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Abstract: Objectives: To determine whether C-X-C chemokine ligand 1 (CXCL1), which is a potent
neutrophil chemoattractant and activator that plays important role in inflammation, is elevated
in patients with systemic sclerosis (SSc) and whether it is associated with the clinical features and
disease activity of patients with SSc. In addition, to determine whether the changes in serum CXCL1
levels before and after treatment correlate with changes in disease activity in SSc patients who
received an anti-CD20 monoclonal antibody drug. Patients and method: We examined patient
serum collected in the DesiReS trial, which was a double-blind, parallel-group, randomized, placebo-
controlled, multicenter, phase II clinical trial. In the trial, patients were randomly allocated to the
drug or placebo group and received 375 mg/m2 of an anti-CD20 antibody, rituximab, or placebo
once a week for four weeks. We obtained serum samples from 47 patients administered at our
hospital, including 3 males and 44 females, the median age of 48 years, range 27–71 years, with 42
diffuse cutaneous SSc and 5 with limited cutaneous SSc. Serum CXCL1 levels were measured using
multiplex immunoassay in patient serum before and 24 weeks after administration and also in serum
from 33 healthy controls. Results: Serum CXCL1 levels were significantly higher in SSc patients
(mean 25.70 ng/mL; 95% confidence interval (CI) 18.35–33.05 ng/mL) than in the healthy controls
(15.61 ng/mL; 95% CI 9.73–21.51 ng/mL). In addition, SSc patients with elevated CXCL1 levels had a
significantly higher percentage of area occupied with interstitial shadows (p < 0.05), increased serum
levels of surfactant protein (SP)-A (p < 0.05), SP-D (p < 0.05), Krebs von den Lungen-6 (p < 0.01),
and C-reactive protein (p < 0.05) compared to those with normal levels. Furthermore, defining ∆ as
the value after rituximab administration minus the value before rituximab administration, baseline
serum CXCL1 levels correlated with ∆ percent predicted diffusing capacity for carbon monoxide
(p < 0.01). In addition, ∆CXCL1 correlated with ∆SP-A (p < 0.05). Similarly, serum CXCL1 levels
after rituximab administration correlated with percent predicted forced vital capacity (p < 0.05) and
serum SP-D levels (p < 0.05) after rituximab. Conclusions: Our results suggest that serum CXCL1 is
associated with the disease activity of SSc-ILD, and high serum CXCL1 levels are one of the predictors
of improvement in SSc-ILD with rituximab.

Keywords: CXCL1; systemic sclerosis; fibrosis; intestinal lung disease; anti-CD20 antibody

1. Introduction

Systemic sclerosis (SSc) is a connective tissue disease characterized by tissue fibrosis
and vasculopathy in various organs on a background of inflammation caused by autoim-
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mune abnormalities [1]. Although the pathogenesis of SSc remains unclear, three major
abnormalities, including abnormal immune cell activation, collagen accumulation, and vas-
cular damage, are considered as a triad of disease conviction [2–4]. Collagen accumulation
crucially causes fibrosis of several organs, such as skin, lungs, heart, and intestine. Vascular
damage mainly induces Raynaud’s phenomenon, digital ulcers/gangrene, scleroderma
renal crisis, and pulmonary hypertension. The most common cause of death with SSc is an
SSc-associated interstitial lung disease (ILD), affecting 35–52% of patients [5].

It has been shown that B-cell abnormalities, particularly persistent abnormal activation
of memory B cells, are important in the development of SSc [6], suggesting that B-cell-
targeted therapy may be effective in SSc. Rituximab is an anti-CD20 monoclonal antibody
that deletes B cells in the peripheral blood, and indeed, several studies have shown that
rituximab is safe and effective against skin sclerosis and ILD in patients with SSc [7–9].
Recently, our investigator-initiated clinical trial (DesiReS) also demonstrated the efficacy
and safety of rituximab for SSc, which has led to the regulatory approval of rituximab for the
treatment of SSc in Japan [10]. At the same time, there are several safety problems involved
in rituximab administration. A short-term problem is infusion reactions, which can cause
fever, headache, chills, rash, and nausea within 24 h of administration. The medium-to
long-term problem is infection; in a systematic review of rituximab administration for SSc-
ILD, infections occurred in 13.5% of 112 SSc patients. Of these, respiratory tract infections
were the most common (12 patients), followed by herpes zoster virus reactions (3 patients),
urinary tract infections (2 patients), and hepatitis B virus reactivation (1 patient) [11]. In
fact, we also experienced a case of acute exacerbation of interstitial pneumonia, probably
due to infection after rituximab administration [12]. Because SSc patients with severe
ILD have reduced lung capacity, even non-severe lung damage due to infection can be
fatal. Therefore, it is important to predict which patients are suitable for treatment with
anti-CD20 monoclonal antibody, especially for patients with SSc-ILD. However, there are
still no clear indicators of which patients are suitable for rituximab treatment.

The chemokine C-X-C chemokine ligand (CXCL) 1, also known as growth-related
oncogene-alpha, is a potent neutrophil chemoattractant and activator. CXCL1 was initially
isolated and characterized based on its growth-stimulating activity against malignant
melanoma cells and has been shown to associate with atherosclerosis, angiogenesis, and
many chronic inflammations [13,14]. Serum CXCL1 levels have been shown to increase
in several autoimmune diseases. In systemic lupus erythematosus, serum CXCL1 levels
are elevated, suggesting an association with disease activity [15]. Previous study has also
suggested that serum CXCL1 levels are elevated in SSc [16]. However, it is not fully clear
whether CXCL1 is associated with SSc disease activity or treatment responsiveness.

The purpose of our study is to reevaluate whether serum CXCL1 levels are elevated
and associated with disease activity in SSc patients and to determine whether serum CXCL1
is associated with response to rituximab treatment in SSc patients.

2. Experimental Section
2.1. Serum Sample from SSc Patient and Healthy Controls

This study was conducted using patient serum samples collected in the DesiReS trial,
which was a double-blind, parallel-group, randomized, placebo-controlled, multicenter,
phase II clinical trial [10]. Of the 56 patients who participated in the trial, we obtained
serum samples from 47 patients administered at our hospital. Patients included 3 males and
44 females, the median age of 48 years, range 27–71 years, including 16 (34%) patients with
no history of corticosteroid or immunosuppressive therapy, classified according to LeRoy’s
classification rule into 42 (89.3%) with diffuse cutaneous SSc (dcSSc) and 5 (10.6%) with
limited cutaneous SSc (lcSSc); mean disease duration were 96.1 months (standard deviation;
78.0 months). As a disease onset, Raynaud’s phenomenon was observed in 29 patients
(61.7%), skin sclerosis or puffy fingers in 24 patients (51.1%), arthralgia in 2 patients (4.26%),
and reflux esophagitis in 1 patient (2.13%). We collected the serum samples twice, before
and 24 weeks after rituximab or placebo administration. Additionally, we obtained serum
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samples from 33 healthy controls (5 males and 28 females, median age 46 years, range
18–78 years). In this study, patients were randomly allocated to the drug or placebo group
and received 375 mg/m2 of rituximab or placebo once a week for four weeks. Twenty-three
were assigned to the rituximab group and twenty-four to the placebo group of the 47 SSc
patients. Inclusion criteria were: meeting the American College of Rheumatology and
European League Against Rheumatism criteria [17], a modified Rodnan Skin Score (mRSS)
of at least 10, and expected survival of at least 6 months. Exclusion criteria were: the
presence of pulmonary hypertension or serious disease complications associated with SSc,
vital capacity <60%, administration of corticosteroids >10 mg per day within 2 weeks prior
to sample collection, antifibrotic or immunosuppressive agents 4 weeks prior to sample
collection, and cyclophosphamide in the past 2 years. The trial was conducted in accordance
with the Declaration of Helsinki and the International Conference on Harmonization Good
Clinical Practice guidelines. Written informed consent was obtained from all the patients
and healthy controls. The study was also approved by the ethical committee of The
University of Tokyo Hospital (No. 0695). Fresh venous blood samples were centrifuged
shortly after clot formation. All samples were stored at −80 ◦C prior to use.

2.2. Measurement of Serum CXCL1 Levels

Serum CXCL1 levels were examined using a commercially available multiplex im-
munoassay (MILLIPLEX MAP Human Cytokine/Chemokine/Growth factor Panel A.
Millipore, Billerica, MA, USA) according to the manufacturer’s instructions. The measure-
ments were outsourced to an inspection company.

2.3. Clinical Assessment of Patient

Because the study used data from a clinical trial, clinical data on SSc patients, including
mRSS, blood tests, respiratory function tests, and chest computed tomography scans, were
collected prospectively. Data on disease onset, disease duration, clinical features other than
mRSS, and medications were collected by retrospective review of medical records. Disease
duration was defined as the interval between the appearance of definite symptoms of SSc
other than Raynaud’s phenomenon and obtaining serum samples. The severity of skin
sclerosis was defined by the mRSS, which was measured as a total score of skin sclerosis
scored at 17 sites [18]. The degree of skin sclerosis at each site was expressed at a score
of 0–3 points. Cutaneous symptoms such as Raynaud’s phenomenon, nail fold breeding,
telangiectasia, pitting scars, and skin ulcers were considered present if they were observed
at least once during the disease period. Reflux esophagitis was defined as confirmed by the
most recent gastric endoscopy, so patients who were well-maintained by medication were
excluded. The area occupied by interstitial shadows in the lung was defined as the average
of the percentage of interstitial shadows in each section of the lung cut at five levels of
height on chest computed tomography.

2.4. Statistical Analysis

We used the Kruskal–Wallis test for multiple comparisons, Mann–Whitney’s U-test for
two-group comparisons, Wilcoxson signed rank test for paired comparison, and Fisher’s
exact probability test for comparison of frequency. Spearman’s rank correlation analysis
was used to examine the relationship between two continuous variables. p < 0.05 was
considered statistically significant.

3. Result
3.1. Serum CXCL1 Levels in SSc Patients and Healthy Controls

Serum CXCL1 levels were detected in all samples of SSc patients while undetectable
in 18% (6/33) of healthy controls. Even with the undetectable healthy controls as an ex-
ception, serum CXCL1 levels were significantly higher in SSc patients (mean 25.70 ng/mL;
95% confidence interval (CI) 18.35–33.05 ng/mL) than in the healthy controls (15.61 ng/mL;
95% CI 9.73–21.51 ng/mL; Figure 1). In subgroup analysis, serum CXCL1 levels were
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significantly higher in dcSSc (26.31 ng/mL; 95% CI 18.26–34.37 ng/mL) compared to
healthy controls, but there was no significant difference between lcSSc (20.52 ng/mL;
95% CI 2.53–38.51 ng/mL) and healthy controls or dcSSc.
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Figure 1. Serum CXCL1 levels in SSc. Serum CXCL1 levels were measured by a multiplex assay.
The horizontal line in each column shows the mean. The Kruskal–Wallis test was conducted for
multiple-group comparison. Ctrl, healthy controls.

3.2. Clinical and Laboratory Features of SSc Patients with Elevated Serum CXCL1 Levels

We compared clinical and laboratory features between SSc patients with elevated
serum CXCL1 levels and those with normal levels (Table 1). The cut-off value was set at
21.51 ng/mL (the upper limit of the 95% confidence interval of serum CXCL1 levels in
healthy controls). There were no significant differences in age, sex, clinical features, type
of autoantibodies, present medications, percent predicted FVC, or diffusing capacity for
carbon monoxide (DLco) between the two groups. On the other hand, patients with elevated
CXCL1 levels had a significantly higher percentage of area occupied with interstitial
shadows (p < 0.05), increased serum levels of SP-A (p < 0.05), SP-D (p < 0.05), Krebs von den
Lungen (KL)-6 (p < 0.01), and C-reactive protein (CRP; p < 0.05) compared to those with
normal levels. In addition, examining the correlation between serum CXCL1 levels and
these clinical and laboratory findings, we found a significant correlation between serum
levels of CXCL1 and CRP (r = 0.481, p < 0.01; Figure 2) and percentage of areas occupied
with interstitial shadows of the lung (r = 0.339, p < 0.05; Figure 3) but not between CXCL1
and SP-A, SP-D, or KL-6 levels. Meanwhile, we examined the mean of serum CXCL1 levels
by autoantibodies (Table 2). There were no significant differences between the three groups.

Table 1. Clinical and laboratory findings of patients divided by elevated serum CXCL1 levels.

Elevated CXCL1
Levels (n = 27)

Normal CXCL1
Levels (n = 20)

Age, years 47 (27–71) 50 (27–78)
Sex (male/female) 3/24 0/20
Clinical features

dcSSc 25 (92.6%) 17 (85.0%)
lcSSc 2 (7.4%) 3 (15%)
mRSS 13 (10–28) 14 (10–31)

Raynauds phenomenon, % 25 (92.6%) 19 (95.0%)
Nail fold breeding, % 19 (70.4%) 12 (60.0%)
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Table 1. Cont.

Elevated CXCL1
Levels (n = 27)

Normal CXCL1
Levels (n = 20)

Telangiectasia, % 11 (40.7%) 6 (30.0%)
Pitting scars, % 10 (37.0%) 10 (50.0%)

Skin ulcer, % 12 (44.4%) 10 (50.0%)
Reflex oesophagitis, % 7 (25.9%) 5 (23.52%)

Autoantibodies
Anti-topoisomerase I Ab, % 17 (63%) 10 (50%)

Anti-centromere Ab, % 5 (18.5%) 3 (15%)
Anti-RNA polymerase III Ab, % 2 (7.40%) 3 (15%)

Area occupied with interstitial shadows,
% of lung fields. 13 * (1–52%) 6.5 (1–29%)

Laboratory findings
%FVC, % 83.6 (72.2–108) 88.3 (63.2–124)
%DLco, % 78.8 (63.1–125) 88.75 (60.8–122)

SP-A, ng/mL 40.3 * (9.2–149) 29.8 (13.3–71.6)
SP-D, ng/mL 153 * (26.8–363) 120 (25.5–318)
KL-6, ng/mL 488 ** (84–3370) 392 (141–2534)
CRP, mg/dL 0.16 * (0.02–1.17) 0.03 (0.02–0.67)
IgG, mg/dL 1400 (766–2909) 1251 (703–1692)
BNP, pg/mL 25.7 (4–275) 15.3 (4–41.5)

Creatinin, mg/dL 0.61 (0.45–0.73) 0.62 (0.46–0.87)
Present medications

Systemic corticosteroid use, % 17 (63%) 9 (45%)
Dose of systemic corticosteroid, mg/day 3.87 (3.52) 3.40 (4.03)

ERA and/or PDE-5 inhibitor use 18 (66.7%) 9 (45%)
Proton pump inhibitor use 24 (88.9%) 16 (45%)

Data are median (range) or n (%) or mean (SD) unless otherwise noted. n, number; mRSS, modified Rodnan
total skin thickness score; BNP, brain natriuretic peptide; ERA, endothelin receptor antagonist; PDE-5, phospho-
diesterase type 5. Statistical analysis was performed by Mann–Whitney’s U-test for continuous variables and
Fisher’s exact probability test for comparison of frequency. * p < 0.05 or ** p < 0.01 vs. SSc patients with normal
CXCL1 levels. ** p < 0.01 is shown in bold.
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Table 2. Serum CXCL1 levels by autoantibody.

Autoantibody n Serum CXCL1 Levels

Anti-topoisomerase I Ab 27 23.2 (24.5–26.0)

Anti-centromere Ab 8 27.4 (26.2–31.6)

Anti-RNA polymerase III Ab 5 20.3 (16.9–21.5)
Data are mean (95% CI). n, number; Ab, antibody. Statistical analysis was carried out by Kruskal–Wallis test.

3.3. Changes in Serum CXCL1 Levels after Rituximab Administration

Serum CXCL1 levels were compared before and 24 weeks after treatment in 23 SSc
patients who received rituximab (Figure 4). Serum CXCL1 levels after rituximab adminis-
tration (mean 23.53 ng/mL, 95% CI 13.91–33.15 ng/mL) were not significantly different
from those before rituximab treatment (22.08 ng/mL, 95% CI 13.06–31.10 ng/mL).
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Figure 4. The correlation of serum CXCL1 levels before and after rituximab administration. The
relationship between serum CXCL1 levels before rituximab administration (pre-RTX) and after
rituximab administration (post-RTX) is shown. n.s.; no significance. Serum CXCL1 levels were
measured by a multiplex assay. The horizontal line in each column shows the mean. Wilcoxson
signed rank test was conducted for paired comparison.
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3.4. The Correlations between Serum CXCL1 Levels and Clinical Symptoms and Laboratory
Findings during Rituximab Treatment

We examined the associations between serum CXCL1 levels and clinical symptoms
and laboratory findings during rituximab administration by subtracting the pre-treatment
value from the post-treatment value, expressing ∆ (Table 3). As a result, baseline serum
CXCL1 levels correlated with ∆%DLco (p < 0.01). Furthermore, there were correlations
between ∆CXCL1 and ∆SP-A (p < 0.05) and between serum levels of CXCL1 and SP-D after
rituximab administration (p < 0.05). In addition, serum CXCL1 levels after rituximab were
negatively correlated with %FVC after rituximab administrations (p < 0.05).

Table 3. Correlations between serum CXCL1 levels and clinical and laboratory parameters during
rituximab administration.

Correlation Strength of Correlation (r)

Pre-CXCL1 levels vs. ∆clinical/laboratory data
Pre-CXCL1 levels vs. ∆mRSS 0.163
Pre-CXCL1 levels vs. ∆%FVC 0.260
Pre-CXCL1 levels vs. ∆%DLco 0.531 **
Pre-CXCL1 levels vs. ∆SP-A 0.130
Pre-CXCL1 levels vs. ∆SP-D 0.018
Pre-CXCL1 levels vs. ∆KL-6 −0.177

Pre-CXCL1 levels vs ∆Area occupied with
interstitial shadows −0.305

∆CXCL1 vs. ∆clinical/laboratory data
∆CXCL1 vs. ∆mRSS −0.222
∆CXCL1 vs. ∆%FVC −0.275
∆CXCL1 vs. ∆%DLco −0.122
∆CXCL1 vs. ∆SP-A −0.500 *
∆CXCL1 vs. ∆SP-D −0.116
∆CXCL1 vs. ∆KL-6 0.211

∆CXCL1 vs ∆Area occupied with interstitial
shadows −0.098

Post-CXCL1 levels post vs.
post-clinical/laboratory data

Post-CXCL1 levels vs. post-mRSS 0.145
Post-CXCL1 levels vs. post-%FVC −0.511 *
Post-CXCL1 levels vs. post-%DLco −0.379

Post-CXCL1 levels vs. post-SP-A levels 0.232
Post-CXCL1 levels vs. post-SP-D levels 0.498 *
Post-CXCL1 levels vs. post-KL-6 levels 0.178

Post-CXCL1 levels vs post-Area occupied with
interstitial shadows 0.115

Pre, the values before rituximab administration; Post, the values after rituximab administration; ∆, the value
after rituximab administration minus the value before rituximab administration. Values represent nonparametric
correlations (Spearman’s r). * p < 0.05, ** p < 0.01.

4. Discussion

This study showed that serum CXCL1 was higher in SSc patients than in healthy
controls. Furthermore, in SSc patients with elevated serum CXCL1 levels, serum markers
of ILD and the percentage of areas occupied with interstitial shadows of the lung were
significantly higher than in the normal group. In addition, serum CXCL1 levels correlated
with serum CRP levels, which has been shown to correlate with disease activity, severity,
decreased lung function, and shorter survival in the early stages of SSc within 3 years of
onset [19] and percentage of areas occupied with interstitial shadows of the lung. These
results suggest that serum CXCL1 levels are associated with disease activity of SSc-ILD and
even prognosis in SSc patients.

A previous study including 78 SSc patients with no exclusion criteria showed that
serum CXCL1 levels in SSc patients were higher than in healthy controls. In addition, SSc pa-
tients with elevated serum CXCL1 levels showed an increased frequency of decreased % vital
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capacity, decreased % DLco, kidney involvement, presence of anti-topoisomerase I antibod-
ies, and elevated serum IgG levels compared to patients with normal CXCL1 levels [16].
On the other hand, in this study, SSc patients with elevated serum CXCL1 levels were
associated with active and severe pulmonary symptoms, as described above, but high
serum CXCL1 levels were not significantly associated with the type of antibody, serum
creatinine levels, or serum IgG levels. The first possible reason for this is that the sample
size was smaller than in the previous study. In particular, the number of patients with
anti-centromere antibodies was smaller because patients with mRSS greater than 10 were
included in this study. Another reason is that patients with less severe organ damage were
examined because of the exclusion criteria. CXCL1 is one of the most important chemokines,
which is involved in the pathogenesis of many inflammatory diseases; CXCL1 is upregu-
lated in inflammatory responses and induces angiogenesis and recruits neutrophils [20].
Whereas the utility of bronchoalveolar lavage (BAL) in the evaluation of SSc-ILD remains
controversial, fractional analysis of BAL (FBAL), which is a technique that can analyze
small airways and alveolar compartments separately, has proven informative in other
ILDs [21]. Previous study has shown that in SSc-ILD, a higher percentage of neutrophils
in FBAL-3, which contains alveolar components, is correlated with the development of
end-stage ILD as well as mortality [22]. Other study has shown that CXCL1 levels in BALF
closely correlate with the percentage of neutrophils in BALF. It has also been shown that in
autoimmune interstitial pneumonia and idiopathic interstitial pneumonia, elevated plasma
levels of CXCL1 are clinically associated with DLco, erythrocyte sedimentation rate, and
lung parenchymal extension [23].

Based on the above, it is suggested that in SSc, elevated CXCL1 induces neutrophils
in the alveoli, causing inflammation and exacerbating SSc-ILD. Furthermore, in a study
examining the correlation between serum CXCL1 and clinical and laboratory findings
after receiving an anti-CD20 monoclonal antibody drug, baseline serum CXCL1 correlated
with ∆%DLco. In other words, the higher baseline serum CXCL1 levels, the greater the
improvement in %DLco expected with rituximab, meaning that serum CXCL1 levels can be
a predictor of improvement in lung function with rituximab. There were also correlations
between ∆CXCL1 and ∆SP-A, between CXCL1 levels after rituximab and %FVC after
rituximab, and between CXCL1 levels after rituximab and SP-D levels after rituximab,
suggesting that serum CXCL1 levels are involved in SSc-ILD progression, and there are
B-cell-related mechanisms there.

Previous studies have shown that CXCL1 expression is increased by cytokines such
as interleukin (IL) -1β, tumor necrosis factor-α [24,25], and IL-17 through NF-κB activa-
tion [26–28]. It has also been shown that CXCL1 is upregulated in salivary gland tissue in
Sjögren’s syndrome and that stimulation with IL-6 increases the expression of CXCL1 and
its receptor, C-X-C motif chemokine 2 [29]. IL-6 is a classic proinflammatory cytokine and is
also considered to be an important protein in the immunopathogenesis of SSc. For example,
several studies have shown that IL-6 levels in the skin, serum, and bronchoalveolar lavage
fluid of SSc patients are elevated and play a role in promoting fibrosis by enhancing inflam-
mation [30–32]. In immunohistochemistry, it has been shown that IL-6 is overexpressed
in the endothelium and fibroblasts of SSc patients compared to normal skin [33]. Other
study shows that dermal fibroblasts from SSc patients produce increased amounts of IL-6
compared to healthy control fibroblasts [34] and that B cells induce IL-6 secretion from lung
fibroblasts. [35]. Recently, B-cell-activating factor (BAFF), an essential component of B-cell
homeostasis and a potent B-cell survival factor associated with autoimmune disease, was
shown to be increased in SSc patients compared to healthy controls [36], and the ability of
B cells to produce IL-6 is significantly increased by BAFF stimulation [37]. In fact, in a study
observing serum IL-6 levels in SSc patients after rituximab administration, patients had
high levels of serum IL-6 at baseline, which decreased remarkably after 6 months following
circulating B cells which, evaluated by flow-cytometry, were depleted [38].

From the above, it is suggested that the deletion of B cells reduces IL-6 that is produced
and induced by B cells, resulting in a decrease in CXCL1, which is one of the reasons for the
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improvement in lung function and skin sclerosis after B-cell-depletion therapy with anti-
CD20 monoclonal antibodies in SSc patients. At the same time, in this study, rituximab did
not significantly decrease serum CXCL1 levels in SSc patients, meaning that various factors
other than B cells may be related to the high serum CXCL1 levels in SSc. For example,
T helper 17 cells, which produce IL-17, are proven to be involved in the pathogenesis of
multiple autoimmune diseases, such as systemic lupus erythematosus [39], rheumatoid
arthritis [40], and psoriasis [41], and some studies support an association with SSc [42,43],
which may contribute to it.

There are several limitations to this study. First, the sample size was relatively small.
In addition, because of several exclusion criteria, some groups of SSc patients were not
studied, such as patients with very low pulmonary function or those with pulmonary
hypertension. Furthermore, this study was limited to Japanese patients. However, because
this study uses data from clinical trials, many of the data were collected prospectively.
Therefore, the timing of the measurements is aligned, which is a strength.

Taken together, in this study, we showed that serum CXCL1 levels were involved in
the pathogenesis of SSc-ILD and that high serum CXCL1 levels could be a predictor of
SSc-ILD response to rituximab.
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