene (IVS6 +
43A> G and IVS6 + 127A> G) in familial and early-onset BC in
the study population (130). FANCC, which belongs to the
Fanconi anemia complementation group, has been reported as
a susceptibility gene for BC. It was found that there were harmful
variants of FANCC in patients with FBOC in China, but its
penetration and spectrum require further study (129). Other
genes, such as DICER1 (134), and growth arrest and DNA
damage-induced 45 alpha (GADD45A) (135) have been
reported as candidate susceptibility genes for FBC, but no
mutations in these genes have yet been discovered to be
harmful among the Chinese population.

3.7 BC-Related Genetic Syndromes
The above-mentioned BC susceptibility genes are active in
several genetic syndromes related to BC. Due to the existence
of mutant genes, patients with a family history of these genetic
syndromes have a higher risk of BC than the general population.
These BCs show familial aggregation, i.e., FBC.

Next, we introduce the genetic syndromes that have been
confirmed to be associated with an increased risk of
BC (Table 3).

3.7.1 Hereditary Breast and Ovarian Cancer (HBOC)
HBOC is an inherited disorder that was first reported in the
1970s (144). The clinical characteristics of HBOC include young
age of onset, multiple family members with BC or OC, or both, or
one family member with both BC and OC, or bilateral BC (145).
The most common genetic changes associated with HBOC are
mutations in the BRCA1 and BRCA2 genes (30). Approximately
60% of the typical families with HBOC harbor BRCA mutations
(70). In China, this proportion was approximately 15.8% (146).
Finally, because BRCA gene mutations are common in FBC,
some patients with HBOC exhibit similar symptoms as patients
with FBC.

3.7.2 Li-Fraumeni Syndrome (LFS)
LFS was first discovered in 1969 as an autosomal dominant
malignant tumor syndrome caused by a germline mutation in the
TP53 tumor suppressor gene. The TP53 gene mutation can be
detected in approximately 50%–70% of the LFS cases, which is
much higher than its prevalence of 1% in BC cases (147, 148).
Furthermore, patients with LFS may suffer from multiple
cancers, including BC, brain tumors, soft tissue sarcoma,
leukemia, osteosarcoma, adrenal cortical malignancies, and
broncho-alveolar lung cancer. The lifetime risk of developing
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BC in patients with LFS is estimated to be 25%–79% (149, 150).
Some patients with BC of LFS show familial aggregation.
Therefore, the NCCN guidelines recommend that women with
TP53 pathogenic variant/likely pathogenic variant undergo a
clinical breast examination every 6–12 months beginning at the
age of 20 and a breast magnetic resonance imaging (MRI) with
contrast screening every year from 20–75 years (151).

3.7.3 Hereditary Diffuse Gastric Cancer (HDGC)
HDGC is an autosomal dominant genetic disease caused by a
CDH1 mutation. Patients with HDGC are susceptible to lobular
breast cancer (LBC). The cumulative risk of LBC in women with
Frontiers in Oncology | www.frontiersin.org 9
CDH1 mutations is estimated to be 39%–52% by age 80 (143,
152, 153).

3.7.4 Ataxia Telangiectasia
Ataxia telangiectasia is an autosomal recessive genetic disease
that is closely related to ATM mutations. The clinical
manifestations include eyelid telangiectasia, cerebellar ataxia,
and immunodeficiency (140). Some studies have shown that
heterozygous carriers of ATM mutations have an increased risk
of BC. A meta-analysis including three cohort studies of relatives
of patients with ataxia telangiectasia estimated that the relative
risk of BC in patients with ataxia telangiectasia is approximately
TABLE 2 | Gene mutations in the Chinese population.

Population Gene mutation Finding

Chinese Han people (58) BRCA1 Two pathogenic SNPs
BRCA1/2-negative Chinese FBOC (129) FANCC FANCC deleterious mutations
Chinese families from Singapore (56) BRCA1 BRCA1 c.442-22_442-13del variant

PALB2 and RAD51D Common mutant genes
FBCs and early-onset BC from southern China (72) P53 P53 643_660del18del variant
BCs or healthy people with a FH of BC from Henan, China (50) BRCA1 BRCA1 A3780G variant

BRCA1 A3113G variant
BRCA1 A3780G variant

BCs with a FH or early-onset BCs from Hunan, China (130) PTEN PTEN IVS4+109insTCTTA variant
PTEN 225 A>C (Thr 160 Pro) variant (novel1)
PTEN IVS5+13T>C variant (novel)
PTEN rs121909229 G>A variant (Arg 130 Gln)

NBS1 NBS1 IVS6+43A>G variant (novel)
NBS1 IVS6+127A>G variant (novel)
NBS1 rs1805794 G>C variant (Glu 185 Gln)

BCs who had at least one first-degree relative affected from
Shanghai, China (51)

BRCA1 BRCA1 IVS17-1G>T variant (novel)
BRCA1 IVS21+1G>C) variant (novel)
BRCA1 1100delAT variant
BRCA1 5640delA variant

FBCs and/or early-onset BCs from eastern Shandong of China
(52)

BRCA2 BRCA2 2001del TTAT variant (novel)
BRCA2 4099C to T variant (novel)
BRCA2 5873C to A variant (novel)

unrelated FBOCs from Eastern China (131) BRCA1 LGR variants in BRCA1 gene
exon5-7dup (novel)
exon13-14dup (novel)
exon1-22del (novel)

Chinese BCs with a FH (105) CHEK2 CHEK2.1100delC variant (not found)
CHEK2 1111C>T (His371Tyr) variant

Chinese early-onset BC and/or affected relatives (132) RAD50 and NBS1 Not found
FBCs and high-risk women with a FH of BC from southern
and central China (133)

BRCA1, BRCA2, CHEK2, PALB2, ATM, BARD1,
NBN, RAD51C, TP53, BRIP1 and CDH1

Detect mutations

MUTYH MUTYH c.892-2A > G variant (benign)
BRCA1/2-negative FBCs (134) DICER1 Not found
Chinese FBCs and SBCs (82) PALB2 PALB2 c.3271delC variant (novel)

PALB2 c.103C>T variant
PALB2 c.3035C>T variant

Early-onset, bilateral or FBCs from Taiwan, China (53) BRCA1 BRCA1 c.5191C>A variant (novel)
BRCA1 c.1155C>T variant (benign)

sporadic and BRCA1/2-negative FBCs (135) GADD45A Not found
BCs with at least one first-degree relative affected with BC
from Shanghai, Jinan, Qingdao, and Shenyang (54)

BRCA1 BRCA1 1100delAT variant
BRCA1 5589del8 variant (novel)

Chinese BRCA1/2-negative FBCs (106) CHEK2 CHEK2 c.1111C>T (p.H371Y) variant
Chinese BRCA1/2-negative FBCs (121) RAD51C RAD51C 4C>G (R2G) variant (novel)

RAD51C 644A>G (D215G) variant (novel)
RAD51C 635G>A (R212H) variant (novel)
RAD51C 882G>C (Q294H)) variant (novel)

Chinese FBCs (136) Mitochondrial DNA (mtDNA) Sequence variants within the mtDNA D-Loop
region, particularly those in D310 segment
1Novel means this variant has been reported for the first time.
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18% at 80 years of age (112). Moreover, if one has a history of
radiation exposure, the risk increases further (154).
3.7.5 Cowden Syndrome
Cowden syndrome is an autosomal dominant genetic
disease, which is clinically characterized by hamartoma-like
lesions, pathognomonic skin lesions, benign breast disease,
early-onset BC, and thyroid cancer. This disease is
closely related to the PTEN/MMAC1/TEP1 gene mutations.
Furthermore, approximately 75% of the female patients with
Cowden syndrome harbor multiple benign breast lesions, such as
fibroadenoma, cystic lesions, and ductal hyperplasia (155). A
French study estimated that the cumulative BC risk in patients
with Cowden syndrome was between 25 and 85%, and the
cumulative incidence of BC by the age of 70 was 77% (95% CI:
59%–91%) (156).

3.7.6 Peutz-Jeghers Syndrome
Peutz-Jeghers syndrome is a rare autosomal dominant genetic
disease caused by mutations in the STK11 gene. The clinical
manifestations of Peutz-Jeghers syndrome include hamartoma-
like polyps in the gastrointestinal tract, melanin deposition in the
skin and mucous membranes, pancreatic cancer, and
mucocutaneous periorificial lentiginosis. The lifetime risk of
patients with Peutz-Jeghers syndrome developing BC is 24%–
54%, and the average age of onset is approximately 39 years (157,
158). The NCCN guidelines recommend that carriers of STK11
gene mutations undergo clinical breast examinations every 6
months and annual mammography and breast MRI
examinations from the age of 25 (159).

3.8 Screening Strategies for FBC
FBC is characterized by familial aggregation, and family
members of patients with FBC have a higher lifetime risk of
disease than the general population (8). Generally, the screening
processes for high-risk groups of FBC are as follows: professional
genetic counselors use screening tools to identify potentially
diseased members of the family; women who have a positive
screening result receive genetic counseling to decide whether to
perform advanced genetic counseling or BRCA genetic testing;
and finally, early monitoring and physical examination of these
high-risk groups are carried out to achieve early detection and
treatment (160). This set of procedures is utilized in some
countries (161); however, due to the differing FBC gene
mutations among ethnic and geographical groups, when
applied to the Chinese population, this procedure needs to be
Frontiers in Oncology | www.frontiersin.org 10
modified to meet the differing needs of this specific
population (Figure 6).

3.8.1 Genetic Counseling
Genetic counseling is a counseling process for relatives who have
genetic diseases or are at risk of infection to provide disease
occurrence and early detection or prophylactic intervention
methods. Genetic counseling can prevent genetic diseases and
provide insight regarding reproductive options and should be
conducted by a well-trained professional counselor. The
professional counselor conducts family investigation and
analysis by evaluating the proband in the family and
estimating the possibility of the disease in the offspring.

Genetic counseling for healthy family members of FBC is an
important step in the screening process for high-risk populations
and should be performed before blood is drawn to collect DNA
to identify pathogenic mutations. However, not all individuals
are required to receive genetic counseling. Eligible participants
should meet one of the following criteria: 1. Personal medical
history with genetic risk of i) early-onset BC (≤35 years old); ii)
both BC and OC; iii) simultaneous cancers other than BC and
OC; and 2. Significant FH of BC/OC: i) BC ≤50 years old; ii)
bilateral BC; iii) at least three family members with ovarian,
peritoneal, or tubal cancer; iv) at least one male family member
with BC; v) multiple cases of BC in the family; vi) at least one
primary cancer patient in the family with BRCA-related diseases;
and vii) Nordic Jewish descent (Figure 7) (4, 160).

During genetic counseling, genetic counselors can use family
risk stratification tools, such as the Manchester Scoring System
(MSS), Family History Screen-7, Pedigree Assessment Tool,
Referral Screening Tool, and Ontario Family History
Assessment Tool (Ontario-FHAT) to distinguish the
participants who need follow-up consultation. Healthy
populations with a high risk of BC need advanced genetic
counseling or BRCA gene mutation testing (162, 163). For
others with a low risk of BC, routine screening strategies are
recommended (161). Following the BC screening strategy for the
Chinese population (2021 version), the low risk population
undergoes X-ray or B-ultrasound examinations every 1–2
years, while high-risk groups undergo annual X-ray and B-
ultrasound examinations and breast MRI when necessary.
Patients that fall between low and high risk undergo X-ray and
B-ultrasound examinations every 1–2 years (164).

3.8.2 Genetic Testing
Genetic testing is conducive to the early detection of high-risk
groups of BC, providing preventive measures, and improving
TABLE 3 | BC-related Genetic Syndromes.

Genetic Syndromes Relate genes Locus

Hereditary Breast and Ovarian Cancer Syndrome (HBOC) (138) BRCA1 17q21.31
BRCA2 13q13.1

Li-Fraumeni Syndrome (139) TP53 17p13.1
Ataxia Telangiectasia (140) ATM 11q22.3
Cowden Syndrome (141) PTEN 10q23.31
Peutz-Jeghers Syndrome (142) STK11 19p13.3
Hereditary Diffuse Gastric Cancer syndrome (HDGC) (143) CDH1 16q22.1
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FIGURE 6 | Genetic counseling strategies for high-risk BCs in China. First, identify eligible consultation participants through the listed criteria. Then use risk
stratification tools to screen high-risk groups from the selected subjects. The lifetime risk of BC of these participants will be calculated through the risk assessment
model in preliminary genetic counseling. High-risk subjects with a disease risk greater than 10% will be further subjected to follow-up genetic testing. Genetic testing
gives priority to the detection of high-risk mutant gene sites in individuals of a family or Chinese populations. If obvious abnormalities are found, then specific
mutation sites can be considered, which should undergo the BC screening process; if there are no abnormal findings, the entire sequence can be considered. In
addition, the positive subjects receive BC screening while the negative participants receive whole genome sequencing. The final genetic test results need to be
compared with the genetic test results of patients with BC in the family. If the mutant gene is the same, the consultation subject is confirmed to be in the high-risk
group; if the results are inconsistent, the subject will not be listed as high-risk for the time being. For those whose family members have not been tested for genetic
mutations, the first step is to detect the mutated gene sites in patients with BC. If the family member cannot be tested or the test result is negative, whole-genome
sequencing can be performed. If there are clear mutation sites in the family members with BC, priority will be given to monitoring these gene sites. The subsequent
detection steps are the same as those described above. Result analysis: 1. Positive Result (The consultation participant showed clear mutation genes that were
consistent with those of a family member or ethnic group): Corresponding measures can be taken to actively intervene in the clinic; 2. Uncertainty negative (no
obvious abnormality was found in the gene testing, but whole genome sequencing was not performed due to other factors): regular clinical follow-up; 3. Results
Uncertainty (the patient found clear mutation genes but inconsistent with family): Regular clinical follow-up; 4. Surely negative (no abnormality was found after all
inspections were completed): Routine examination. *The selection criteria are shown in Figure 7.
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prognosis (165). Currently, only two genes (BRCA1 and BRCA2)
are routinely used for BC genetic testing, and the test subjects are
usually limited to women with an FH of BC and OC. However,
given that genetic testing is relatively expensive and may cause
adverse socio-psychological effects, testing should target
individuals that most likely have gene mutations (166, 167).
For example, BRCA1/2 testing is only provided to individuals
with a mutation probability greater than or equal to 10% in many
regions such as British (168). Therefore, advanced genetic
counseling or models should be used to predict the likelihood
of BRCA1 and BRCA2 mutations before performing genetic
testing. When a patient qualifies as a test participant, they
should fully understand the advantages and disadvantages of
genetic testing and provide fully informed and written consent
before genetic testing is possible (5).

It is generally recommended that female test subjects younger
than 18 years of age undergo BRCA genetic testing. The focus of
mutation analysis depends on the FH. If there are family
members with BC with precise genetic mutation sites or ethnic
groups carrying specific genetic mutation sites, these sites can be
tested first (169). If the test subject does not have these
characteristics, the entire specific gene sequence must be tested
to exclude other site mutations. It is worth noting that women
who are clinically negative for BRCA mutations are also at risk
for BC (170). Walsh et al. found that among high-risk American
families for BC and whose BRCA1 and BRCA2 gene test results
are negative, approximately 12% still carry genetic mutations in
BRCA1, BRCA2, CHEK2, TP53, and PTEN (70). These false
negatives can easily lead to a missed diagnosis in high-risk
groups. In addition, most of the gene mutations in FBC are
unrelated to BRCA1, such as ATM, CHEK2, and BARD1, in the
homologous recombination pathway (171). Further studies have
shown that the truncated variants of ATM and CHEK2 are more
closely associated with estrogen receptor (ER)-positive BC, while
BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D are
Frontiers in Oncology | www.frontiersin.org 12
more closely related to ER-negative BC (29). Therefore, it is
believed that both sequencing and global screening for
rearrangements should be performed for women with high risk
for BC who are BRCA1/2 negative. For families with only
negative BRCA1/2 sequencing test results, multiplex ligation-
dependent probe amplification testing can be performed.

If the result of genetic testing is positive, that indicates the
detected mutant gene is the same as the mutant gene of the BC
patient in the family; therefore, the test subject needs to continue
the screening process. Subsequent BC screening includes regular
breast self-examination and imaging examinations. If the BC
patient is not a mutation carrier, the test subject will temporarily
not be listed as a high-risk patient. Those participants whose tests
are all negative will temporarily not be classified as high-risk
groups, and the general population screening process is
recommended (161).

With the development of genetic testing, many new testing
methods have emerged, such as multigene panel testing, which
can detect multiple gene loci simultaneously. In a study of 35,000
women with BC, the 25-gene panel showed mutations most
commonly in BRCA1, BRCA2, CHEK2, ATM, and PALB2 (172).
Moreover, NCCN Guidelines 2017 stated that if more than one
gene can explain hereditary cancer, polygenic testing may be
required to be more effective and cost-effective. A recent study
also demonstrated that population-based multigene panel testing
is more cost-effective than individual BRCA1/BRCA2 testing
(173). Moreover, a current study in China showed that
multigene panel testing could increase the mutation detection
rate in patients with a high risk of BC (137). Thus, although
multigene panel testing still has shortcomings for practical
applications (174), it may become an important technology in
future FBC screening strategies.

From a technical point of view, it is practical to accurately
detect BRCA1/2 mutations and other susceptible gene mutations
in China. However, there is currently no uniform standard for
FIGURE 7 | Selection criteria for consulting participants.
December 2021 | Volume 11 | Article 740227

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Shen et al. Features of Familial Breast Cancer
the hot spots of FBC mutant genes in the Chinese population.
Moreover, there is no uniform standard for genetic testing. The
shortage of professionals to provide genetic counseling results in
the imperfect prevention of uncertain genetic mutation carriers.
Therefore, establishing an entirely professional team and
standardized genetic counseling processes for FBC prevention
and treatment are urgently needed.

3.8.3 Predictive Model
Only 5%–10% of the BC susceptibility gene carriers will
eventually develop BC due to gene variations. Predicting the
risk of BC in individuals with FH is helpful for the clinical
prevention and treatment of FBC. At present, many clinical
models that combine the patient’s personal history, FH, and
other factors to assess the risk of BC have been proposed (175),
although no standardized prediction method has been
widely accepted.

3.8.4 Gail Model (1989)
The Gail model is a statistical analysis model based on case-
control data, which integrates the risk factors of BC, including
BC history, age, age at menarche, age at first birth, number of
first-degree relatives with BC, breast biopsy results, and race.
Gail-1 in 1989 was initially used to predict the risk of invasive BC
and carcinoma in situ in white women who underwent
mammography each year (176). Gail et al. modified Gail-2 in
1990 to improve its predictive power (175). Since then, the Gail
model has been validated in many different populations (white,
African American, Hispanic, Asian American, American Indian,
and Alaska Natives).

3.8.5 Claus Model (1994)
The Claus model estimates the lifetime risk of BC based on the
FH of first- and second-degree relatives with BC and OC (177).
The reference parameters included the age of onset of the
paternal and maternal lines and information on cancer
history (178).

3.8.6 Penn Model (1997)
The Couch (Penn I) model was initially used to predict the
probability of BRCA1 mutations in 169 families with BC. The
Penn II model is based on logistic regression analysis and
integrates specific clinical features (such as bilateral BC) to
predict the possibility of BRCA1/2 mutations in individuals or
families. Studies have shown that the prediction accuracy of the
Penn II model is higher than that of the Penn I and Myriad II
models (179).

3.8.7 BRCAPRO Model (1998)
The BRCAPRO model is based on the Bayes theorem, the
prevalence of BC and OC in first- and second-degree relatives,
and the age of onset of the disease in family members to screen
BRCA1/2 gene mutation carriers. The model was developed into
a computer software in 2002 (180, 181). At present, the model is
continuously updated, and its feasibi l i ty has been
confirmed (182).
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3.8.8 Myriad Model (2002)
The Myriad model is based on 7,461 samples tested for BRCA1/2
mutations and 2,539 samples of detected mutations in three
descendants of Ashkenazi Jewish ancestry (including FH, age of
onset of FBOC, and presence of invasive cancer) to establish a
model to predict the possibility of carrying mutations. The model
has been publicly released at present, and the sample size is being
expanded for research and updates (183).

3.8.9 BOADICEA Model (2004)
The BOADICEA model was developed based on the complex
isolation analysis of the occurrence of BC and OC in the
combined data of 1,484 BC cases and 156 multi-case families
(184). This model not only allows for simultaneous effects of
both BRCA1 and BRCA2 but also allows for the effects of genetic
modifiers and the multiplier effect of low penetrance genes on BC
risk (185).

3.8.10 Manchester Scoring System (2004)
Evans et al. used whole-gene screening technology to screen the
DNA samples of 422 non-Jewish patients with a history of BC/
OC for BRCA1 mutations and performed BRCA2 screening for
318 subsets. After combining the screening results and FH, a
simple scoring system, the Manchester scoring system, was
designed to predict pathogenic mutations (186). In 2009 and
2017, MSS2 and MSS3, respectively, were released, where the
pathological weight was considered in the scoring system, and
the corresponding score was adjusted (187, 188). For subjects in
Northwest England, a total MSS3 score of 15–19 is equal to the
10% threshold, and a score of 20 points is equal to the 20%
threshold, but the threshold may need to be adjusted when
applied to other populations.
4 DISCUSSION

BC is currently the most common cancer among women
worldwide. The incidence of BC in 2020 is the highest while
the mortality rate is only fifth in the world, highlighting the need
to prevent and treat BC. Compared with SBC, the cause of FBC
seems to be clearer. Many studies have discovered multiple gene
mutations related to FBC, such as BRCA1, ATM, and CHEK2.
Scholars divide these gene mutations into three categories based
on the RR. As the research progressed, some genes that were
originally considered to be moderate risk were reclassified into
the high penetrance category, such as TP53. Some of these gene
mutations also exist in the Chinese BC population, while some
specific gene variants, such as PALB2 c.3271delC, are relatively
unique to the Chinese population. In summary, we introduced
16 genes that have been identified to be closely associated with
FBC. Accordingly, we described these genes in detail based on
their different trajectories. Moreover, genetic syndromes
associated with FBC have also been discussed with the
corresponding risk of disease, such as HBOC, LFS, and HDGC.
The NCCN guidelines also recommend corresponding screening
strategies for these genetic diseases. However, such guidelines for
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the Chinese population have not yet been released. Considering
the heterogeneity of BC, we listed the hotspot mutation genes
and their loci in the Chinese FBC population and then proposed
a screening flowchart for high-risk Chinese populations for FBC
based on existing screening strategies.

At present, there is no standardized process for the diagnosis
and treatment of FBC in China. High-risk groups can be
screened out only through FH screening. After genetic
counseling, some people are selected for corresponding genetic
testing based on economic conditions as well as the counseling
results, and the genetic testing results are combined to provide
complementary preventive treatments. Although many
predictive models have been established to predict disease risk,
and some of them seem to be applicable to the Chinese
population, there is currently no professional model designed
specifically for the Chinese population. The lack of suitable
predictive models and professional genetic counseling has led
to the lack of standardization of early screening of FBC high-risk
populations in China. An FBC screening strategy based on the
risk of mutant genes specifically for the Chinese population is
therefore urgently needed. This strategy can help in the early
identification of high-risk patients among the families of patients
with BC with FH in the clinic and provide a framework for
subsequent in-depth therapeutic interventions and research. Due
to the vast territory of China, the characteristics of BC in
different areas or ethnic groups vary. It is difficult to collect the
BC characteristics of the entire country, and further studies that
can provide more objective evidence are required.

This study has several limitations. First, it lacks a systematic
quantitative analysis, and there is a certain selection bias in the
Frontiers in Oncology | www.frontiersin.org 14
selection of the cited documents in this review, which may lead to
bias in the research results and conclusions. In addition, the
study of the Chinese population only selected populations in a
particular region. Whether the results apply to the entire Chinese
population remains to be confirmed.

In conclusion, early detection of FBC is a critical step in its
treatment. FH, related mutant genes, and genetic syndromes
provide a solid foundation for genetic counseling. For the
Chinese population, different screening strategies need to be
adopted based on unique genetic information.
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