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Gut and oral microbiota
associations with viral
mitigation behaviors during the
COVID-19 pandemic

Kelvin Li1,2†, Barbara A. Methé1,2*†, Adam Fitch1,2,
Heather Gentry1,2, Cathy Kessinger1,2, Asha Patel1,2,
Vickie Petraglia1,2, Pruthvi Swamy1,2 and Alison Morris1,2

1Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh,
PA, United States, 2Division of Pulmonary, Allergy and Critical Care Medicine, Department of
Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center,
Pittsburgh, PA, United States
Imposition of social and health behavior mitigations are important control

measures in response to the coronavirus disease 2019 (COVID-19)

pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2). Although postulated that these measures may impact the

human microbiota including losses in diversity from heightened hygiene and

social distancing measures, this hypothesis remains to be tested. Other impacts

on the microbiota and host mental and physical health status associations from

these measures are also not well-studied. Here we examine changes in stool

and oral microbiota by analyzing 16S rRNA gene sequence taxonomic profiles

from the same individuals during pre-pandemic (before March 2020) and early

pandemic (May-November 2020) phases. During the early pandemic phase,

individuals were also surveyed using questionnaires to report health histories,

anxiety, depression, sleep and other lifestyle behaviors in a cohort of

predominantly Caucasian adults (mean age = 61.5 years) with the majority

reporting at least one underlying co-morbidity. We identified changes in

microbiota (stool n = 288; oral n = 89) between pre-pandemic and early

pandemic time points from the same subject and associated these differences

with questionnaire responses using linear statistical models and hierarchical

clustering of microbiota composition coupled to logistic regression. While a

trend in loss of diversity was identified between pre-pandemic and early

pandemic time points it was not statistically significant. Paired difference

analyses between individuals identified fewer significant changes between

pre-pandemic and early pandemic microbiota in those who reported fewer

comorbidities. Cluster transition analyses of stool and saliva microbiota

determined most individuals remained in the same cluster assignments from

the pre-pandemic to early pandemic period. Individuals with microbiota that

shifted in composition, causing them to depart a pre-pandemic cluster,

reported more health issues and pandemic-associated worries. Collectively,

our study identified that stool and saliva microbiota from the pre-pandemic to

early pandemic periods largely exhibited ecological stability (especially stool
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microbiota) with most associations in loss of diversity or changes in

composition related to more reported health issues and pandemic-

associated worries. Longitudinal observational cohorts are necessary to

monitor the microbiome in response to pandemics and changes in public

health measures.
KEYWORDS

COVID-19, microbiome, ecological stability, saliva microbiota, gut microbiota, 16S
rRNA gene amplicon sequencing
Introduction

The coronavirus disease 2019 (COVID-19) pandemic caused

by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) is a devastating worldwide event that has precipitated

dramatic changes in social and health behaviors in human

populations (Atzrodt et al., 2020). Especially in the early

pandemic phase in 2020 prior to vaccine and other

pharmaceutical prophylaxis interventions, a variety of strategies

were implemented to minimize the spread of the virus including

social distancing, self-isolation, working from home and increased

hygiene measures (Bavel et al., 2020). Substantial efforts have been

underway to understand the impacts of these disruptions and

COVID-19 related worries on human psychology including stress,

and anxiety (Blix et al., 2021), as well as health consequences such

as changes in diet, sleep, and exercise (Arora and Grey, 2020).

Several, longitudinal studies assessed mental health outcomes

within the same individuals before and during the pandemic

and determined that general mental distress increased during the

pandemic (Daly et al., 2020; Pierce et al., 2020) and effects of

COVID-19 on daily life were significant predictors of higher levels

of depression, anxiety, and stress during the pandemic (Haliwa

et al., 2021). However, the impact of these population-wide viral

transmission minimization strategies and other behavioral

changes on the human microbiota of individuals non-

symptomatic for COVID-19 have not been well-studied despite

the substantial and complex interplay between diet, environment

factors and the microbiome in human health and disease.

The human microbiota and its collection of genomes (the

microbiome) is composed of trillions of cells that interact as

microbial communities in multiple ecological niches in and on

the human body through mutualistic or symbiotic relationships

with the host (Gevers et al., 2012; Sender et al., 2016). More than a

decade of research has underscored the multiple, critical roles the

microbiome plays in normal development and maintenance of the

immune, endocrine, and nervous systems, and healthy metabolism.

As the COVID-19 pandemic has progressed, several groups

have speculated on the potential impact of these changes in
02
behavior and lifestyle on the microbiome (Domingues et al.,

2020; Burchill et al., 2021; Finlay et al., 2021). In particular, it has

been hypothesized that these changes may include the loss of

microbial diversity due to increased microbial depletion and

reduced transmission resulting from heightened hygiene and

social distancing measures, respectively (Domingues et al., 2020;

Burchill et al., 2021; Finlay et al., 2021). However, this hypothesis

has not been well-studied longitudinally in individuals not

infected with COVID-19. Here we used an ongoing large

observational cohort (MedBio Cohort) with pre- and early

pandemic data and stool and oral specimens from the same

individuals to examine associations between human microbiota

and changes in social behaviors precipitated during an ongoing

pandemic and concomitant changes in public health measures.

Materials and methods

Cohort

Participants were selected without bias from a large ongoing

observational cohort (MedBio) consisting of a collection of

UPMC patient registries and clinical investigations which

facilitates standardized approaches to subject enrollment and

specimen processing across multiple studies. These studies span

a range of chronic illnesses and disease status. The University of

Pittsburgh IRB approved the study, and all participants signed

informed consent.
Sample collection

Early pandemic samples were collected from May 2020

through November 2020. Stool specimens were self-collected

using the DNA/RNA Shield Fecal Collection tubes (Zymo) for

nucleic acid preservation and short-term (two to four weeks)

storage at ambient temperature. Oral specimens were self-

collected using the OMNIgene·ORAL OM-505 devices. 2 mL

of saliva were collected for nucleic acid preservation and short-
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term storage at ambient temperature. Specimens were mailed to

the University of Pittsburgh. Upon receipt, specimens were sub-

aliquoted prior to long-term storage at -80°C.
Early pandemic data collection

During the early pandemic period, subjects participated in

an on-phone interview assessing demographics, medical history,

smoking history, health status, and COVID-19-related behavior

with specimen collection occurring within approximately 10-14

days of the interview. We also administered the General Anxiety

Disorder 7 (GAD7) questionnaire (Johnson et al., 2019), Patient

Health Questionnaire 9 (PHQ-9) questionnaire (Kroenke et al.,

2001), and the Insomnia Severity Index (ISI) (Morin et al., 2011).

The questionnaire consisted of 49 grouped questions:

Demographics (Q1-Q6), Past Health History (Q7-Q12, Q12

was an inventory Q12a-Q12q of comorbidities), Smoking

History (Q13-Q15), Recent Heath History (Q16-Q19), GAD7

Anxiety (Q20), PHQ-9 Depression (Q21), ISI Sleep Survey

(Q22), and Recent Behavior (Q23-Q49). Some questions were

excluded from the statistical analyses as they were either

regarding the accessibility of UPMC medical resources, or the

potential relevance of the question was more directly represented

by an alternative question.

Categorical responses were recoded into ordinal responses

when necessary, so that 0 (reference) was associated with healthy

or no difference. Responses to inventory-style questions were

summed up (Q17 General Ailments). (See Supplemental

material for a PDF version of the questionnaire.) See Table 1.

“Questionnaire Summary Table” for a summary of descriptive

statistics for the subset of responses included in the models.
Other subject information

BMI was estimated by linear interpolation using the closest

bracketing BMI measurements taken before and after the

collection date of the sample. Samples taken before March 15,

2020, were considered pre-pandemic samples, and matching

samples from the same subject collected after March 15, 2020,

were considered early pandemic samples (when “lockdown” and

more intense viral transmission mitigation strategies were in

place). Early pandemic samples were collected from May 2020

through November 2020.
DNA extraction

DNA extraction was performed using the Qiagen Powersoil

Microbiome Kit EP for automated DNA extraction using an

Eppendorf, 5075VTC liquid handling workstation. HEPA
Frontiers in Cellular and Infection Microbiology 03
filtration was used during sample processing and the

workstation was UV sanitized between batches. Specimens

were processed per manufacturer’s protocol with the following

modifications: An approximate aliquot of 300ml of specimen was

added to individual bead beating tubes to ensure no carryover

between samples during the bead beating process. Aliquots from

the individual tubes were then transferred to 96-well blocks for

completion of the automated genomic DNA extraction process.

Reagent blanks were included as negative controls. Cells and

genomic DNA from a microbial community of known

composition (ZymoBiomics Microbial Community Standards;

Zymo Research, Irvine, CA) served as positives controls. As a

component of the QC process, positive controls were evaluated

across sample batches to evaluate laboratory and sequencing

performance and compared to historical performance of 16S

rRNA gene sequencing at the Center for Medicine and the

Microbiome (CMM). No significant batch deviation was

identified in this project.
Bacterial community sequencing

Extracted genomic DNA (gDNA) was amplified for the V4

region using Q5 HS High‐Fidelity polymerase (New England

BioLabs, Ipswich, MA) with inline barcode primers design based

on the method of Caporaso (2012) (Caporaso et al., 2012). V4

primer sequences were: 515f 5’-GTGCCAGCMGCCGCGGTAA-3’

and 806r 5’-GGACTACHVGGGTWTCTAAT-3’. Approximately

5-10 ng of each sample were amplified in 25 µL reactions. Cycle

conditions were 98°C for 30 seconds, then 30 cycles of 98°C for 10

seconds, 57°C for 30 seconds, and 72°C for 30 seconds, with a final

extension step of 72°C for 2 minutes. Amplicons were purified with

AMPure XP beads (Beckman Coulter, Indianapolis, IN) at a 0.8:1

ratio (beads:DNA) to remove primer dimers. Eluted DNA was

quantitated on a Qubit fluorimeter (Life Technologies, Grand

Island, NY). Sample pooling was performed on ice by combining

40 ng of each purified band. For negative controls and poorly

performing samples, 20 µL of each sample was used. The sample

pool was purified with the MinElute PCR purification kit (Qiagen,

Germantown, MD). The final sample pool underwent 2 more

purifications: AMPure XP beads to 0.8:1 to remove primer

dimers, and a final cleanup in Purelink PCR Purification Kit (Life

Technologies). The purified pool was quantitated in triplicate on the

Qubit fluorimeter prior to sequencing.

The sequencing pool was prepared as per Illumina’s

recommendations (Illumina, Inc., San Diego, CA), with an

added incubation at 95°C for 2 minutes immediately following

the initial dilution to 20pM. The pool was then diluted to a final

concentration of 7pM + 20% PhiX control (Illumina).

Sequencing was done on an Illumina MiSeq 500‐cycle V2

kit (Illumina).
frontiersin.org

https://doi.org/10.3389/fcimb.2022.966361
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2022.966361
Bioinformatics

Sequences from the Illumina MiSeq were deconvolved and

then processed through the CMM in‐house sequence quality

control pipeline, which includes dust low complexity filtering,

quality value (QV<30) trimming, and trimming of primers used

for 16S rRNA gene amplification, and minimum read length

filtering. Using the scripts fastq_quality_trimmer and

fastq_quality_filter from Hannon’s Cold Spring Harbor

Laboratory’s FASTAX-Toolkit (http://hannonlab.cshl.edu/

fastx_toolkit/). Reads were trimmed until the QV was 30 or

higher. Trimmed reads shorter than 75bp or those with less than

95% of the bases above a QV of 30 were discarded. Forward and

reversed paired reads were merged with a minimum required

overlap of 25 bp, proportion overlap mismatch > 0.2, maximum

N’s allowed = 4, and a read length minimum of 125 bp. Forward

and reverse reads were merged into contigs then processed

through the CMM’s Mothur‐based (v1.44.1) (Schloss et al.,

2009) 16S rRNA gene sequence clustering and annotation

pipeline. Sequence taxonomic classifications were performed

with the Ribosomal Database Project’s (RDP) naïve Bayesian

classifier (Wang et al., 2007) (Quast et al., 2013) with the SILVA

16S rRNA database (v138) (Quast et al., 2013).
Data analysis

Questionnaire Analyses. Selected recoded questionnaire

responses (variables), p = 25, were tested with the Shapiro-

Wilk test for normality (H0: values are normally distributed). If

the p-value was >0.2, then the original values were utilized. If

the p-value <0.2, the values were then logarithm transformed

and retested. If the transformation increased the p-value, then

the transformation was accepted. Pearson correlations were

calculated between responses and a Principal Component

Analysis (PCA) was performed. Principal Components (PCs)

which represented at least 5% of the total variance were then

annotated by identifying the variable with the greatest

correlation with the PC. Correlations were reported for those

with p-values < 0.001 after a Bonferroni adjustment, assuming

the number of tests were m = p(p-1)/2 = 300.

Due to the compositional nature of the taxonomic profiles

from 16S rRNA gene sequencing (Gloor et al., 2224), taxonomic

abundances were first transformed using the additive log ratio

(ALR) transformation (Tarabichi et al., 2015). The top 15 taxa,

by average abundance across the experimental samples, were

selected to represent the taxa of interest, and the remaining taxa

were accumulated into the denominator of the ratio, prior to

natural log transformation. Log ratio transformations are crucial

when including multiple taxa into linear models to ensure the

abundances are normally distributed and independent from

each other (Aitchison, 1982).
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Analyses involving the calculation of a diversity index

utilized the Shannon diversity index and the Tail statistic (Li

et al., 2012). The Tail statistic is more sensitive towards the lower

abundance taxa than the Shannon diversity index. Analyses

requiring the calculation of pair-wise compositional distances

between samples used the Manhattan distance, which is also

more sensitive towards differences in the lower abundance taxa

than the Euclidean distance.
Adjusting for differences in sample
collection times

There was a wide range of timespans between the pre- and

early pandemic samples. The median and 95% Prediction

Intervals (PI) time spans for stool were 526 (164, 1094) days

and for saliva, 725 (251, 1046) days. Preliminary analyses to

identify a corrective adjustment suggested that over time, paired

sample distances approached a limit asymptotically. A non-

linear adjustment for each timespan t based on fitting 3

parameters (maximum distance m, rate r, slope s) with the

function: adjustment(t) = m*(1-exp(-t*r))+s*t) was calculated,

but model comparisons revealed the adjustment was not

significantly better than the simpler linear model with an

intercept. This is likely due to the lower bound of the

timespans being restricted between 5-6 months, so any acute

changes to the microbiota composition might have already

reached their limits. The correlation between changes in the

stool and saliva from the same subject were also examined, but

the near 100% correlation of the pre-pandemic to early

pandemic timespans between the two sample types

confounded the analysis.
Models

Three statistical models were used to associate the

microbiota sampling with the questionnaire responses.

The “pre/early pandemic paired” (PEPP) model first

identified subjects with both pre-pandemic and early

pandemic samples, then used the variables of days pre-

pandemic, days early pandemic, pre-BMI, and dBMI (change

in BMI) and questionnaire responses to predict the difference

between the diversity, abundance or the distance (Stapleton

et al., 2021) between pre-pandemic and early pandemic

samples with a linear model.

The “pre/early pandemic cluster transition” (PEPCT) model,

another type of paired analysis, used a combination of clustering

and then logistic regression to associate questionnaire responses

to changes in “microbiome type”. Pre- and early pandemic

samples were first hierarchically clustered together, then

clusters were iteratively identified by increasing cuts (k). At

each cut k, for each of the resultant clusters identified from 1:k,
frontiersin.org
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the following variables were used to predict the sample’s early

pandemic cluster: questionnaire responses, pre- and early

pandemic days, pre-pandemic BMI and dBMI, and pre-

pandemic cluster identifiers. This analysis identified factors

that could predispose a subject’s sample to change to a specific

early pandemic cluster (“arrive”). Similarly, a “departure”

analysis was performed for each of the pre-pandemic clusters

at each cut k. For each pre-pandemic cluster, member subjects

were divided into those that remained in the same early

pandemic cluster and those that departed. In the departure

analysis, dBMI, pre- and early pandemic days, and the

questionnaire responses were included in the logistic

regression to predict whether a sample stayed in or left the

pre-pandemic cluster. To identify which cluster cut k to report

arrival or departure associations with, the cut k with the most

significant p-value for each factor was selected. Taxonomic

members (cluster unifiers) that differentiate a cluster from

other clusters generated at the same cut, were identified with

an R2 ratio analyses (See Supplemental methods). The R2 ratio

analyses estimate the R2 between two clusters with (full model)

and without (reduced model) a taxon of interest, to identify

whether the taxon of interest contributed to cluster separation. If

the reduced model had a smaller R2 than the full model, then the

taxon left out of the reduced model contributed to cluster

separation. Taxa that consistently contributed to a cluster’s

separation from the other clusters were considered taxa that

defined a cluster’s microbiota “type”.

The “early pandemic cross-sectional” (EPCS) model focused

on the early pandemic samples. The questionnaire responses,

EP-BMI, and days early pandemic were used to predict the

microbiota diversity, inter-sample distancing, or abundance with

a linear model.

See Figure 1, “Variables and Models” for a diagram

illustrating the relationship between variables and the models

that were fit.
Results

Questionnaire

From the 588 questionnaire responders, the mean

respondent’s age was 61.5 years old, although 95% of the

subjects were between 25 and 82 years. 54.5% of respondents

were female and 84.5% were Caucasian. The percent of

respondents with a smoking history (>100 cigarettes in their

lifetime) was 50.2%. The mean and 95% CI of the questionnaire

responses can be found in Table 1, “Questionnaire Descriptive

Statistics Summary”. The breakdown of respondents included in

the pre-pandemic to early pandemic time points (PEPP), pre-

pandemic to early pandemic cluster transition (PEPCT), and

early pandemic cross-sectional (EPCS) models for stool and
Frontiers in Cellular and Infection Microbiology 05
saliva analyses can be found in Supplemental Table 1,

“Sample Exclusions”.

Examination of the correlation matrix with Bonferroni

adjusted p-values < 0.001 identified several noteworthy

correlations. See Supplemental Figure 2, “Questionnaire

Response Correlations, Bonferroni Adjusted Significant (p-

value < 0.05)” for the heat map and all pairwise correlations.

Education level was correlated with health (r = 0.23) and

exercise (>1x/week, pre-pandemic r = 0.29, early pandemic

r = 0.25). Exercise pre-pandemic was correlated with early

pandemic exercise with a coefficient of r = 0.6. A clustering of

positive correlations was also identified among immune system

disease, asthma, (sum of) general ailments, GAD7 anxiety,

PHQ9 depression, and ISI sleep. (Sum of) COVID-19 worries

was correlated with diet change (r = 0.24). The number of

cohabitants was correlated with the number of pets (r = 0.24).

Principal Components Analysis (PCA) revealed that the top 5

PCs each captured greater than 5% of the total variance, but the

first 21 (out of 25) PCs would be required to capture 95% of the

variance. The top 5 PCs were most closely correlated with:

PHQ9 depression (r = 0.79), exercise (pre-pandemic) (r =

0.58), ethnicity (r = 0.67), exercise (early pandemic) (r =

0.45), and high blood pressure (r = 0.48).
Statistical analyses of microbiota from
stool and oral samples

Here results are reported first for the analyses of microbiota

from stool then for saliva samples. For each sample type, the

paired analysis results for the pre- and early pandemic samples

are reported first followed by the cross-sectional results for the

early pandemic sample analysis. Both paired and cross-sectional

analyses are comprised of a collection of independent sub-

analyses that fit statistical models using calculated sample

diversity, inter-sample distances, and taxonomic abundances.
Stool specimens for 16S rRNA
gene sequencing

The sample size available for stool was 311 samples available

for the early pandemic cross-sectional analysis and 288 subjects

had both pre- and post-pandemic samples for the

paired analyses.
The pre/early pandemic paired analysis
of stool sample microbiota

The pre/early pandemic paired (PEPP) analysis of stool

sample microbiota was performed on the n = 288 paired pre-

pandemic and early pandemic stool samples taken from the
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https://doi.org/10.3389/fcimb.2022.966361
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2022.966361
same subject. The median and 95% Prediction Interval (PI) of

the pre- and early pandemic days were 342 (25, 912) and 162

(118, 223), respectively. These differences were then associated

with the questionnaire responses from these subjects. The

number of subjects with both samples available were fewer, so

there was less statistical power than the EPCS stool analysis.

Overall composition for the pre-pandemic and early pandemic

stool samples can be found in Supplemental Figure 1, “Paired

Compositional Stacked Bar Plots”.

Diversity was stable between time points.When examining stool

microbiota, the Shannon diversity index did not identify any

significant (p<0.05) associations, but the Tail statistic identified a

negative association with change in BMI (p−val = 0.0232) and

smoking history (p−val = 0.0317). The number of pets was

positively associated with an increase in diversity (p−val =

0.0406). The intercept, representing the difference between pre-

and early pandemic differences in diversity when controlling for

other factors included in the model, was not significantly non-zero

for neither the Tail statistic (b0 = -0.7441, p-val = 0.7341) nor the

Shannon diversity index (b0 = −0.4881, p-val = 0.2297). The

increase of BMI of subjects with paired stool samples was not

statistically significant in the subjects: median dBMI = 0.0, 95% PI =

(-4.326, 3.761).

BMI and health were associated with reduced pre-to-early

pandemic inter-sample distances. An analysis of the distance

(compositional change) between stool sample pairs found a

significant effect of lengthening the distance between pairs (greater

change in composition) for pre-pandemic days (p−val = 0.0023)

and days into the early pandemic (p−val = 0.0265). See Figure 2, Stool
Frontiers in Cellular and Infection Microbiology 06
and Saliva Pre- and early pandemic MDS Plots. Pre-pandemic BMI

(p−val = 0.0328) and health (p−val = 0.0178) had an effect of

shortening the distance between pairs (composition becomes more

alike). There was a less significant, but potentially noteworthy, effect

of diabetes (p−val = 0.0708) and number of cohabitants (p−val

= 0.0907).

Changes in multiple taxonomic abundances were associated

with immune system disorders and changes in BMI. The number

of days from stool sample collection to the early pandemic

period were positively associated with two taxa. The number of

pre-pandemic days before sample collection was associated with

Fusicatenibacter (p−val = 3.33×10-4), and the number of early

pandemic days before sample collection was associated with

Lachnoclostridium (p−val = 5.13×10-4). Immune system disease

was associated with the increase of Alistipes (p−val = 3.8×10−5),

Lachnospiraceae_uncl (p−val = 1.02×10-3), Bacteroides (p−val =

1.08×10-3), and Faecalibacterium (p−val = 5.72×10-3). Asthma

was associated with an increase of Ruminococcus (p−val =

8.12×10-4). Pre-pandemic BMI was associated with an increase

in Prevotella (p−val = 3.64×10-4), and changes in BMI between

sample collection dates were associated with less Oscillospiraceae

UCG_002 (p−val = 3.84×10-4) and Subdoligranulum (p−val =

4.58×10-3), and more Escherichia_Shigella (p−val = 4.55×10-3).

Diabetes was associated with more Agathobacter (p−val =

9.89×10-3) in the early pandemic. In addition, there were

associations with depression including a decrease in

Lachnospiraceae_uncl (p−val = 2.46×10-3) and an increase of

Prevotella (p−val = 8.78×10-3) with education level in the early

pandemic period.
FIGURE 1

Variables and Models. The left panel (A) summarizes the groups of variables that were utilized in the analyses. Pre-pandemic (PP) (blue) and
Early Pandemic (EP) (beige) variables include the taxonomic profiles from sequencing microbiota samples, BMIs interpolated based on the
sample collection dates, and timespans relative to March 15, 2020. The questionnaire responses were only collected during the early pandemic.
The top right panel (B) illustrates the early pandemic cross-sectional model. Here, only the EP variables: timespan, BMI, and questionnaire were
utilized to build a model to predict the EP stool or saliva microbiota. The lower right panel (C) represents the variables included in the paired
and cluster transition models. Both the PP and EP timespans, as well as questionnaire responses were included in the models. The BMI and
microbiota profiles were included in the model as their relative changes which could be calculated per subject.
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Pre/early pandemic cluster transition
stool analysis identified changes of
cluster membership associated with sex,
COVID-19 worries, asthma, cancer, and
social distancing

A Pre/Early Pandemic Cluster Transition (PEPCT) stool

analysis was performed to identify factors that are associated

with samples changing their cluster membership between pre-

and early pandemic time points. “Departer” samples were

defined as those samples that left their starting pre-pandemic

cluster for another cluster by their early pandemic time point.

“Arriver” samples were defined as those samples that were new

additions to a cluster in the early pandemic time point. When

the hierarchical clustering was cut to k = 3 clusters the departers
Frontiers in Cellular and Infection Microbiology 07
from the second cluster (cl = 2 of k = 3) consisted of fewer

females (p-val < 0.001). Based on cluster influencer analysis, the

distinguishing taxonomic member of this cluster was

Bacteroides. When the hierarchical clusters were cut to k = 6,

the departers from the second cluster (cl = 2 of k = 6) were

associated with more COVID-19 worries (p-val = 0.006). The

distinguishing members of this cluster were Akkermansia

Oscillospiraceae UCG_002, Bacteroides, Alistipes, Prevotella,

and others. Clusters with arriving samples with significant

associations included (cl = 3 of k = 6) that were associated

with fewer COVID-19 worries (p-val < 0.001). This cluster was

distinguished by Bacteroides , Faecalibacterium , and

Agathobacter. Samples from asthma subjects were associated

with arrival in (cl = 1 of k = 2) (p-val = 0.009). The distinguishing

taxa of this cluster were Prevotella and Prevotellaceae_uncl.
TABLE 1 Questionnaire Descriptive Statistics Summary.

Variable Categories Mean (95% CI: LB, UB) [N] Question ID

1.) Age 61.505 (60.285, 62.726) [582] Q1

2.) Sex Male 0.455 (0.415, 0.497) [266] Q2

Female 0.545 (0.503, 0.585) [318]

3.) Ethnicity Black 0.068 (0.049, 0.091) [40] Q3

Other 0.087 (0.065, 0.112) [51]

4.) Education Level 1 range [0, 5] 2.642 (2.538, 2.746) [586] Q5

5.) Health 2 range [0, 4] 2.342 (2.265, 2.42) [587] Q7

6.) Fever (past year) Yes 0.128 (0.101, 0.158) [72] Q10

7.) Exercise Pre-Pandemic (>1x/week) Yes 0.642 (0.602, 0.681) [377] Q11

8.) High Blood Pressure Yes 0.453 (0.412, 0.494) [265] Q12a

9.) Diabetes Yes 0.116 (0.091, 0.145) [68] Q12b

10.) Sleep Apnea Yes 0.193 (0.162, 0.228) [113] Q12h

11.) Asthma Yes 0.156 (0.127, 0.188) [91] Q12j

12.) Cancer (active treatment) Yes 0.070 (0.051, 0.094) [41] Q12l

13.) Immune System Disease (excluding HIV) Yes 0.281 (0.245, 0.319) [164] Q12n

14.) Smoking History Yes 0.502 (0.46, 0.543) [293] Q13

15.) Sum of Ailments range [0, 10] 1.053 (0.914, 1.191) [588] Q17

16.) GAD7 Anxiety Score range [0, 21] 2.827 (2.512, 3.141) [588] Q20

17.) PHQ9 Depression Score 3 range [0, 24] 2.621 (2.33, 2.912) [588] Q21

18.) ISI Sleep Survey range [0, 28] 11.316 (10.928, 11.705) [588] Q22

19.) Exercise Early Pandemic (>1x/week) Yes 0.708 (0.668, 0.745) [402] Q26

20.) Sum of COVID-19 Worries range [0, 15] 5.184 (4.958, 5.409) [588] Q38, Q39, Q41

21.) Social Distancing 4 Yes 0.930 (0.907, 0.95) [547] Q42

22.) Change in Diet 5 range [0, 4] 0.683 (0.605, 0.762) [584] Q46

23.) Number Cohabitants 6 range [0, 3] 1.434 (1.338, 1.531) [587] Q47

24.) Number of Pets 6 range [0, 3] 0.920 (0.834, 1.005) [587] Q48
1Education Level coding: 0 = “did not graduate from high school” to 5 = “doctorate”.
2Health coding: 0 = “poor” to 4 = “excellent”.
3Last PHQ9 item (suicide) was omitted from questionnaire.
4Either Social Distance or Working From Home.
5Coding: 0 = “not at all” to 4 = “ a lot”.
6Coding: 0 = “none” to 3 = “3 or more”.
This table contains a summary of the variables included in the analyses that were based on the questionnaire responses. The category or range of values, mean, 95% CI, N, and question
identifier have been reported for each variable. Note that the subset of subjects that were used in the stool or saliva analyses depended on matching samples. This table represents the
descriptive statistics from all the questionnaire responders, regardless of whether they could be included in the stool or saliva samples analyses.
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Samples from subjects with cancer, arrived at (cl = 2 of k = 5) (p-

val = 0.005) which was distinguishable by Akkermansia,

Osci l lospiraceae UCG_002 , Prevote l la , Bacteroides ,

Escherichia_Shigella, and others. Arrivers in cluster (cl = 1 of k

= 2) were positively associated with social distancing (p-val =

0.009). See Supplemental Materials for additional descriptions

and figures supporting this analysis. Clusters were considered

from k = 2 to k = 6, after which individual clusters sizes became

too small to associate factors with.
Early pandemic cross-sectional analysis
for stool

The early pandemic cross-sectional (EPCS) for stool focused

on identifying associations between questionnaire responses and

changes in the microbiota, while controlling for age, sex, and

days into the early pandemic.

Differences in diversity were associated with immune system

disease and age. A decrease in diversity was found in association

with immune system disease (Tail: p−val = 3.69 ×10−8; Shannon:

p−val = 1.83×10−6). Age was associated with an increase of

diversity (Tail: p−val = 0.000263; Shannon: p−val = 0.000301).

At less significance, health was associated with increased

diversity (Tail: p−val = 0.0246; Shannon: p−val = 0.0282).

GAD7 Anxiety was associated with increased Shannon
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diversity (p−val = 0.0676). Pre-pandemic exercise was

associated with increased diversity (Tail: p−val = 0.0886;

Shannon: p−val = 0.0689).

Effects on Inter-sample distance were small, but associated

with BMI, age, health, sex, and immune system disease. EPCS

analysis of stool microbiota using PERMANOVA revealed a

number of significant associations, although all the effect sizes

were relatively small with the greatest R2 at 0.0148 for days

into the early pandemic (p-val = 3.704×10−5), followed by

BMI (p−val = 1.5925×10-3), age (p−val = 3.704×10-4), health

(p−val = 5.185×10-04), female (p−val = 3.704×10−5), immune

system disease (p−val = 3.704×10−5), social distancing and

working from home (p−val = 6.2738×10-2).

Differences in taxonomic abundances were associated with sex,

age, immune system disease, and BMI. The EPCS stool microbiota

analysis using taxonomic abundance as a response identified many

significant associations (p-values < 0.001). These included

associations with sex (female): Prevotellaceae uncl (negative, p−val

= 2.84×10−10), Prevotella (negative, p−val = 2.31×10-4), and

Bacteroides (p−val = 7.91×10-4); an association with Age: Alistipes

(p−val = 8.09×10−6); immune system disease: Oscillospiraceae

UCG_002 (negative, p−val = 9.17×10−6), Subdoligranulum

(negative, p−val = 1.57×10−5), Ruminococcus (negative, p−val =

1.62×10-4), Lachnospiraceae_NK4A136_grp (negative, p−val =

6.28×10-4), and Fusicatenibacter (negative, p−val = 8.06×10-4);

days into the early pandemic: Prevotella (negative, p−val =
FIGURE 2

Stool and Saliva Pre- and Early Pandemic Paired MDS plots. These multi-dimensional scaling (MDS) plots illustrate each subject’s taxonomic
compositional similarity between pre- and early pandemic samples in context with the samples of the cohort. The left and right panels
represent the intra-cohort separation of stool and saliva samples, respectively. The green “pre” and blue “early” labels indicate the MDS
estimated locations of pre- and early pandemic samples, respectively. A grey line connects pre- and early pandemic samples from the same
subject. The blue and green circles represent the centroids of the pre- and early pandemic samples. After controlling for questionnaire
responses, the bootstrapped regression identified that pre- vs early pandemic samples had a statistically significant separation (coef = 1.1404, p-
val < 0.0001), but saliva did not (coef = 0.1421, p-val = 0.8461).
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1.58×10-4) and Prevotellaceae_uncl (negative, p−val = 4.88×10-4)

and with BMI: Bacteroides (p−val = 6.24×10-4) and

Lachnoclostridium (p−val = 6.46×10-4).
Saliva specimens for 16S rRNA
gene sequencing

The sample size available for saliva was 218 early pandemic

cross-sectional subjects and 89 subjects for the pre/early

pandemic paired analyses. The decrease of BMI of subjects

with paired saliva samples was not statistically significant:

median dBMI = 0, 95% PI = (-2.434, 3.002). The median and

95% Prediction Interval (PI) of the pre- and early pandemic days

were 520 (55, 907) and 172.5 (117,220), respectively.
The pre/early pandemic paired analysis
for saliva

The Pre/Early Pandemic Paired (PEPP) analysis for saliva

samples identified fewer significant associations (p-value < 0.1)

than the stool samples. Overall composition for the pre-

pandemic and early pandemic saliva samples can be found in

Supplemental Figure 1, “Paired Compositional Stacked

Bar Plots”.

Diversity was stable between time points. While multiple

associations were identified between saliva microbiota and

diversity, only the positive association with immune system

disease when measured by the Tail statistic (p−val = 0.0116)

was strong. Marginally significant associations (p-value < 0.10)

were also found with the Tail statistic that could corroborate

significant associations found in other analyses: education level

(negative, p−val = 0.06866), depression (p−val = 0.071907),

number of cohabitants (negative, p−val = 0.097342), and

anxiety (negative, p−val = 0.098607). The intercept was not

significantly non-zero for Tail (b0 = −3.875, p-val = 0.1759) nor

the Shannon diversity index (b0 = −0.9160, p-val = 0.147).

Pre-to-early pandemic inter-sample distances were

marginally associated with social distancing and COVID-19

worries. The paired distance analysis using saliva samples

identified a positive association with social distancing (p-val =

0.0262) and to a lesser extent, a negative association with

COVID-19 worries (p-val = 0.0754).

COVID-19 worries associated with Oribacterum and

Campylobacter abundances. Increased taxonomic abundances of

saliva microbiota were associated between COVID-19 worries and

Oribacterium (p−val = 0.00299) and Campylobacter (p−val

= 0.00853).

The cluster transition analysis did not yield any significant

associations with p-val < 0.01.
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Saliva cross-sectional analyses

Associations with diversity were marginal except for BMI.

The EPCS saliva microbiota had marginal associations (p-values

< 0.1) with diversity. Early pandemic BMI was associated with

increased diversity (Tail: p−val = 0.015042; Shannon: p−val =

0.01897). High blood pressure was associated with decreased

diversity (Shannon: p−val = 0.08730). Anxiety was associated

with increased diversity (Tail: p-val = 0.02655; Shannon: p-val =

0.05952). Number of pets was associated with less diversity

(Shannon: p-val = 0.05164).

Greater inter-sample distances between subjects were

associated with health and smoking history. The PLCS saliva

microbiota PERMANOVA analysis identified associations with

days into early pandemic (p−val = 0.00030), health (p−val =

0.00030), smoking history (p−val = 0.00278), and less

significantly with COVID-19 worries (p−val = 0.05685) and

the number of pets (p−val = 0.04555).

Differences in taxonomic abundances were associated with health,

high blood pressure, diabetes, COVID-19 worries and asthma. The

PLCS saliva microbiota analysis using taxonomic abundances

identified several associations that could support the underlying

differences in diversity and distancing. Days into the early pandemic

was found to be negatively associated with Streptococcus (p−val <

0.00001), but positively associated with Bergeyella (p−val = 0.00063),

Capnocytophaga (p−val = 0.00165), and Oribacterium (p−val =

0.00912). Health was positively associated with Neisseria (p−val =

0.00007), Alloprevotella (p−val = 0.00613), and Veillonellaceae_uncl

(p−val = 0.00719). High blood pressure was negatively associated

with Capnocytophaga (p−val = 0.00039), Fusobacterium (p−val =

0.00374) and Bergeyella (p−val = 0.00986). Diabetes was associated

with increased Veillonella (p−val = 0.00294). COVID-19 worries

were negatively associated with Lactobacillus (p−val = 0.00501).

Asthma was positively associated with Yersinia (p−val = 0.00557).
Comparison of changes in stool and
saliva microbiota profiles between pre-
pandemic and early pandemic samples
revealed stool microbiota communities
were more stable

An analysis of the cluster membership stability was

performed separately for stool (n=288) and saliva (n=89)

sample types. For each sample type, pre- and early pandemic

samples were hierarchically clustered together. The resultant tree

was then iteratively cut from k = 2 to 7 clusters and resultant

memberships were evaluated. When both pre- and early

pandemic samples were in the same cluster, for a specific k,

then the subjects’ early pandemic samples were considered to

have “remained” in the same cluster as the pre-pandemic
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sample. Figure 3, “Cluster Transition Scatter Plot” illustrates the

cluster member relationships between pre- and early pandemic

samples. The proportion of samples that remained in the sample

cluster is plotted across the cuts (k) in Figure 4, “Samples

Remaining in Pre-pandemic Cluster”. At k = 2, 93.8% of early

pandemic stool samples were clustered with their pre-pandemic

sample, while only 74.2% of saliva samples shared their pre-

pandemic cluster. At k = 7, 48.6% and 28.1% of stool and saliva

samples, respectively, were had their pre-pandemic and early

pandemic samples clustered together. Early pandemic stool

samples were consistently closer to their pre-pandemic

samples than saliva samples.

Please refer to Supplemental Table 2, “Associations with

Stool and Saliva Samples” for a complete table of coefficients and

p-values for all models reported in this Result section.
Discussion

Although effects of COVID-19 pandemic changes in human

social behaviors and hygiene patterns on human microbiota and

their potential interactions with the host have been postulated to

include loss of diversity, they remain largely understudied. An

important outcome of our study design was the ability to

examine matched stool and oral sample pairs from the same

individual taken from the pre-pandemic to early pandemic time

points (PEPP model). Here we examined dynamic changes in

alpha (within sample) diversity, and compositional changes

using both measures of inter-sample distances (beta diversity)

and relative taxonomic abundance. We related these diversity,

distance, and abundance measures to participant questionnaire

responses to determine associations with the microbiota that

may have been potentiated by factors related to pandemic

minimization strategies or implicit subject habits. We also

examined ecological stability through pre-pandemic to early

pandemic cluster transition (PEPCT) analysis. Finally, cross-

sectional analyses of early pandemic (EPCS model) microbiota

profiles from stool and saliva were examined to elucidate

associations with health and lifestyle behavior providing a

“snapshot” of these relationships at a time of heightened

pandemic awareness and for the identification of study

variables that may be proxies of other pre-pandemic behaviors

or other lifestyle characteristics not directly measured in

this study.

Early during the pandemic (2020), it was quickly established

that individuals with certain comorbidities, such as hypertension

or diabetes mellitus (Sanyaolu et al., 2020; Zhang et al., 2020),

were at a greater risk for COVID-19 complications. As a result,

individuals in our cohort (of which over half reported at least

one underlying comorbidity) may have followed the

recommended precautionary guidelines more strictly.

Therefore, effects of the viral transmission strategies may have

resulted in more substantial lifestyle changes in these individuals
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FIGURE 3

Cluster transition plot for Stool at k=6 and Saliva at k=4. Cluster
transition plots provide a visualization of the degree to which an
early pandemic sample’s composition has changed relative to its
pre-pandemic composition to warrant a change in its cluster
membership. Hierarchical clustering and tree cutting (to form
discrete clusters) is inherently an iterative process. In this figure,
only one slice at k = 6, for stool, and k = 4, for saliva (labeled on
the top left of each plot), were selected for illustrative purposes,
although cuts k from 2 to 7 were also calculated. The
dendrogram from hierarchically clustering of pre- and early
pandemic samples are drawn on the top and left margins. The
left margin dendrogram have pre-pandemic samples colored by
their cluster identifier, while early pandemic samples are colored
grey. Similarly, but complementarily, the top margin dendrogram
has early pandemic samples colored by cluster identifier, but
pre-pandemic samples are colored grey. In the field of the plot,
each point represents the intersection of pre- and early
pandemic samples. If both pre- and early pandemic samples are
in the same cluster, then they are colored by their cluster
identity, otherwise they are colored grey. Gridlines are drawn in
the field to help identify cluster boundaries. When pre- to early
pandemic samples have changed less in their composition, their
points will be colored and lie across a diagonal from bottom-left
to top-right. Examples of noteworthy observations from the
stool transition plot includes the number of pre-pandemic
cluster 6 (Bacteroides and Escherichia Shigella) members that
have moved into cluster 4 (Bacteroides, Faecalibacterium) early
pandemic, or that none of the pre-pandemic members of
cluster 1 (Prevotella, Prevotellaceae, and Lactobacillus) have
moved into cluster 6. Comparing the stool and saliva cluster
transition plots provides a visualization of the stronger
coherence of early pandemic samples to their pre-pandemic
counterparts in stool.
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relative to the general population. The analyses of questionnaire

responses did not identify a significant correlation between

social distancing and work-from-home strategies with

COVID-19 worries, as the ability to social distance may have

depended more on socio-economic conditions (Garnier et al.,

2021) rather than personal choice. From questionnaire

responses, social distancing was negatively correlated with age,

but positively correlated with asthma and COVID-19 worries.

Although both saliva and stool taxonomic profiles from

matched pairs trended towards decreased (alpha) diversity, overall,

from the pre-pandemic to early pandemic time points (PEPP)

model, the effect was not statistically significant. In part, this

finding could be due to the relatively early pandemic sampling

dates. Therefore, the associations identified in this study may be

limited to those factors with acute effects. In the paired analyses, the

median days into the early pandemic were 162 days for stool and

172.5 days for saliva. Nonetheless, this is an interesting finding given

that our cohort is older and over half of participants reported at least

one comorbidity, as loss of microbiota diversity is often reported to

be associated with increasing age and chronic disease (Sun et al.,

2021; Ceballos et al., 2021).

Applying the pre-pandemic to early pandemic time points

(PEPP) model to stool microbiota, changes in diversity were

associated with changes in BMI, smoking history, and pet

ownership. From our questionnaire, smoking history was reported,

however changes in smoking habits from the pre-pandemic to early
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pandemic time periods could not be determined. Therefore, it is not

clear why smoking history would decrease diversity during the early

pandemic unless smoking frequency increased for this group, or if it

was a proxy for another behavior. In a separate study, it was reported

that during the “lockdown” phase, alcohol consumption increased,

but more subjects tried to quit smoking (Jackson et al., 2021).

Overall, if we assume that decreased social contact and increased

hygiene measures (e.g., hand washing) can decrease diversity, then

our study suggests that other factors (e.g., household pets) and those

implied but not directly measured (e.g., diet) may offset these

potential losses in diversity. It has also been recognized that

humans can share microorganisms through social interactions,

cohabitation, and exchanges with both the natural and built

environments (Tong et al., 2021; Peimbert and Alcaraz, 2022).

Previous reports have also identified microbiota associations with

pet ownership were also found in conjunction with stool studies

(Kates et al., 2020) and our study suggests that pets may be an

important reservoir of microbes in humans, a relationship that may

be heightened in periods of decreased social contact.

In addition to examining diversity, the pre-pandemic to early

pandemic time points (PEPP) model for stool microbiota profiles

also examined changes to composition as measured by paired

sample distances (beta diversity) or by specific ALR-transformed

taxonomic abundances. The analysis of stool microbiota paired

distances found associations with pre-pandemic BMI, health,

diabetes, immune system pathology, and number of cohabitants.
FIGURE 4

Comparison of Proportion of Subjects Changing Clusters between Stool and Saliva. These two curves illustrate the change in the proportion of
early pandemic samples that remain in the same cluster as their pre-pandemic sample, for stool (blue) and saliva (green) samples. As the
hierarchically clustered samples are cut from k = 2 to 7 clusters, the cluster sizes decrease and become more exclusive. Thus, any two samples
that are in the same cluster when k = 7 are more similar to each other, than when k was smaller, e.g., 2. Across all cuts k, the early pandemic
stool samples tend to be consistently closer to their pre-pandemic mates, than the saliva samples. At k = 2, the proportion of pre- and early
pandemic stool samples that in the same cluster are 93.8%, compared to 74.2% in saliva. At k = 7, 48.6% of stool vs. 28.1% of saliva pre- and
early pandemic samples are collocated in the same cluster.
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Multiple changes in specific taxonomic abundances were associated

with immune system disease, asthma, pre-pandemic BMI and

changes in BMI, diabetes, depression, and education level. These

results are consistent with previous findings such as a 2018 study by

Rothschild and colleagues (Rothschild et al., 2018) which determined

that genetic ancestry or individual polymorphic variants in families

were minor contributors to gut microbiome composition (<2%), in

contrast to more than 20% of the variance in microbiome diversity

attributed to shared environmental, diet and lifestyle factors.

The microorganisms identified by paired sample distances or by

specific ALR-transformed taxonomic abundances using the pre-

pandemic to early pandemic time points (PEPP) model for stool

microbiota profiles were polymicrobial in nature, however the

associations almost exclusively consist of genera assigned to the

dominant phyla found in the human gut, Bacteroidetes and

Firmicutes. This finding suggests that this diverse set of organisms

is likely to be involved in multiple human gut metabolic processes.

These are likely to include the production of short chain fatty acids

(Silva et al., 2020) and secondary bile acids which have been

implicated in neuro-immunoendocrine regulation affecting both

physical and mental health status (Romanı-́Pérez et al., 2021) as

well as other metabolic processes that warrant future investigation.

The pre-pandemic to early pandemic time points (PEPP) model

used to examine saliva microbiota profiles, identified contrasting

associations. Social distancing led to increased changes in

composition, while COVID-19 worries were associated with a

decrease in compositional distance, between samples from the

same individual. The apparent opposition of these associations

exemplifies the complexity of these host behaviors in host-

microbiota interactions. While many studies have focused on the

role of the microbiome in the gut-brain axis, findings in the current

study suggest that saliva microbiota may in part be important

contributors to, or markers of anxiety, stress, and general mental

health. For example, it has been demonstrated that chronic

psychological distress can depress diurnal secretion levels of

salivary glucocorticoid and catecholamines (Miller et al., 2007) as

well as alpha-amylase (Nater et al., 2007). Glucocorticoids, as

corticosteroids, are involved in carbohydrate, protein, and fat

metabolism and exhibit anti-inflammatory activity. As

neurotransmitters, catecholamines, have been shown to moderate

gut microorganisms (Huang et al., 2015) and may perform similar

roles within the oral cavity.

Overall, paired analyses generally found fewer significant

associations with saliva relative to stool microbiota. This result

may in part be attributable to the smaller sample size available for

the saliva analysis. However, biologically this finding may indicate

that the collective effects of the variables measured within the

timeframe of this study were less influential or acted more in

opposition to one another in saliva microbiota relative to their

stool counterparts. In addition, microbiota recovered from saliva

represent an amalgam of habitats in the oral cavity, and the oral

cavity has direct contact with the external environment, all factors

that can result in greater sample variability.
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The pre-pandemic to early pandemic cluster transition

(PEPCT) analysis identified that overall, from the same

subject, the microbiota profiles from both stool and saliva,

from an ecological standpoint (Relman, 2012), were largely

stable from pre-pandemic to early pandemic time periods with

stool more stable relative to saliva. In the stool samples,

departers (samples from individuals that left their pre-

pandemic cluster assignment) were associated with sex

(female) and COVID-19 worries. Most arrivers (samples from

individuals that changed to new early pandemic cluster

assignments) were associated with asthma and cancer and

social distancing. These associations further support the

finding that perturbations to the stool microbiota from the

pre-pandemic to early pandemic period were associated with

individuals reporting more issues with physical health. The

association with COVID-19 worries however, may be an

indicator of possible changes with mental health status or

alternatively, it may be a proxy for other behaviors not

measured directly in this study.

Further the pre-pandemic to early pandemic cluster

transition (PEPCT) analysis provided an opportunity to

identify “local shifts” or changes in microbiota composition

from a subset of the cohort in relation to study variables. For

instance, increased cancer diagnoses were associated with

individuals that departed multiple pre-pandemic clusters but

arrived in one early pandemic cluster for which cluster

influencing bacteria include Akkermansia and Escherichia-

Shigella. Consistent with these findings, Escherichia has been

associated with promotion of colorectal and other cancers

(Dalmasso et al., 2014), while Akkermansia has been linked to

the potentiation of anti-CTLA-4 and anti-PD-1 immunotherapy

(Miller and Carson, 2020). More recently, both microorganisms

(Jayachandran et al., 2020) were found to be increased in

abundance in individuals with stable non-small cell lung

cancer while undergoing immunotherapy (He et al., 2021).

In a contrasting example, the pre-pandemic to early pandemic

cluster transition (PEPCT) analysis was able to provide insights into

specific taxa related to changes in COVID-19 worries Here the

cluster influencers changed from a diverse pre-pandemic set of

bacteria including Akkermansia, Oscillospiraceae UCG_002,

Bacteroides, Alistipes and Prevotella, to a reduced set of cluster

influencers consisting of Bacteroides, Faecalibacterium and

Agathobacter. Bacteroides are well-known for their metabolic

complexity and roles in many important metabolic activities in the

human colon including a prodigious capacity to catabolize complex

host and diet derived carbohydrates, as well as production of

propionate, use of proteins and other nitrogenous compounds,

and transformation of bile acids and other steroids (Zafar and

Saier, 2021). As such, Bacteroides often support many interspecies

cross-feeding interactions including other short chain fatty acid

producers such as Faecalibacterium and Agathobacter (Rodriguez-

Castaño et al., 2019). Faecalibacterium (Li et al., 2008) is an

important producer of butyrate while Agathobacter fermentation
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products include butyrate, acetate, hydrogen, and lactate (Rosero

et al., 2016). The functional significance of these microbiota

compositional patterns in relation to increased COVID-19 related

worries cannot ultimately be determined in this study and they could

also reflect other behaviors such as pandemic-related dietary

changes. However, this shift in microbiota may in part result in

changes in the composition and concentration of the gut short chain

fatty acid pool and other microbially-mediated metabolites

consistent with results from the paired differences analyses (PEPP

models). Among other biological functions, short chain fatty acids

have been identified as a critical mechanism of gut-brain

communication and may be relevant to the increased

psychological distress reflected in greater worries about the

COVID-19 pandemic (Ortega et al., 2022).

When applying the cross-sectional analyses of early pandemic

(EPCS) model to microbiota profiles, contrasting associations were

determined both between sample types (stool and oral) and with the

previously discussed pre-pandemic to early pandemic time points

(PEPP) model from both stool and oral samples. Relationships with

stool microbiota largely corroborated previously identified

microbiota associations with age (Yatsunenko et al., 2012; de la

Cuesta-Zuluaga et al., 2019), anxiety (Foster and McVey Neufeld,

2013), health, exercise (Clauss et al., 2021), and immune system

disease in studies undertaken prior to the COVID-19 pandemic.

According to inter-sample distance measures, lifestyle changes, as

represented by both social distancing and working from home, had a

significant effect on the microbiota composition as a whole.

Interestingly, these effects were not detected in the paired analyses

of pre-pandemic to early pandemic time points. This finding may

suggest that these associations instead serve as proxies for other pre-

pandemic behavioral or other lifestyle characteristics that could be

identified by their subsequent acceptance of advised changes in social

distancing or work-from-home patterns during the early pandemic.

Regardless of analytical method, changes in stool microbiota

diversity and composition from the cross-sectional examinations

were consistently related to age and more immune system

disturbances. In contrast, cross-sectional analyses of early

pandemic microbiota profiles from saliva (EPCS) model, identified

fewer significant associations with diversity and a different set of

variables related to compositional changes offering novel insights

into to the effects of lifestyle and behavioral perturbations on the

microbiota with influences from smoking history, COVID-19

related worries and the number of pets per household.

Strengths of our study include the relatively large number of

subjects with matching pre- and early pandemic samples for

both stool and saliva. The existence of an ongoing microbiome

biospecimen collection and surveillance system, allowed us to

rapidly integrate a COVID-19 study specific design, both quickly

and practically, through sample self-collection and remotely

conducted questionnaires. Analogous to long-term ecological
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monitoring of the environment (Vergin et al., 2013; Karl and

Church, 2014), our findings argue for the importance of long-

term surveillance of the human microbiome to improve the

ability to monitor future potential population-wide

perturbations. Further, the collection of subject covariates (e.g.,

BMI, age, sex, smoking, etc.) that were included into our models

and are crucial to control for in microbiome studies, improved

the confidence of the associations made with the questionnaire

responses. While self-reported responses to questionnaires can

have limitations compared to objective biomarkers (Boparai

et al., 2018), we confirmed that measures of health status were

consistent with clinical records.

We recognize that the study has several limitations. While

the use of 16S rRNA gene sequencing, as a means to estimate the

taxonomic composition of each sample can be conducted

relatively quickly and with use of fewer resources, it does not

measure biological function directly and therefore is limited in

its ability to identify functional interactions with the host.

Additional assays to elucidate potential, latent, and active

metabolic process, through additional multi-omics approaches

such as metagenomics, metatranscriptomics, metabolomics and

personal genomic information, would provide a means to test

more narrowly proposed hypotheses governing the underlying

the associations determined in this study. In addition, given the

rapidly changing nature of the pandemic, there may have been

subsequent changes in the microbiome that we did not capture.

In future works of this nature, the questionnaire could be refined

by including multiple alternatively worded redundant questions

that can be later combined for robustness, and by excluding

some questions that may have ambiguous or unnecessary

distinctions towards hypothetical physiological outcomes. We

also lacked data on diet and other factors that might have

influenced the microbiome.

In conclusion, our study examined changes in stool and saliva

microbiota diversity and composition that may be attributable to

social and lifestyle behavior mitigations from pre-COVID-19 to

early pandemic time points in individuals who were not infected

with SARS-CoV-2. While there was a trend towards a decrease in

stool and saliva microbiota diversity, this change was not

significant between pre-pandemic and early pandemic periods.

Collectively, our analyses support the notion of relative ecological

stability in stool and saliva microbiota taxonomic profiles (with

higher stability found in stool) from the pre-pandemic to early

pandemic periods. Greater changes in microbiota diversity and

taxonomic profiles were associated with more questionnaire

reported health issues including immune system disturbances,

asthma, and cancer, or with greater worries related to the COVID-

19 pandemic. Therefore, managing underlying comorbidities and

psychological distress such as worries about the pandemic may be

important for maintaining beneficial host-microbiome
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interactions. Our study highlights the importance of longitudinal

sampling of large observational cohorts as a valuable tool to

examine the status of the microbiome over time in response to

pandemics and changes in public health measures.
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1938 in a new genus agathobacter gen. nov. as agathobacter rectalis comb. nov., and
description of agathobacter ruminis sp. nov., isolated from the rumen contents of
sheep and cows. Int. J. Systematic Evolutionary Microbiol. 66 (2), 768–773.
doi: 10.1099/ijsem.0.000788

Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D.,
et al. (2018). Environment dominates over host genetics in shaping human gut
microbiota. Nature 555 (7695), 210–215. doi: 10.1038/nature25973

Sanyaolu, A., Okorie, C., Marinkovic, A., Patidar, R., Younis, K., Desai, P., et al.
(2020). Comorbidity and its impact on patients with COVID-19. SN Compr. Clin.
Med. 2 (8), 1069–1076. doi: 10.1007/s42399-020-00363-4

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E.
B., et al. (2009). Introducing mothur: open-source, platform-independent,
community-supported software for describing and comparing microbial
communities. Appl. Environ. Microbiol. 75 (23), 7537–7541. doi: 10.1128/
AEM.01541-09

Sender, R., Fuchs, S., and Milo, R. (2016). Revised estimates for the number of
human and bacteria cells in the body. PLoS Biol. 14 (8), e1002533. doi: 10.1371/
journal.pbio.1002533

Silva, Y. P., Bernardi, A., and Frozza, R. L. (2020). The role of short-chain fatty
acids from gut microbiota in gut-brain communication. Front. Endocrinol.
(Lausanne) 11, 25. doi: 10.3389/fendo.2020.00025

Stapleton, A. L., Shaffer, A. D., Morris, A., Li, K., Fitch, A., and Methé, B. A.
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