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ABSTRACT

During the last decade, genome-wide association
studies (GWAS) have represented a major approach
to dissect complex human genetic diseases. Due in
part to limited statistical power, most studies identify
only small numbers of candidate genes that pass the
conventional significance thresholds (e.g. P ≤ 5 ×
10−8). This limitation can be partly overcome by in-
creasing the sample size, but this comes at a higher
cost. Alternatively, weak association signals can be
boosted by incorporating independent data. Previ-
ously, we demonstrated the feasibility of boosting
GWAS disease associations using gene networks.
Here, we present a web server, GWAB (www.inetbio.
org/gwab), for the network-based boosting of hu-
man GWAS data. Using GWAS summary statistics
(P-values) for SNPs along with reference genes for
a disease of interest, GWAB reprioritizes candidate
disease genes by integrating the GWAS and net-
work data. We found that GWAB could more effec-
tively retrieve disease-associated reference genes
than GWAS could alone. As an example, we describe
GWAB-boosted candidate genes for coronary artery
disease and supporting data in the literature. These
results highlight the inherent value in sub-threshold
GWAS associations, which are often not publicly re-
leased. GWAB offers a feasible general approach to
boost such associations for human disease genet-
ics.

INTRODUCTION

Genome-wide association studies (GWAS) are conducted
to identify single nucleotide polymorphism (SNP) genetic

variants that are associated with a disease population. Be-
cause candidate SNPs from GWAS can provide important
clues regarding the genetics of complex traits, more than
2700 GWAS on human traits have been conducted and
more than 31 000 unique trait-SNP associations have been
reported to a central repository, the GWAS catalog (1), as
of January 2017. Although they represent a major driving
force in human genetics, GWAS have some challenges, in-
cluding limited statistical power, which is due in part to the
pathway nature of complex human diseases. Causal variants
of most common diseases in humans are distributed across
many genes in the disease-relevant pathway, resulting in ge-
netic heterogeneity (2). Therefore, each causal variant oc-
curs in only a subset of a disease population, reducing the
test power of the association between a single variant and
the disease. We can partly overcome the problems associ-
ated with the underpowered statistics of GWAS by increas-
ing the population size, but this entails a higher cost.

The pathway nature of common diseases presents not
only statistical challenges but also new opportunities for
augmenting and interpreting GWAS data. Assuming that
the genes in the same pathway are functionally coupled,
co-functional gene networks can facilitate the analysis of
GWAS data via mainly two approaches (3,4): (i) identify-
ing disease-associated pathways by searching for subnet-
works that are enriched for candidate genes identified in
GWAS and (ii) reprioritizing disease-associated genes by in-
tegrating GWAS and network data. The network-assisted
analysis of GWAS data requires gene-level scores for dis-
ease associations. Several methods have been developed to
identify subnetworks enriched for candidate genes. Algo-
rithms to search for high-scoring subnetworks in a node-
weighted network such as jActiveModules (5) and dmG-
WAS (6) have been applied to identify disease-associated
pathways in a network of genes weighted by P-values from
GWAS (7,8). DAPPLE identifies disease-associated path-
ways through a permutation test for direct network con-
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nectivity among candidate genes identified in GWAS in
a protein–protein interaction (PPI) network (9). NIMMI
identifies disease-associated subnetworks using combined
weights from GWAS P-values and network connectivity
(10). The prix fixe strategy identifies disease-associated
pathways by evaluating the significance of combinations of
genes, with one gene from each GWAS candidate locus, in
a gene network (11). The identified subnetworks are gener-
ally applied to a gene set enrichment analysis for pathway-
centric interpretation, and the member genes that are not
annotated for the disease can be investigated as novel can-
didate genes.

The second category of network-assisted analysis for
GWAS data is reprioritizing genes for diseases based on the
integration of GWAS and network data. For example, we
previously identified disease genes of sub-threshold GWAS
associations (e.g., P ≤ 5 × 10−8) by incorporating the
GWAS P-values of neighbors in a co-functional network
(12). The effectiveness of the network-based boosting of
GWAS associations was validated in Crohn’s disease (CD)
and type 2 diabetes (T2D) using the updated GWAS candi-
dates from a meta-analysis and literature review. Recently,
another method for the network-based reprioritizing of
GWAS associations, NetWAS (http://giant.princeton.edu/
gwas/create new), was developed and demonstrated to en-
hance the accuracy of disease gene predictions in hyperten-
sion, C-reactive protein levels, T2D, body mass index and
advanced age-related macular degeneration (13).

Here, we present GWAB (genome-wide association
boosting), a web server for the network-based boosting of
GWAS data described in our previous work (12). We evalu-
ated GWAB using seven disease GWAS for which summary
statistics data are available for the whole set of SNPs and
found that GWAB could more effectively identify disease-
associated genes than GWAS could alone. We also vali-
dated many GWAB-boosted genes in coronary artery dis-
ease GWAS as new disease-associated candidates using sup-
porting data in the literature.

WEB SERVER DESCRIPTION

Overview of the network-based boosting of GWAS data

Because the genes associated with a disease tend to be
functionally coupled, the GWAS associations of a gene
can also be a partial indication of the involvement of its
co-functional partners in the disease. Thus, GWAS asso-
ciations for individual genes can be propagated through
co-functional network neighbors. If a gene shows sub-
threshold associations in a disease GWAS but its net-
work neighbors have strong GWAS associations, we may
also consider the gene a considerable candidate based on
the propagated significance score of the disease-association
from its network neighbors (Figure 1A). To propagate
GWAS data through the gene network, GWAB first assigns
P-values of SNPs to genes based on chromosomal proxim-
ity. It assigns the best P-value within 10 kb from the begin-
ning or end of the gene by default. Although there are more
sophisticated methods for assigning SNP P-values to genes
such as VEGAS (14), GWAB uses the simple distance-based
assignment approach to achieve a favorable trade-off be-
tween prediction accuracy and calculation time. In supple-

mental analysis, we found that P-value assignment by VE-
GAS did not make significant improvement in boosting per-
formance for the tested GWAS data in this study (data not
shown).

GWAB uses the scoring scheme described in our previ-
ous work (12). Let p j denotes the probability of disease in-
volvement of a gene j. To make use of the information from
the genes that are on the verge of being statistically signif-
icant, we implemented a ‘soft’ guilt-by-association (GBA)
by (p j − (1 − p j )), where only genes that are very strongly
associated with the disease are given full weight in the GBA.
GWAB calculates the total contributions of the GWAS as-
sociation scores from the network neighboring gene j of
gene i as follows:

Si =
∑

j

(
2p j − 1

)
li j

where li j is the likelihood of the link between gene i and
gene j in the co-functional network. The likelihood score of
the co-functional links was calculated based on a Bayesian
statistics framework, in which the ability to retrieve known
pathway links are evaluated for the given evidence (15).
When the data from GWAS and the data from the network
are conditionally independent, we can integrate them in a
naı̈ve Bayes framework. The posterior log odds that gene i
is involved in the disease (i.e. GWAB score) can be calcu-
lated using the following equation:

logO (i ∈ D|DNet DGWAS) = Si + logO(i ∈ D|DGWAS)

where logO(i ∈ D|DGWAS) is the log odds of the associa-
tion calculated from the GWAS data, which corresponds
to the log Bayes factor for the disease-association plus the
prior log odds for the association. Because the odds of the
association are calculated from the P-value of GWAS, the
GWAB will refer to the prior log odds as the P-value thresh-
old (log(P) threshold).

Web-based service design and implementation

The GWAB server consists of a front-end system that pro-
vides a user interface for submitting input data for the
analysis and receiving of results and a back-end system
that performs data preprocessing, boosting and optimiz-
ing procedures (Figure 1B). First, users need to submit a
set of SNPs with P-value data from GWAS and a set of
reference disease-associated genes for selecting an optimal
P-value threshold for boosting and validating prediction
performance. Using the given user-input data, GWAB se-
quentially performs the preprocess of assigning P-values
to genes, boosting GWAS associations by incorporating
GWAS association scores of network neighbors and opti-
mizing boosting conditions by selecting a P-value thresh-
old. In addition to the input data, several parameters need
to be chosen from the job submission page. GWAS in hu-
mans have been conducted based on either an hg18 or hg19
genome build. Thus, users need to choose the correct ver-
sion of the genome build for the given GWAS data. Users
also need to choose a range for the chromosomal distance
between SNPs and genes for use in the search for the SNP
with the best P-value that will be assigned to each gene.

http://giant.princeton.edu/gwas/create_new
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Figure 1. Overview of GWAB. (A) Schematic summary of the network-based boosting of GWAS data. (B) Components of the GWAS web service and
their work flow. (C) A summary plot of GWAB results for the coronary artery disease GWAS data. The prediction performances for reference disease genes
by GWAB, GWAS alone and 100 randomized networks are represented as AUC scores for FPR 5% (y-axis) for the given log(P) threshold (x-axis). The
vertical dashed line indicates the optimal log(P) threshold where the best AUC score was achieved.

Users may run an analysis with a different SNP-gene dis-
tance range, yet we found no significant changes in boost-
ing by varying from 0 to 250 kb in our previous study (12).
Next, GWAB reprioritizes genes by boosting GWAS asso-
ciations using the scoring scheme described above. Then,
the retrieval rate for reference disease genes is measured by
receiver operating characteristic (ROC) analysis to assess
the prediction performance. To determine how much of a
boosting effect was gained by the given network, GWAB
repeats the whole reprioritizing process for 100 randomized
networks with the same parameters.

The effectiveness of the network boost could vary de-
pending on the number of genes believed to be associated
with the disease, in other words, the number of genes that
can contribute their GWAS association scores to network
neighbors. We can alter the number of genes that pass the
‘prior odds’ by using a different P-value threshold. Thus,
only genes that pass the threshold can participate in net-
work boosting. To identify the optimal P-value threshold

for a given network boosting, GWAB repeats the analysis
over various P-value thresholds within a given range (−6 <
log(P) < −2 by default) with a set interval (0.3 by default).
While the GWAB analysis is running, users can monitor the
job status via a status page, which is refreshed every 10 s un-
til it moves to the result page automatically.

The performance of each GWAB analysis is summarized
as an area under the ROC curve (AUC) score for less than a
5% false positive rate (FPR). If the AUC score from GWAB
is higher than that obtained with randomized networks and
that obtained with GWAS alone, the high-ranked genes by
GWAB are likely to be involved in the disease (Figure 1C).
The final list of reprioritized genes for the disease is gener-
ated using the optimal log(P) threshold with which the high-
est AUC score was obtained (e.g. −3.6 for coronary artery
disease).

All the backend programs in GWAB are implemented
in Python and PHP, and all job information is saved as
MYSQL to manage GWAB jobs. Moreover, the job con-
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troller, which acts as a daemon, is implemented as shell pro-
grams so that it can quickly respond to incoming work by
calling a job list once per a second. The calculation time of
GWAB depends on the number of SNPs and the availability
of the CPU, but the process usually takes less than an hour.

EVALUATION OF GWAB USING DISEASE GWAS
DATA

Network, GWAS data and reference disease genes

The quality of the co-functional network affects GWAB
performance because GWAS data on disease involvement
are propagated through the network. For the GWAB web
server, we used an updated HumanNet constructed based
on similar network inference and integration methods as in
a previous study (12). We found that the updated Human-
Net significantly improved GWAB performance for the dis-
ease GWAS data tested in this study. The manuscript for the
updated HumanNet is currently under preparation.

The key advantage of GWAB is its ability to use sub-
threshold GWAS association data in disease gene predic-
tion. However, typically, GWAS deposit P-value data only
for the subset of SNPs that pass the significance threshold.
We were able to find public GWAS data that provide P-
values for the whole set of SNPs in seven human diseases
(Table 1): Alzheimer’s disease (ALZ) GWAS (16) by the In-
ternational Genomics of Alzheimer’s Project (IGAP) Con-
sortium, coronary artery disease (CAD) GWAS (17) by the
Coronary Artery Disease Genome-Wide Replication and
Meta-analysis plus the Coronary Artery Disease Genetics
(CARDIoGRAMplusC4D) Consortium, CD GWAS (18)
and ulcerative colitis (UC) GWAS (19) by the International
Inflammatory Bowel Disease Genetics Consortium (IIB-
DGC), rheumatoid arthritis (RA) GWAS (20) by the Bi-
ologics in RA Control (BIRAC) Consortium, schizophre-
nia (SZ) GWAS (21) by the Psychiatric Genomics Consor-
tium (PGC) and T2D GWAS (22) by the Diabetes Genetics
Replication and Meta-analysis (DIAGRAM) Consortium.
In practice, GWAB analysis ignores SNPs with a P-value
> 0.01, which generally accounts for 95–98% of all SNPs.
We found that this data filtration step substantially reduced
the computation time with no significant changes in predic-
tions.

To benchmark the predictions for disease-associated
genes, we constructed reference gene sets for the seven
diseases based on several disease gene databases (Table
1). The two most popular disease gene databases, Online
Mendelian Inheritance in Man (OMIM) as of May 2014
(23) and Disease Ontology (DO) as of March 2016 (24),
were used to collect reference genes for all seven diseases.
In addition, we employed several disease-specific databases:
CADgeneDB (25) for CAD, RADB (26) for RA, SZGene
database (27) for SZ and T2DGADB (28) for T2D. All
GWAS data and reference disease genes used in this study
are available from the GWAB server. In the web tool, we
also provide pre-compiled disease gene sets derived from
a database DISEASES (29), which enable users to provide
reference gene sets easily for many other diseases in future
analyses.

Benchmarking predictions for disease-associated reference
genes

We first evaluated the ability of GWAB to retrieve disease-
associated reference genes. We evaluated GWAB perfor-
mance with 5-fold cross validation, in which the entire set of
reference disease genes is divided into five subsets: four of
them are used for optimal threshold search and one for test-
ing predictions. By using the completely different data be-
tween searching parameters and testing prediction perfor-
mance, over evaluation of GWAB was avoided. For the opti-
mal log(P) threshold, GWAB more effectively retrieved the
disease-associated reference genes than GWAS did alone for
all tested diseases (Figure 2A–G). For all disease GWAS,
GWAB found the optimal log(P) threshold that achieved
the highest AUC: −2.4 for ALZ, −6 for CAD, −6 for CD,
−1.8 for RA, −2.4 for SZ, −3.3 for T2D and −2.7 for UC.
These results suggest that the GWAB approach can be gen-
eralized to many other disease GWAS to rescue false nega-
tives and discover novel disease-associated genes.

Next, we compared GWAB with NetWAS (13), another
method for the network-based reprioritizing of GWAS as-
sociations. GWAB and NetWAS are distinct in several as-
pects. First, GWAB reprioritizes genes using the GWAS as-
sociation scores of its network neighbors, whereas NetWAS
reprioritizes genes using a support vector machine (SVM)
classifier with training network features. Under the hypoth-
esis that disease-relevant genes would be enriched among
the nominally significant genes, NetWAS trains an SVM
classifier using nominally significant (P-value < 0.01 by de-
fault) genes as positive examples and 10 000 randomly se-
lected non-significant (P-value ≥ 0.01) genes as negatives.
Second, GWAB uses only a single integrated co-functional
network, whereas NetWAS can use 144 tissue-specific co-
functional networks. In practice, users may conduct a Net-
WAS analysis with a specific tissue network (i.e. the most
relevant tissue for the disease) or a network for all tissues.
Third, GWAB provides the service of P-value assignment to
genes, but NetWAS does not. Users need to assign P-values
to genes using separate tools such as VEGAS (14). Fourth,
GWAB runs many analyses using various P-value thresh-
olds and finds the optimal threshold to output the final
results automatically, whereas each job on NetWAS runs
using a single parameter setting. Therefore, we used Net-
WAS results obtained with the default parameter setting in
the comparison. We found that GWAB outperformed Net-
WAS in the seven diseases, with either a tissue-specific or an
all-tissue network (Figure 2H). NetWAS predictions based
on different tissue-networks or parameters did not result in
significant changes in performance. Although we did not
exhaustively test for different GWAS and reference genes,
these results indicate that GWAB is one of the most useful
tools for augmenting GWAS.

Validation of novel candidate genes by GWAB

In addition to rescuing known disease genes that could not
be identified by GWAS alone, GWAB may predict new can-
didate genes for the disease. Figure 3 presents the largest
component of the network of genes that are significantly as-
sociated with CAD after network boosting (GWAB score >
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Table 1. GWAS data and reference genes for the seven diseases tested in this study

Disease name GWAS data sources* # SNPs # Cohorts
Sources of reference disease
genes$

# Disease
genes

Alzheimer’s disease (ALZ) IGAP 7 055 882 25 580 cases OMIM, DO 406
48 466 controls

Coronary artery disease (CAD) CARDIoGRAMplusC4D 2 420 361 22 233 cases OMIM, DO, CADgene 678
64 762 controls

Crohn’s disease (CD) IIBDGC 12 255 197 22 027 cases OMIM, DO 182
29 082 controls

Rheumatoid arthritis (RA) BIRAC 2 556 272 12 307 cases OMIM, DO, RADB 941
28 975 controls

Schizophrenia (SZ) PGC 9 444 232 36 989 cases OMIM, DO, SZGene 1155
113 075 controls

Type 2 diabetes (T2D) DIAGRAM 2 473 442 34 840 cases OMIM, DO, T2DGADB 615
114 981 controls

Ulcerative colitis (UC) IIBDGC 12 276 506 16 315 cases OMIM, DO 204
32 635 controls

*GWAS data sources:
IGAP (The International Genomics of Alzheimer’s Project (IGAP): http://web.pasteur-lille.fr/en/recherche/u744/igap/igap download.php
CARDIoGRAMplusC4D (Coronary ARtery DIsease Genome-wide Replication and Meta-analysis plus Coronary artery Disease Genetics): http://www.cardiogramplusc4d.org
IIBDGC (International Inflammatory Bowel Disease Genetics Consortium): https://www.ibdgenetics.org
BIRAC (Biologics in RA Control) Consortium: (http://www.broadinstitute.org/ftp/pub/rheumatoid arthritis/Stahl etal 2010NG)
PGC (Psychiatric Genomics Consortium): https://www.med.unc.edu/pgc
DIAGRAM (DIAbetes Genetics Replication And Meta-analysis): http://diagram-consortium.org
$Sources of reference disease genes
OMIM (Online Mendelian Inheritance in Man): http://omim.org
DO (Disease Ontology): http://disease-ontology.org)
CADgeneDB (Coronary Artery Disease Gene Database): http://www.bioguo.org/CADgene/
RADB (a database of rheumatoid arthritis-related polymorphisms): http://www.bioapp.org/RADB/
SZGene (SchizophreniaGene): http://www.szgene.org/
T2DGADB (type 2 diabetes genetic association database): http://www.diabetes.org

7.3). Genes with a larger node size are more likely to be in-
volved in CAD based on the GWAB score. The intensity of
the node color indicates the degree of the network boost.
Genes with a darker color were raised to the higher ranks
by more steps by a stronger effect of the network boost.
The reference CAD genes are indicated by red gene names,
and significant candidate genes retrieved by GWAS alone
are indicated by red node borders. Four reference genes for
CAD were retrieved by GWAS alone (Supplemental Ta-
ble S1): CDKN2A, CDKN2B, LPA and ZPR1. The same
GWAS identified seven new candidate genes for CAD, and
we found that three of them, PSRC1 (30), SMARCA4 (31)
and ZC3HC1 (17), were known to have CAD-associated ge-
netic variants according to a literature review (Supplemen-
tal Table S2).

To evaluate effectiveness of the network boost, we fo-
cused on genes that were highly boosted by the network
(dark nodes). Four reference genes for CAD were not re-
trieved by GWAS alone but were rescued by network boost-
ing (Supplemental Table S3): EGFR, FN1, PECAM1 and
PLG. The prediction ranks for these genes were raised by
many steps after network boosting (e.g. EGFR was 2966th
by GWAS alone but 44th by GWAB). Therefore, we could
retrieve twice as many reference CAD genes using net-
work boosting compared with by GWAS alone. Notably, we
found 17 new candidate genes for CAD by network boost-
ing that were not found by GWAS alone (Supplemental Ta-
ble S4). Surprisingly, we validated that 11 of them (11/17
= 65%) were associated with CAD by a literature review.
SMAD3-dependent regulation of COL4A1/COL4A2 was
reported to have a functional significance in CAD patho-
genesis (32), and SPARC was reported to be involved in
CAD progression (33). COL5A2 was also reported as a
novel candidate marker for the identification and treatment
of ischemic cardiovascular disease (34). PTPN11 was re-
ported to contain a CAD risk variant (35). SMAD3 was

reported to be associated with CAD and suggested to be
a useful biomarker for diagnosis and risk stratification
(36). Recently, a cohort-based study reported that levels of
amyloid-beta 1–40 peptides that are generated by prote-
olytic cleavage of the protein encoded by APP are signif-
icantly associated with arterial stiffness progression (37).
CALD1 was reported to play an essential role in the reg-
ulation of smooth muscle (38), suggesting that its dysregu-
lation causes cardiac disorders. A polymorphism of FBN1
has been suggested to be associated with aortic stiffness
and disease severity in CAD patients (39). A recent GWAS
analysis identified a genetic variant of FLT1 associated
with increased risk of CAD in a Japanese population (40).
GUCY1B3 encodes a key enzyme of the nitric oxide signal-
ing pathway, and impaired nitric oxide signaling has been
implicated in the pathogenesis of cardiovascular disease, in-
cluding CAD (41).

We also examined the literatures for the top 20 GWAB
candidates in other five diseases that are highly predictive
for <5% FPR (see Figure 2A–G), and found that many of
them are reference disease genes or validated by literature
evidences: 17 candidates for AD, 11 for CD, 12 for SZ, 12
for T2D, 9 for UC (Supplemental Table S6). These results
strongly suggest that GWAB can identify disease-associated
genes through augmenting GWAS data by incorporating
functional association between genes.

DISCUSSION

Network-based boosting of GWAS data has several ad-
vantages in discovery of disease-associated genes. First, it
can effectively integrate complementary information from
population-based approach and molecular profiling ap-
proach to disease gene identification. The complementar-
ity between two approaches was demonstrated as many
disease-associated genes (either known or validated by lit-
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Figure 2. Evaluation of GWAB using seven disease GWAS. Summary plots of GWAB analyses for (A) Alzheimer’s disease (ALZ), (B) coronary artery
disease (CAD), (C) Crohn’s disease (CD), (D) rheumatoid arthritis (RA), (E) schizophrenia (SZ), (F) Type 2 Diabetes (T2D) and (G) ulcerative colitis
(UC). (H) Bar graphs representing the AUC scores for disease gene predictions by GWAB, NetWAS with all tissues and NetWAS with specific tissue (brain
for ALZ, heart for CAD, intestine for CD, bone for RA, brain for SZ, liver for T2D, intestine for UC).

eratures) were retrieved not by statistical association from
GWAS alone but by integration of GWAS with functional
associations of the network. Second, it can utilize the in-
herent value of SNPs with sub-threshold significance. For
example, CAD GWAS analyzed in the study used only 160
SNPs that pass the typical P-value threshold to identify dis-
ease gene candidates. However, 3079 SNPs that are below
the typical threshold contributed to identify disease gene
candidates with GWAB. Therefore, network-based boost-
ing substantially increase the information usage of the given
GWAS. Third, since neither GWAS nor the functional net-
work makes any prior assumptions about the disease stud-
ies, this strategy is free from the study bias.

Since GWAB method uses the functional gene network,
several limitations can come from network quality. First,
only genes that are included in the network can be boosted.
For example, the functional network used for GWAB cov-

ers approximately 93% of coding genes in human, thus the
other 7% of coding genes cannot be boosted at all. Second,
network topology can cause bias in predictions. For exam-
ple, hub genes are more likely to be boosted due to the larger
number of network neighbors. Third, bias in pathway infor-
mation of the functional network may cause bias in disease
predictions. Thus, we need to continue to expand the net-
work coverage by incorporating new functional data regu-
larly, and to reduce the functional bias of the network.

CONCLUSION

Previously, we demonstrated that GWAS data can be en-
hanced by incorporating co-functional network data, but
we could not expand the application to a larger number of
GWAS due to the lack of public data that provide summary
statistics for whole sets of SNPs. In this study, we developed
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Figure 3. The largest component of the network composed of significant candidate genes for CAD after GWAB network boosting. Edges were derived
from HumanNet (an updated version). The node size represents the final GWAB score, and the intensity of the node color represents the degree of network
boosting. Reference CAD genes are indicated by red names, and candidate CAD genes identified by GWAS alone are indicated by red node borders.

GWAB, a web-based service for GWAS boosting, and vali-
dated its effectiveness using seven public GWAS whose data
were recently released by several consortia. Most GWAS
generate trait-association probability data for more than a
million SNPs. However, in general, only a subset of data
including the most significant SNPs has been deposited in
the public databases. Because the importance of data shar-
ing has recently grown among the genomics community,
we now expect to see more GWAS with complete summary
statistics data. Our study clearly demonstrated the inherent
value of sub-threshold GWAS associations. GWAB will of-
fer a feasible tool to boost such associations for human dis-
ease genetics.
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