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Abstract

Introduction: Acute respiratory distress syndrome (ARDS) is characterized

by hypoxemia and increased lung permeability and would result in acute respi-

ratory failure and with high mortality. In patients who survive from acute lung

injury (ALI)/ARDS, it is an active process of the transition from injury to reso-

lution depending on the coordinated immune system. The roles of regulatory

CD4+T cells (Tregs) are now gradually being clarified during inflammation

and resolution of ARDS. However, clear conclusions about roles of Tregs in

ALI/ARDS are only a few.

Objective: This review provides an overview of phenotype, differentiation,

and suppressive mechanisms of Tregs and focuses on keys of biology of Tregs

in alveolar space during the inflammatory response and resolution of

ALI/ARDS.

Data Source: Literature search of Web of Science, PubMed, and EMBASE

was made to find relative articles about Tregs in ALI/ARDS. We used the fol-

lowing search terms: Tregs, ALI, ARDS, inflammation, and resolution.

Conclusion: More and more studies have indicated Tregs involved in the pro-

cesses of inflammation and resolution of ALI/ARDS. A deep understanding of

the roles of Tregs may indicate new treatments for patients of ARDS. Thera-

pies aimed at expansion or adaptive transfer of Tregs could be an effective

therapy to ARDS patients.
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1 | INTRODUCTION

The acute onset of ALI and ARDS is mainly manifested
by respiratory distress and refractory hypoxemia with
high mortality and poor prognosis. Now, the main clini-
cal treatment methods are supportive treatment. Except
for small tidal volume mechanical ventilation and prone
position ventilation,1 which can reduce the mortality rate
of ALI/ARDS, there are no other effective drug treatment
measures. The existing schemes cannot achieve satisfac-
tory results, and the mortality is still up to 40%.2 In addi-
tion to the above treatments, research on regulating the
immune response of ALI/ARDS is also receiving increas-
ing attention. Studies indicated that the recovery of lung
injury depends on highly coordinated immune system.3–8

In one our retrospective study, we found NLR (neutro-
phil and lymphocyte ratio) was significantly correlated
with the prognosis of the ARDS. The prognosis was poor
when the ratio was greater than 14, indicating that lym-
phocytes may be play an important role in the onset and
development of ARDS.9

At present, the most widely studied lymphocyte sub-
sets in ALI/ARDS are regulatory T cells (Tregs). In alveo-
lar space, the processes of inflammation and resolution
are closely related to the subpopulations and functions of
Tregs. Researchers have identified the phenotype, mecha-
nisms, and signal pathways of Tregs involved in acute
inflammation and resolution in ALI/ARDS. Now, we will
focus on keys of Tregs biology (subpopulations, differen-
tiation, and function) of alveolar space during the inflam-
matory response and resolution of ALI/ARDS and
explore new areas of therapeutic potential of ARDS.

2 | PHENOTYPE AND
DEVELOPMENT OF Tregs

Tregs play an important role during the suppression of
immune response through different mechanisms.10,11

Tregs mainly include two subgroups: nTregs (thymus-
derived Tregs) and iTregs (induced Tregs), which periph-
erally antigen-induced Tregs generated in the periphery
from naive CD4+T cells under certain antigenic stimuli
or suppressor cytokines. iTregs are usually more plastic
than nTregs.12 Although two Treg subpopulations exhibit
different developmental mechanisms, they have a syner-
getic effect to maintain immune homeostasis and share
similar phenotypes and suppressive function.

The precursors that express TCRs with high affinity
for self-antigens can develop into nTregs.13 nTreg differ-
entiation in thymus consists of two steps. The combina-
tion of a strong TCR signal with costimulatory molecules
result in the upregulation of CD25 of naïve CD4+ T cells.
Then, signal transducer and activator of transcription
5 (STAT-5) are the downstream of CD25, can bind a regu-
latory sequence in the Foxp3 gene, and then promote
Foxp3 expression, which is a necessary marker during
the development and function of Tregs in the thymus
and peripheral lymphoid organs,14–16 and Foxp3 locus
conserved noncoding regions (CNS) of the regions also
involved in Treg induction and stability (Figure 1A).17

After generation in thymus, nTregs migrate to the periph-
ery to perform their suppressive function.18

nTregs express constitutively CD4 and CD25, but
CD25 is also upregulated in effector T cells (Teffs) when
activated. nTregs also constitutively express CTLA-4
(cytotoxic T Lymphocyte antigen 4), CD62L, CD103, and
GITR (glucocorticoid-induced tumor necrosis factor
receptor related protein), but expression of these markers
is also affected by T cell activation and do not provide
more specificity than CD25.10,19–21 CD127 have been
thought to be characteristic of nTregs,22 but its expression
is downregulated after Teff activation.23 Thus, CD127 is
only useful to identify Tregs in non-inflammatory condi-
tions. nTregs also express some non-specific makers such
as LAG-3 (protein lymphocyte activation gene 3) and
TLRs 4, 5, 7, and 8.24

iTregs express different levels of CD25. Most of iTregs
highly express CD25, and a small group expresses small
amounts of CD25, but both populations express Foxp3
(Figure 1B). iTregs are generated in the periphery
induced from naive CD4+T cells with anti-inflammatory
cytokines and dendritic cells (DCs). A high concentration
of TGF-β is a critical cytokine for the generation and phe-
notype in T cells.25–27 TGF-β affected the peripheral pool
of Tregs,28 and the role of TGF-β in development of
iTregs was initially refuted. However, recent studies have
showed that TGF-β is necessary requirement for the gen-
eration of iTregs, indicating that TGF-β also can induce
Foxp3 expression of thymic Treg precursors in the con-
text of TCR.29 Tolerogenic CD103+DCs can generated RA
(retinoic acid) and 1,25(OH)2D3 (1,25-dihydroxyvitamin
D3) to provide a favorable environment for iTregs
differentiation.30–32 1,25(OH)2D3 combined with IL-2
can induce both CTLA-4 and Foxp3 expression of
iTregs.33 The PD-1/PD-L1 signaling also plays critical
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roles in the generation, homeostasis, and plasticity of
Foxp3+iTreg.34–38 The most common subgroups of Tregs
include Tr1 cells (Type 1 regulatory T) and Th3 cells. Tr1
cells express low and transient levels of Foxp3 and secre-
tion of high amounts of IL-10, which induce anergy and
low cell proliferation.39 They also produce IFN-γ, TGF-β,
and IL-15 and low levels of IL-2 and IL-4 and induce
anergy and low cell proliferation by secretion of IL-
10.39,40 There is no specific marker for Th1 cells, although
some research has shown that GATA is a potential candi-
date.41 Th3 cells originate from CD4+T cells stimulated
by TGF-β and play critical role in oral tolerance by secre-
tion of TGF-β and IL-10.42

Both nTregs and iTregs express CD25 and Foxp3.
Thus, it remains challenging to distinguish these two
subsets. Helios, Nrp-1 (neuropilin-1), and FR4 (folate
receptor 4) are candidates for this discrimination. But
these are no specific markers to distinguish nTregs from
iTregs. Although nTregs can distinguish from iTregs by
higher expression of Helios, a small group of human
nTregs does not express Helios.43,44 Furthermore, recent
studies have reported that iTregs could also express
Helios.45 Although nTregs exclusively express Nrp-1,
Nrp-1 can also be induced in activated Teffs in
humans.46,47 High amounts of FR4 are found to express
constitutively on nTregs, but it also expressed by iTregs.48

Thus, the contribution of nTregs and iTregs to the dis-
ease would be limited by the lack of definite markers,
particularly in humans.

3 | SUPPRESSIVE MECHANISMS
OF Tregs

TCR repertoires of nTregs and iTregs are different leads
to their function are distinct. iTregs are mainly involved

in the tolerance to non-self-antigens while nTregs are
preferentially responsible for control of auto-specific
responses.49 Tregs can regulate both innate and adaptive
immune cells in various pathophysiological microenvi-
ronment though different suppressive mechanism.

Two main types of suppressive mechanisms of Tregs
are contact-dependent and contact-independent. Tregs
can regulate maturation and function of APC (antigen
presenting cell) through the interaction of CTLA-4,
Nrp-1, and LAG-3 expressed on Tregs with the CD80/86
costimulatory molecules, MHC class II, and Sema4a
expressed on APC.50–52 Tregs can also induce direct kill-
ing of Teffs through interaction of Gal-9 expressed by
Tregs and Tim-3 expressed by Teffs. Tregs can express
CD39/CD73 ectoenzymes to cleavage of ATP into adeno-
sine.53,54 Interaction of adenosine with the A2A receptor
increases cAMP levels of target cells, thus inhibit cell pro-
liferation of these target cells.55–57 Adenosine combined
with A2A receptor expressed on Tregs can improve
expression of Foxp3 and Tregs function.

Tregs can also secret anti-inflammatory cytokines,
such as TGF-β, IL-10, and IL-35. These immunosuppres-
sive cytokines in turn induce the development of iTregs.
TGF-β can inhibit the proliferation and differentiation of
Th1 and Th2 by downregulating of the transcription of T-
bet and GATA-3.58,59 High level of TGF-β also affects
Th17 cells function.27 IL-10 can suppress T cells
responses by downregulating of IFN-γ, IL-2, and GM-
CSF.60 Furthermore, IL-10 can induce IgG4 and suppress
IgE of B cells to induce immune tolerance.61 IL-35 is a
novel anti-inflammatory cytokine specifically secreted by
Tregs, and necessary for maximal suppressive function of
Tregs, can induce the development of iTregs, suppress
the proliferation of Th1 and Th17 cells by inhibiting the
G1 phase of cell division of early T cell rest,62 and inhibit
development and proliferation of Th2 by repressing

F I GURE 1 (A) nTreg

develops in thymus. A strong

TCR signal associated with

CTLA-4/CD80/CD86

upregulates CD25 in naïve

CD4+T cells. Then, signals

through CD25 lead to the

expression of Foxp3. (B) The

regulatory phenotype of iTreg

induced in peripheral lymphoid

organs stimulated by antigens

and suppressive cytokines
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GATA3 transcription and IL-4 secretion.63 IL-35 can also
regulate the plasticity of Th2, mediate differentiation of
Th2 cells to Tregs (Figure 2).64

IL-2 is required to expand Tregs and to induce their
suppressive function in vitro. However, in vivo, Tregs are
strong competitors for IL-2 compared with their target
cells via constitutively expressing CD25. Lack of IL-2
causes apoptosis of target cells through the Bcl-2/Bim
and independently of PRF/Fas signaling pathway
(Figure 2).65 Mice deficient in IL-2 develop an unstable
population of Tregs and subsequently acquire lympho-
proliferative disease.66 From this side, it is difficult to rec-
oncile with the idea that IL-2 absorption plays a relevant
role as an effector mechanism in vivo. Recent studies
have proposed that Tregs can induce direct killing of
Teffs through the GZB (granzyme B) production or by
the interaction of Gal-9 (galectin 9) expressed by
Tregs with Tim-3 (T-cell immunoglobulin and mucin

domain-containing protein 3) expressed by Teff. GZB also
can lyse myeloid APC through the interaction of CD2
and LFA-1 (lymphocyte function-associated antigen-1)
expressed by Tregs with CD58 and CD54 expressed by
myeloid APC (Figure 2).67

4 | TREGS IN ACUTE LUNG
INJURY

ARDS is a fatal inflammatory lung disease with high
mortality without effective therapies. More and more
studies have shown that Tregs resolve inflammation of
lung, but mechanisms of Tregs to promote the resolution
of lung injury remain unknown. Investigators are ongo-
ing into whether the known mechanisms of suppressive
function of Treg are effective in ALI/ARDS. Presumably,
if we could understand how Tregs play roles and change

F I GURE 2 Tregs regulate immune responses through multiple suppressive mechanisms. Tregs can inhibit Teffs through the

suppressive cytokines IL-10, IL-35, and TGF-β. Tregs can disrupt metabolic functions of Teff through co-expressing CD39/CD73 generating

adenosine or IL-2 deprivation. Interaction of CTLA-4, LAG-3, and Nrp1 expressed by Tregs with CD80/86 costimulatory molecules and

Sema4a and MHCII expressed by APC can suppress maturation and function of Tregs, lead to production of IDO, and finally prevent

maturation of APC maturation and activation of Teffs. Tregs also can induce direct killing of Teffs through the production of GZB or the

interaction between Gal-9 expressed by Tregs with Tim-3 expressed by Teffs. GZB also can lyse myeloid APC through the interaction of CD2

and LFA-1 expressed by Tregs and CD58 and CD54 expressed by myeloid APC.
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in ALI/ARDS, then effective therapies could be designed
to treat ALI/ARDS by regulating the number and
function of Tregs either endogenously or exogenously.

In Tregs, CD4+CD25+Foxp3+Tregs are the most
studied in ALI/ARDS. D’Alessio et al. first show that
CD4+CD25+Foxp3+Tregs could mediated the active reso-
lution of ALI mouse model.8 Many studies have indicated
that CD4+CD25+Foxp3+Tregs are associated with
severity of ALI/ARDS. Adamzik group found
CD4+CD25+Foxp3+Tregs could be activated in ARDS
patients and increased in alveola and even could predict
poor outcome of ARDS.68 Sebastien et al. also found that
the quantity and function of Tregs changed in ARDS
patients.69 A prospective, observational study performed
by Yu group indicated ratio of Th17/Treg ratio >0.79 was
the independent predictor for 28-day mortality in ARDS
patients.70 Our recent studies also found there was imbal-
ance of Tregs and Th17 cells and Tregs/Th17 ratio down-
regulated in LPS-induced ALI model.71

The main mechanisms of CD4+CD25+Foxp3+Tregs
in alveolar to improve ALI resolution are mediated
by inducing neutrophil apoptosis and suppression of
macrophage anti-inflammatory cytokine secretion8,72;
control fibrocyte recruitment to lung to inhibit the
fibroproliferation though CXCL12-CXCR4 axis73;
CD73-dependent adenosine generation.74 Singer group
also found that the number and Foxp3 expression, activa-
tion state, suppressive phenotype, and proliferative capac-
ity of CD4+CD25+Foxp3+Tregs in lung enhanced in mice
treated by DNA methyltransferase inhibitor indicated that
epigenetic pathways are very likely to be novel targets for
the treatment of ARDS.75 Epithelial repair also plays
important role in resolution of ALI. Data of Dial et al. indi-
cated that Foxp3+Tregs can secret keratinocyte growth fac-
tor (KGF) to enhance alveolar epithelial proliferation.76

Moreover, Tregs also can directly exert tissue repair func-
tion, at least in part, through production of amphiregulin
in influenza-induced ALI model (Figure 3).77

F I GURE 3 The potential mechanism of Treg suppress the inflammation and promote of resolution of ALI. Neutrophils, macrophages,

and Th17 cells are recruited into alveola, and release inflammatory mediators lead to damage of endothelium, thus pulmonary edema during

ALI. IL-10 and TGF-β secretion of Tregs can inhibit the proliferation and function of Th17 cells and macrophages. TGF-β also can mediate

apoptosis of neutrophil apoptosis and cytokines secretion of macrophage, promote the barrier repair. Tregs also can control of fibrocyte

recruitment to the lung to inhibit the fibroproliferation. Tregs also can promote resolution of ALI through CD73-dependent adenosine

generation. Treg number and function can be partly enhanced by DNA methyltransferase inhibition to accelerate repair of lung injury.

Moreover, Tregs exert tissue repair function by expression KGF and amphiregulin.
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5 | FUTURE DIRECTIONS AND
PERSPECTIVES

Clarifying the roles of Tregs in ALI resolution may lead
to the design of new treatments for patients with ARDS.
And therapies aimed at expansion or adaptive transfer of
Tregs to ARDS patients could be an effective approach.

Studies have found leukotriene B4 Receptor (BLT1)
and alanyl-glutamine (Ala-Gln) could recruit
CD4+CD25+Foxp3+Tregs of alveoli. The blockade of
LTB4-BLT1 pathway significantly decreased Tregs num-
bers in BALF and impaired ALI resolution.78 And intra-
gastric gavage Ala-Gln could regulate the polarization of
Tregs and Th17 cells to promote the resolution of lung
inflammation.79 Moreover, our previous studies also indi-
cated that lung-resident mesenchymal stem cell can
maintain balance of Tregs and Th17 cells and upregulate
Treg/Th17 ratio.80 These data above tell us that finding
ways to increase the number or function of Tregs or upre-
gulate the Treg/Th17 cell ratio may be an effective way to
alleviate lung injury and promote lung repair.

The adoptive transfer of regulatory lymphocytes to
patients with ALI is a good idea. D’Alessio et al. found
the transfer of Tregs significantly improved survival rate
and resolution of ALI.8 But there are concerns that
Tregs tend to exhibit remarkable plasticity. It remains
unknown whether Tregs differentiate into effector T cells
after adaptive transfer to ARDS patients. Moreover, ther-
apeutic effect of Tregs depend on its relative contribu-
tions and the timing during the course of ALI initiation,
pathogenesis and resolution. Up to now, there is only evi-
dence of Tregs transfer to promote the resolution of ALI,
but no studied pay attention to the timing of Tregs.

6 | CONCLUSIONS

ARDS is a hard clinical problem with high mortality in
critically ill patients. No specific therapies are available.
Studies of ALI indicate that Tregs attempt to promote the
resolution of ALI by regulating actively innate and adap-
tive immune responses. Identifying how to best isolate
and augment Tregs in vivo or ex vivo and avoid Tregs
depletion are critical aims that are the potential treat-
ment of ALI/ARDS.
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