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ABSTRACT Objective: Cancer remains a major cause of morbidity and mortality globally, with 1 in 5 of
all new cancers arising in the breast. The introduction of mammography for the radiological diagnosis of
breast abnormalities, significantly decreased their mortality rates. Accurate detection and classification of
breast masses in mammograms is especially challenging for various reasons, including low contrast and
the normal variations of breast tissue density. Various Computer-Aided Diagnosis (CAD) systems are being
developed to assist radiologists with the accurate classification of breast abnormalities. Methods: In this
study, subtraction of temporally sequential digital mammograms and machine learning are proposed for the
automatic segmentation and classification of masses. The performance of the algorithm was evaluated on a
dataset created especially for the purposes of this study, with 320 images from 80 patients (two time points
and two views of each breast) with precisely annotatedmass locations by two radiologists. Results: Ninety-six
features were extracted and ten classifiers were tested in a leave-one-patient-out and k-fold cross-validation
process. Using Neural Networks, the detection of masses was 99.9% accurate. The classification accuracy of
themasses as benign or suspicious increased from 92.6%, using the state-of-the-art temporal analysis, to 98%,
using the proposedmethodology. The improvement was statistically significant (p-value< 0.05). Conclusion:
These results demonstrate the effectiveness of the subtraction of temporally consecutive mammograms for
the diagnosis of breast masses. Clinical and Translational Impact Statement: The proposed algorithm has
the potential to substantially contribute to the development of automated breast cancer Computer-Aided
Diagnosis systems with significant impact on patient prognosis.

INDEX TERMS Breast cancer, Computer-Aided Diagnosis (CAD), machine learning, sequential mammo-
grams, temporal subtraction.

I. INTRODUCTION
Breast Cancer (BC) accounts for 19% of new cancer cases
(i.e. ∼1 in 5 of all new cancers) worldwide and 30% of
cancers in women, constituting a major cause of morbidity
and mortality. BC incidence rates continue to increase by
about 0.5% per year. A large percentage of BCs begins in
the ducts, but the processes by which the malignancy initially
appears and later develops, can vary between patients [1].

Mammographic screening followed by appropriate disease
management in the case of positive findings, has significantly
improved patient prognosis [2]. Currently, the mammograms
are evaluated by two radiologists (and a third if consensus
is not reached), which is an indication of the challenges
faced when attempting to identify probable abnormalities
in the images. Increasing breast density, described using
the Breast Imaging Reporting and Data System (BI-RADS)
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density categorization, makes the identification of breast
masses evenmore difficult. Images of breast with dense tissue
(BI-RADS c & d), exhibit increased intensity with variations
that are very similar and obscure the abnormalities. The issue
is further complicated by the fact that dense tissue may also
be associated with an increased risk of BC [3].

Breast masses can be radiologically classified as benign
or suspicious depending on key parameters such as size,
perimeter, density, gradient, texture, etc. [4]. A benign mass
has a smooth, round and well-defined boundary, compared to
suspicious masses which are characterized by rough, blurry
and spiculated boundaries [5]. Suspicious abnormalities are
followed to confirm whether are malignant or benign. Clas-
sification of masses is one of the most challenging tasks
for radiologists, not only because of their wide variation
in size and shape, but also because of their low contrast.
Furthermore, masses are usually surrounded and/or enclosed
by other structures, such as normal tissue, blood vessels and
muscle [6]. Computer-Aided Diagnosis (CAD) systems are
being developed to aid the radiologist with this task.

The development of various algorithms for the detection
and classification of breast masses in mammograms has
been the subject of an intense research effort [2], [7], [8].
Since 2015, various deep learning techniques, such as Con-
volutional Neural Networks (CNNs) were also introduced,
increasing the accuracy of detection and automating feature
extraction [9], [10], [11]. However, using single mammo-
grams does not allow comparison of the recent and prior
images of the same patient. Such comparisons are routinely
performed by radiologists in order tomore effectively identify
any abnormalities which have developed between screenings.
Usually, new abnormalities, or Regions of Interest (ROIs),
changing rapidly between screenings, are more likely to be
suspicious. On the contrary, ROIs that remain unchanged, are
more likely benign and harmless [12].

Temporal analysis was developed for the comparison of
sequential mammograms and is already being applied for
breast mass detection and classification. Usually, the detec-
tion of the masses is conducted on the most recent mam-
mographic view and, with the use of registration algorithms,
the corresponding location is identified in the prior image
as well. Features are extracted from recent and prior images
and, then, subtracted for the creation of a temporal feature
vector that is used in the classification. The effectiveness
of temporal analysis for the diagnosis of breast masses has
been assessed thoroughly [13], [14], [15], [16], [17], [18].
Despite the fact that the findings are promising, temporal
analysis offers no benefit, compared to using only the most
recent mammographic view, when the findings are new with
no traces of abnormality in the prior screening.

In this work, an algorithm for the segmentation and clas-
sification of breast masses is proposed, exploiting the sub-
traction of temporally sequential digital mammograms and
machine learning. Temporal subtraction, developed by this
group, has already been applied for the detection and classifi-
cation of breast micro-calcifications with great success [19].

TABLE 1. Characteristics of the population selected for the study.

In this study, the concept was evaluated for the segmenta-
tion and classification of masses. The various steps of the
method were modified and optimized based on the radio-
logical characteristics of masses. A new dataset was created
for the purposes of this study, which included 80 patients,
of which 40 had at least one suspicious breast mass only
in the recent mammogram but not in the prior. From the
remaining 40, 12 had only benign masses and 28 did not
have any masses at all in the recent mammograms. In total,
320 images were collected (two time points, i.e. recent and
prior mammogram, and two views of the breast). With the
introduction of temporal subtraction, the areas that remained
unchanged between the screenings and the background were
effectively removed, producing a new imagewith higher Con-
trast Ratio (CR) compared to the corresponding recent image.
Subsequently, all the detected ROIs were either classified as
normal tissue or true masses to eliminate False Positive (FP)
detections. The true masses were further classified as benign
or suspicious. For comparison, temporal analysis was also
performed.

The rest of the paper is organized as follows: Section II
describes the dataset (II-A) and the segmentation and clas-
sification of masses using temporal subtraction (II-B) and
temporal analysis (II-C). Section III describes the results with
Sections III-A and III-B focusing on temporal subtraction and
temporal analysis, respectively. Section IV includes a discus-
sion of the findings and the main conclusions are provided in
Section V.

II. MATERIALS AND METHODS
A. DATASET
For this study, 80 full-field digital pair of mammograms
were collected, between 2012 to 2020, from women 39 to
81 years of age, randomly selected from various screen-
ing centers in Cyprus. The prior mammograms originated
between 2012 and 2018, with an average interval of 2.5 years
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FIGURE 1. Dataset examples. (A) Mammographic view of a 68-year-old
woman (BI-RADS breast density category a) with benign and suspicious
masses. (B) Mammographic view of a 58-year-old woman (BI-RADS breast
density category c) with benign and suspicious masses. (C, D) Zoomed
regions marked by the red squares in A and B, showing masses. (E, F) The
regions in C and D with precise marking of mass locations (green for
benign, red for suspicious), as annotated by two expert radiologists.

between screenings. Normal cases were selected to form a
matched group compared to those with suspicious findings.
The study was approved by the Cyprus National Bioethics
Committee.

For every participant, two mammographic views, the
Cranio-Caudal (CC, view from above) and Medio-Lateral
Oblique (MLO, angled view) were included. Two images
from two sequential screening rounds resulted in a dataset
with a total of 320 images. A radiologist with ten years
of experience selected the participants and assessed the
mammograms, per BI-RADS classification, along with a
second radiologist, with two years of experience. Half of
the images came from participants without any suspicious
findings. Of these, 12 women had only benign masses and
28 had no masses in the recent mammograms. The remaining
40 patients exhibited at least one suspicious mass in the
most recent screening with a normal prior. Table 1, shows
a summary of the study population. The dimensions of the
mammograms were 4096× 3328 pixels, in an 8-bit DICOM
format.

It was necessary to compile a new dataset for this study
since publicly available datasets do not include temporally
sequential mammograms and in some cases the mammo-
grams are scanned and/or outdated. In addition, this new
dataset not only includes sequential digital mammograms,
but also precise annotation of each individual mass (both
benign and suspicious) that serves as the ground truth
(Fig. 1). Such detailed annotations are rarely found in pub-
licly available datasets. The dataset is publicly available
(https://doi.org/10.5281/zenodo.7179856) [20].

B. BREAST MASS SEGMENTATION AND CLASSIFICATION
USING TEMPORAL SUBTRACTION
The proposed methodology for the segmentation and classifi-
cation of breast masses, using subtraction of sequential digital
mammograms, is outlined in Figure 2.

FIGURE 2. Proposed methodology for the automatic breast mass
segmentation and classification using subtraction of temporally
sequential digital mammograms.

1) IMAGE REGISTRATION, SUBTRACTION AND MASS
SEGMENTATION
The recent and prior mammographic views were pre-
processed in parallel, beginning with normalization to adjust
the range of pixel intensity values. This step was fol-
lowed by Contrast Limited Adaptive Histogram Equalization
(CLAHE), gamma correction and border removal. CLAHE
enhances the contrast of an image by re-allocating its gray
levels, and operates on small regions, i.e. tiles, rather than
the entire image. An important parameter in CLAHE is the
clip limit, a contrast factor that prevents over-saturation of
the image specifically in homogeneous areas. In this case, this
parameter was set to 0.01. The application of CLAHE effec-
tively diminished noise and edge-shadowing effects [21].
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FIGURE 3. Effects of the pre-processing on two cases. (1) Mammographic view of a 68-year-old woman with
BI-RADS breast density category a (Case 1, top row). (2) Mammographic view of a 50-year-old woman with
BI-RADS breast density category c (Case 2, bottom row). For each case: (A) Original most recent image. (B) Zoomed
region marked by the red square in A, showing an area with breast masses (indicated by the arrows). (C) Zoomed
region marked by the green square in A showing an area without masses. (D) Image after CLAHE. (E) Image after
gamma correction. (F) Final pre-processed image after border removal. (G) Zoomed region marked by the red
square in F, showing the same area as B, after pre-processing. (H) Zoomed region marked by the green square in F,
showing the same area as C, after pre-processing.

Subsequently, contrast adjustment using gamma correction
was used to account for the non-linear mapping of image
intensities, using:

I ′(x, y) = lmax

(
I (x, y)
lmax

)γ
(1)

where lmax defines the maximum intensity of the input image,
I (x, y) is the intensity of each pixel in the input image and
γ is the gamma parameter, which was set to 2 [22]. Border
removal, the last step in the pre-processing, removed the high
intensity areas connected to the border, such as the pectoral
muscle, using the marker image B:

B(x, y) =

{
I ′(x, y), if (x, y) is on the border of I ′.
0, otherwise.

(2)

where, I ′ is the input image. Using B as a mask, a new image
H that contained only the objects touching the border was
reconstructed as;

H (x, y) = I ′(x, y)B(x, y) (3)

Subsequently, a new image C containing only the objects
from the input image that do not touch the border was created
as [23];

C(x, y) = I ′(x, y)− H (x, y) (4)

Figure 3, illustrates the effects of pre-processing for
two cases, with different BI-RADS density categorization,
in ROIs with and without breast masses.

For an effective subtraction between the recent and prior
images, effective image registration is required. The mam-
mograms vary significantly between screenings due to breast

tissue changes, variations in breast compression and operat-
ing factors at the time of imaging [24]. Several image reg-
istration techniques have been applied in the past [25], with
Affine being the most common [26]. In this study, Demons
registration [27] was selected, since it can better account for
the non-linear shape deformation of the breast.

Demons is a local registration technique that aligns the
moving image (prior) to the fixed (recent) using regional
similarity and location. In Demons, the registration is seen as
a diffusion process affected by the optical flow formulation
and most of the times includes a regularization term to assure
continuity and smoothness [27]. It can be represented as an
energy function, with respect to the update field u of a fixed
image F , a moving imageM and a transformation field s:

Escorr (u) = ||F −M ◦ (s+ u)||
2
+

(
σ 2
i

σ 2
x

)
||u||2 (5)

where, σ 2
i is the noise of the image intensity and σ 2

x the spatial
uncertainty. With the application of a Taylor expansion, Eq.
(5) is linearized and the energy function reaches its minimum
when its gradient descent is zero. The registration must be
solved iteratively since the update field is based on local
information [28]. High intensity areas on the periphery of the
breast were removed since they correspond to skin areas that
cannot contain masses and were a results of misalignment.
Figure 4 shows an example of temporal subtraction in a 50-
year-old woman. To assess the effectiveness of the registra-
tion and temporal subtraction, the CR of the subtracted image
was compared to the corresponding CR of the most recent
image after pre-processing.
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FIGURE 4. Example of temporal subtraction in a 50-year-old woman (BI-RADS breast density category c) with a
suspicious mass. (A) Most recent mammographic view. (B) Prior mammographic view. (C) The result of subtracting
the registered version of B from A. (D)—(F) Zoomed regions marked by the red squares in A—C, where the green
squares enclose a new suspicious mass that was not subtracted. The Contrast Ratio (CR) has increased 9 times
after subtraction.

The accuracy of the mass segmentation improved with
unsharp-mask filtering. This spatial filter enhances a range
of high frequencies using:

Psharp(x, y) = C(x, y)+ k ∗ Q(x, y) (6)

where, k is the scaling constant and its reasonable values k
vary between 0.2 to 0.7. For this case, k was set to 0.5 after
trial and error. Q(x, y) calculated as follows:

Q(x, y) = C(x, y)− Csmooth(x, y) (7)

where, C(x, y) is the input image and Csmooth(x, y) is the
smoothed version of the input [29].

Subsequently, thresholding, using Otsu’s method, was
applied, to covert the grayscale image to binary and to elimi-
nate the low intensity areas.Masses were preserved since they
are brighter than the background. The appropriate threshold
value was found using the discriminant criterion [30] and by
optimizing the global classification rate. Finally, the margins
of the breast masses were identified by applying morpho-
logical operations. The goal was to efficiently identify the
masses inside the images, for better segmentation. Erosion,
with a radius of 2 pixels, removed isolated pixels that did
not correspond to masses in the binary image. Subsequently,
closing was applied with a radius of 10 pixels, to connect
isolated regions that constituted breast masses. The remaining
ROIs were considered as possible breast masses.

2) FEATURE EXTRACTION AND SELECTION FOR
CLASSIFICATION
Machine learning was employed to eliminate regions falsely
detected as masses and to classify the breast masses as benign
or suspicious according to their BI-RADS category. Features
were selected for their ability to identify masses and further

characterize them as benign or suspicious. In total, 96 fea-
tures were extracted from the ROIs, divided in four major
categories: shape-based, intensity-based, First-Order Statis-
tics (FOS) and Gray Level Co-occurrence Matrix (GLCM)
features. Table 2, describes the features that were extracted.
Shape is a particularly important radiological feature for the
diagnosis of masses and their differentiation as benign or sus-
picious [4]. A total of 15 shape-based features were extracted
from each ROI. Breast masses usually exhibit higher intensity
compared to the background and other regions. Intensity
features were also extracted to reflect these differences. Fur-
thermore, the texture of a breast mass provides diagnostically
useful information reflected in the FOS [31] and GLCM [32]
features of each region. Each GLCM feature was extracted
at 0, 45, 90 and 135 degrees and the mean and standard
deviation (STD)were obtained, resulting in 24 values for each
different offset D. To determine the most appropriate offset,
three different values were tested (D1 = 5, D2 = 15 and
D3 = 25). Thus, a total of 72 GLCM features were extracted.
Normalization was applied to each feature row, in order

to scale all the samples and adjust the range of their values.
A row-wise application of least squares (l2) normalization
was used to normalize all the features of a single ROI. Stan-
dardization was not applied since it was not found to improve
the classification [33].
Feature selection is a necessary step to eliminate irrel-

evant and redundant features. Four commonly used algo-
rithms were tested: hypothesis t-test [34], SelectKBest [33],
feature importance [33] and Principal Component Analysis
(PCA) [35], to identify the most important features with
the highest contribution to the classification performance.
A combination of paired t-test and feature importance, pro-
vided the best classification performance. Feature Importance
provides a score for each extracted feature, in this case
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TABLE 2. Features extracted for the diagnosis of breast masses.

96 scores. This score is calculated as the decrease in node
impurity, weighted by the probability of reaching that node.
As the score increases, the feature is marked as more impor-
tant or relevant. Feature importance is an inbuilt class that
comes with tree-based classifiers, thus extra tree classifier
was applied in this study [33]. The optimal combination of
features, using the 40 features with the highest importance
value and the statistically significant features resulted from
the t-test, was identified by optimizing the classification
performance.

Unfortunately, the dataset created was imbalanced since
(i) a large number of FP regions (39 FPs per image) were
detected after image registration, subtraction and mass seg-
mentation, resulting in the true masses being the minor-
ity class (148 true masses), and (ii) the number of benign
and suspicious masses was not equal (52 vs. 96), reflect-
ing their clinical incidence. Synthetic Minority Oversam-
pling Technique (SMOTE) was implemented. SMOTE is
a data augmentation approach which selects the instances

FIGURE 5. Plot comparing the contrast ratio of the processed recent
image and the image created by temporal subtraction, for the four
categories of breast density as defined by the BI-RADS.

closer to the feature space and creates new samples at points
between them [36]. To avoid bias, SMOTE was applied
only on the training set to automatically create new instances
of the minority class. Hence, the data into the classifiers
were balanced to increase the accuracy. Feature extraction
was performed using MATLAB (R2020a; MathWorks, Mas-
sachusetts, U.S.A). The pre-processing of the features, the
feature selection step and the classification, were performed
using Python (version 3.7.7; Python Software Foundation,
Delware, U.S.A).

3) TRAINING AND COMPARISON OF CLASSIFIER DESIGNS
Different classifiers have been proposed in the literature first
to eliminate the falsely detected regions and then classify
the breast masses as benign or suspicious [8]. In this study,
nine popular classifiers were evaluated: Linear Discriminant
Analysis (LDA) [37], k-Nearest Neighbor (k-NN) [38], Sup-
port Vector Machine (SVM) [39], Naive Bayes (NB) [38],
Random Forest (RF) [40], AdaBoost (ADA) [41], Bagging
(BAG) [42], Gradient Boosting (GB) [43], and Voting [41].
Ensemble models combined the predictions from multiple
separate models to enhance the performance and reduce
over-fitting.

In addition, different Neural Network (NN) architectures
were evaluated using Python and Keras (version 2.3.1) [38].
All the available parameters of the network were tested and
optimized based on the classification accuracy and the pro-
cessing time. The goal was to built an efficient network with
high classification performance and low processing time. For
the classification of normal tissue vs. mass, the selected archi-
tecture consisted of 6 fully connected layers (96, 192, 384,
768, 768), with 990,386 trainable parameters. A Rectified
Linear Unit (ReLU) was used as an activation function and
batch normalization, along with adaptive dropout regulariza-
tion (0.2-0.4), were included every 2 hidden layers. Gaussian
noise was added, as a regularization term, in order to increase
the robustness of the network. The batch size was set to 128,
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TABLE 3. Comparison of the classification results of the segmented
regions as normal tissue or true masses with temporal subtraction (TS)
and temporal analysis (TA), using leave-one-patient-out cross-validation.

the learning rate was set to 0.001 and the network was trained
for 100 epochs. For the classification of benign vs. suspicious
masses, the same network structure was usedwith appropriate
modifications. In this case, batch normalization was not used
and the learning rate was set to 0.0001, resulting in 985,922
trainable parameters.

The classification took place in two rounds. First, the
classifiers were trained and tested to separate the detected
ROIs into normal tissue and true masses. This step eliminated
the FP detections resulting from the erroneous identification
of normal tissue as abnormal. In the second classification
round, the true masses were classified as benign or suspi-
cious. In both rounds Leave-One-Patient-Out (LOPO) cross-
validation was used for the training. All the images associated
with a single patient (CC and MLO views of recent and
prior mammograms) were reserved for the testing group,
while the images of the remaining patients were used for
training, repeating until all the cases were classified. In addi-
tion to LOPO cross-validation, k-fold cross-validation was
also applied to examine the classification performance. In a
similar manner, the folds were created per patient and not by
randomly dividing the ROIs. Grouping the data per patient is
of great importance to avoid any bias during the classification
procedure resulting from information from the same patient
included in both the training and test set.

For the evaluation of the two classification rounds and
all the cross-validations schemes, sensitivity, specificity,
accuracy and the Area Under the receiver operating charac-
teristics Curve (AUC) were calculated.

C. BREAST MASS SEGMENTATION AND CLASSIFICATION
USING TEMPORAL ANALYSIS
In temporal analysis, prior mammographic views are uti-
lized. When prior information is available for direct com-
parison by the clinicians, abnormalities can be identified at
an earlier stage and the clinicians feel more confident of
their assessment [44]. Prior and recent images are coarsely

TABLE 4. Comparison of the classification results of the true masses as
benign or suspicious with temporal subtraction (TS) and temporal
analysis (TA), using leave-one-patient-out cross-validation.

registered based on anatomical features (nipple, skin, center
of mass) and the locations of recently identified masses in
the prior images are identified by regional registration. Com-
bining the features from all images resulted in an increase
in specificity and reduced FPs rates. However, temporal
analysis offers no benefit, over using just the most recent
mammogram, when the findings are new and with no traces
of abnormality in the prior screening [14].

For comparison purposes, temporal analysis was also
applied on the same data to verify the benefit of temporal
subtraction. For the results to be comparable, the same proce-
dures as beforewere followed. Hence, image registration, fea-
ture subtraction, mass segmentation and then machine learn-
ing (feature extraction, feature selection and classification)
were optimized for FP removal and breast mass classification
as benign or suspicious, using the temporal analysis data.

III. RESULTS
A. BREAST MASS SEGMENTATION AND CLASSIFICATION
USING TEMPORAL SUBTRACTION
1) IMAGE REGISTRATION, SUBTRACTION AND MASS
SEGMENTATION
As already mentioned in Section II-B.1, the prior and recent
images were pre-processed for enhancement and border
removal (Fig. 3). To effectively register the prior and recent
mammographic views, Demons registration was used. The
performance of temporal subtraction was evaluated by com-
paring the CR of the subtracted image, to the corresponding
CR of the original most recent image after pre-processing
(Fig. 5). The CR increased ∼2 times (41.9 vs. 81.2) with the
introduction of registration and temporal subtraction, result-
ing in a visually enhanced image containing only the newly
developed ROIs or the regions that have changed signifi-
cantly between the screenings. The processing time for these
operations was an average of ∼15 minutes per image pair
(Intel Core i7 2 GHz; Intel Corp., Santa Clara, CA, USA).
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FIGURE 6. Classification results of the segmented regions as normal
tissue or true masses using different classifiers and cross-validation
methods. Top: Results using temporal subtraction. Bottom: Results using
temporal analysis.

2) FEATURE EXTRACTION AND SELECTION FOR
CLASSIFICATION
Feature selection revealed that the most significant features
for the elimination of normal tissue misclassified as masses,
i.e. the FPs, were: area, minimum intensity, average intensity,
correlation 45◦ D2, correlation 90◦ D2, correlation 135◦ D2,
correlation mean D2, contrast mean D3, correlation 0◦ D3,
correlation 90◦ D3, correlation 135◦ D3, correlation mean
D3, compactness and the shape ratio. The most important
features for the classification of the true masses as benign or
suspicious were: major axis length, minor axis length, convex
area, filled area, solidity, correlation 0◦ D2, correlation 45◦

D2, correlation 135◦ D2, correlation mean D2, correlation 0◦

D3, correlation 135◦ D3, correlation mean D3, circularity.

3) TRAINING AND COMPARISON OF CLASSIFIER DESIGNS
First, the selected features were incorporated into various
classifiers that were optimized for the elimination of FP
detections, by classifying the detected ROIs as true masses
or normal tissue, using LOPO cross-validation. The NN
achieved the highest and most stable classification perfor-
mance, with 99.9% accuracy and 0.98 AUC (Table 3). For
the SVM, a linear kernel was used, k-NN was implemented
with k set to 1, and for the Ensemble Voting, 1-NN, RF and
GB were combined, in a hard voting scheme. Also, k-fold
cross-validation was applied, using 4 and 10-folds. Overall,
the performance remained approximately at the same level,
proving the robustness of the algorithm. The overall classifi-
cation results are shown in Fig. 6.
Subsequently, the true masses were classified as benign

or suspicious using the selected features in a LOPO cross-
validation scheme. The results are shown in Table 4. The
highest and most robust performance was reached using a
NN, with 98% accuracy and 0.98 AUC. For the SVM, a linear
kernel was used and for k-NN, the number of neighbors was

FIGURE 7. Classification results of the detected true masses as benign or
suspicious using different classifiers and cross-validation methods. Top:
Results using temporal subtraction. Bottom: Results using temporal
analysis.

TABLE 5. Comparison of the Sensitivity (SE), Specificity (SP) and Accuracy
(AC) of the proposed algorithm with and without the application of
SMOTE, for the 5 classifiers with the best performance, using
leave-one-patient-out cross-validation.

set to 7. In Ensemble Voting, 7-NN, SVMwith a linear kernel,
ADA, BAG and GB were combined, in a soft voting scheme.
For the k-fold cross-validation, 4 and 13-fold cross-validation
was applied, since of the 80 cases, only 52 had true masses.
The results (Fig. 7) confirm the robustness of the algorithm.

In both rounds, the use of SMOTE resulted in a higher
performance, as shown in Table 5, which exemplifies the
importance of balancing the classification.

Figure 8 illustrates an example of the outcome of the algo-
rithm for breast mass segmentation and classification using
temporal subtraction. On the most recent mammographic
view of a 58-year-old woman, two benign (green line) and
one suspicious (red line) masses were all correctly classified,
without any FPs detected in this image.

B. BREAST MASS SEGMENTATION AND CLASSIFICATION
USING TEMPORAL ANALYSIS
Temporal analysis is the current state-of-the-art technique
for the detection and classification of breast masses using
sequential mammograms. The most important features for
the first classification round (normal tissue vs. true masses)
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FIGURE 8. Results of the classification of the masses as benign or
suspicious. (A) Recent mammographic view of a 58-year-old woman
(BI-RADS breast density category c) with benign and suspicious masses.
(B) Zoomed region marked by the red square in A, showing a suspicious
mass. (C) Zoomed region marked by the green square in A, showing a
benign mass.

were: skewness, kurtosis, STD, variance, correlation 45◦ D2,
correlation 90◦ D2, correlation mean D2, contrast 45◦ D3,
contrast 90◦ D3, contrast 135◦ D3, contrast mean D3, corre-
lation 90◦ D3, correlation mean D3 and smoothness. Using
those in a LOPO cross-validation scheme, the NN reached
90.9% accuracy and 0.79 AUC (Table 3). The SVM was
implemented using a linear kernel, the k-NN was performed
with 11 neighbors and Ensemble Voting used LDA,Quadratic
Discriminant Analysis (QDA), SVM with a linear kernel,
Multi-Layer Perceptron (MLP) and GB, in a hard voting
scheme. The application of 4 and 10-fold cross-validation
resulted in∼5 drop in the classification performance (Fig. 6).

For the classification of the true masses as benign or
suspicious, the same procedure was followed. The fea-
tures with the highest contribution were: correlation 0◦

D1, correlation mean D1, contrast STD D2, correlation 45◦

D2, correlation STD D2, energy STD D2, homogeneity
STD D2, correlation 0◦ D3, correlation 45◦ D3, correlation
mean D3, correlation STD D3, energy STD D3 and smooth-
ness. NN achieved 92.6% accuracy and 0.92 AUC using
the selected features in a LOPO cross-validation scheme
(Table 4). For this task, the SVM was implemented using a
polynomial kernel, k-NNwas implemented using 5 neighbors
and the Ensemble Voting using 5-NN, RF and MLP, in a
soft voting scheme. As before, since only 52 patients had
true masses, the application of 4 and 13-fold cross-validation
resulted in a slight drop of in terms of sensitivity, specificity
and accuracy (Fig. 7).

IV. DISCUSSION
In this study, an automated algorithm for the segmenta-
tion and classification of breast masses, using subtraction
of temporally sequential mammograms, is presented. The
algorithm begins with pre-processing, image enhancement
and border removal. Demons registration of prior to recent
images was effective in adequately tracking the temporal
changes between the screenings. After registration and sub-
traction, the CR of the subtracted images improved∼2 times,
compared to the most recent mammographic view with pre-

processing. This increase is clinically important since it could
allow radiologists to better visualize the recent changes in
the mammograms by eliminating unchanged and diagnosti-
cally insignificant features. Moreover, the radiologists could
identify subtle abnormalities that otherwise would have been
obscured by the background tissue and they could track the
changes without having to manually refer back to the prior
images.

For the classification of the detected ROIs as normal tissue
or true masses, the classification accuracy was 99.9% which
was achieved using a NN with a LOPO cross-validation
scheme. The result was an average of 0.06 FP detections per
image. Out of 148 truemasses, 5 weremisclassified as normal
tissue and 9 normal regions were incorrectly identified as
masses. For the characterization of the true masses as benign
or suspicious, NN reached 98% accuracy using LOPO cross-
validation, with an average of 0.012 FPs per image.

Despite the misclassifications, the actual clinical conse-
quences would have been minimal if the algorithm was
actually applied. While out of 52 benign masses, 2 were
wrongly detected as suspicious, those patients also had other
suspicious masses so they would have been followed up with
biopsy despite the result. Similarly, out of 96 suspicious
masses, 1 was misclassified as benign, but again since the
patient had another suspicious mass, her care would not
have been compromised as she would have been biopsied
irrespectively. Although unlikely, a mass that is not chang-
ing between screenings could be subtracted and disappear
from the final image. However, this does not impose any
clinical consequences since in such cases only follow-up is
recommended [45].

In addition to LOPO cross-validation, k-fold cross-
validation was also applied to evaluate the robustness of
the algorithm. The classification performance varied only
slightly, depending on k, indicating the likely potential of the
algorithm to correctly classify new data.

An important factor for an effective classification is a
balanced dataset. In this study, the application of SMOTE,
addressed the imbalance in the dataset, resulting in more
robust results, especially in terms of sensitivity. For the
classification of the detected ROIs as normal tissue or true
masses, the improvement using SMOTE was more evident,
since the dataset was more imbalanced. Without SMOTE, the
sensitivity was low (except in the case of the NN), since the
algorithmwas biased to detect the normal ROIs. In the second
classification round, from the 148 masses, 52 were benign
and 96 were suspicious. Hence, the dataset was not as imbal-
anced. However, SMOTE, again, improved the classification
performance.

The results presented indicate that temporal subtraction
can be an effective technique for the segmentation and classi-
fication of breast masses using sequential mammogram pairs.
Since this is the first demonstration of temporal subtraction,
direct comparison with other studies is not possible. The
current state-of-the-art in the analysis of sequential mammo-
grams, is temporal analysis. With temporal analysis, the NN
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TABLE 6. Comparison between different state-of-the-art algorithms using
sequential mammograms for the classification of breast masses as
benign or malignant.

reached 90.9% accuracy using LOPO cross-validation, when
distinguishing between normal tissue and masses. However,
49 masses incorrectly identified as normal tissue and there
was an average of 6.9 FP detections per image. The results
for the diagnosis of benign vs. suspicious masses were better,
but still inferior to temporal subtraction. The NN achieved
92.6% accuracy with 0.03 FPs per image (two times higher
compared to temporal subtraction). Five benign masses were
misclassified as suspicious, which would have resulted in
1 unnecessary biopsy, and 6 suspicious masses were incor-
rectly identified as benign, resulting in the incorrect clas-
sification of 2 patients as healthy, while having suspicious
masses. These results are consistent and even slightly better
than those reported in the literature (Table 6). The aver-
age accuracy for the classification of benign vs. suspicious
masses improved by ∼5% with the introduction of temporal
subtraction. The improvement using the proposed algorithm
is statistically significant (p-value < 0.05).
Various groups have developed feature-based and deep

learning approaches, for the classification of breast masses
as benign or malignant, using the most recent mammographic
view only. Despite the fact that the results are promising, the
use of the most recent image alone does not allow for the eval-
uation of the information that has changed between the
screenings. Furthermore, with the introduction of temporal
subtraction, the classification accuracy increases. Table 7
compares different state-of-the-art algorithms for the classi-
fication of breast masses as benign or malignant, with the
proposed method.

However, direct comparison of different studies is chal-
lenging due to differences in the method of cross-validation
applied in each. In several cases, the ROIs were randomly
divided into training and test sets, thus regions from the same
image and the same patient were included in both the training
and testing sets [45], [46]. In this study, to avoid such bias, the
cross-validation was performed per patient and not per ROI.

Despite the very promising results of this study, the rel-
atively small dataset remains a limitation. More sequen-
tial mammograms are required to confirm the effectiveness
and robustness of the algorithm. Unfortunately, publicly
available databases cannot be exploited, since they nei-
ther contain sequential mammograms, nor they include the
detailed annotation of each individual mass, as in this study.
Other limitations include the fact that the healthy participants
were not followed for further diagnostic evaluation and that,
although the suspicious masses were identified by two expert

TABLE 7. Comparison between different state-of-the-art algorithms for
the classification of breast masses as benign or malignant.

radiologists, differences might appear if more experts per-
form the same task.
V. CONCLUSION
In this study, a method for the automatic breast mass seg-
mentation and classification using subtraction of temporally
sequential digital mammograms, was developed. With the
application of temporal subtraction, the regions that remained
unchanged between screenings, along with the background,
were effectively removed, resulting in a new image with
higher CR, compared to the corresponding recent mammo-
graphic view. The performance of the classification of breast
masses as benign vs. suspicious increased by∼5%, compared
to temporal analysis (98% vs. 92.6% accuracy) and by 1%
compared to single view studies in the literature (98% vs.
97% accuracy), proving the effectiveness of the proposed
technique.

The method presented here, as many other proposed accu-
rate and efficient CAD approaches, have yet to be translated
to clinical practice. Although their performance is encour-
aging, they are still not reliable enough to be accepted as
standalone clinical tools by the BC community. An important
factor limiting the acceptance of such systems are the datasets
used. The unavailability of large-scale publicly available
databases, forces researchers to independently collect private
data, resulting in various datasets with different properties
and imbalanced classes. Hence, the results reported in the
literature, although achieving great performances, cannot be
generalized and can only be used in a supporting role as a
second reader in clinical practice.

Encouraged by this initial results, further studies are
planned to include more patients with an extended age range.
With further expansion and improvement, the proposed algo-
rithm can provide even more detailed, BI-RADS-based, clas-
sification and has the potential to substantially contribute to
the development of automated CAD systems with significant
impact on patient prognosis.
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