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Pan-cancer screen for mutations in non-coding elements with
conservation and cancer specificity reveals correlations with
expression and survival
Henrik Hornshøj1, Morten Muhlig Nielsen1, Nicholas A. Sinnott-Armstrong2, Michał P. Świtnicki1, Malene Juul1, Tobias Madsen1,3,
Richard Sallari2, Manolis Kellis2, Torben Ørntoft1, Asger Hobolth3 and Jakob Skou Pedersen 1,3

Cancer develops by accumulation of somatic driver mutations, which impact cellular function. Mutations in non-coding regulatory
regions can now be studied genome-wide and further characterized by correlation with gene expression and clinical outcome to
identify driver candidates. Using a new two-stage procedure, called ncDriver, we first screened 507 ICGC whole-genomes from 10
cancer types for non-coding elements, in which mutations are both recurrent and have elevated conservation or cancer specificity.
This identified 160 significant non-coding elements, including the TERT promoter, a well-known non-coding driver element, as well
as elements associated with known cancer genes and regulatory genes (e.g., PAX5, TOX3, PCF11, MAPRE3). However, in some
significant elements, mutations appear to stem from localized mutational processes rather than recurrent positive selection in some
cases. To further characterize the driver potential of the identified elements and shortlist candidates, we identified elements where
presence of mutations correlated significantly with expression levels (e.g., TERT and CDH10) and survival (e.g., CDH9 and CDH10) in
an independent set of 505 TCGA whole-genome samples. In a larger pan-cancer set of 4128 TCGA exomes with expression profiling,
we identified mutational correlation with expression for additional elements (e.g., near GATA3, CDC6, ZNF217, and CTCF
transcription factor binding sites). Survival analysis further pointed to MIR122, a known marker of poor prognosis in liver cancer. In
conclusion, the screen for significant mutation patterns coupled with correlative mutational analysis identified new individual driver
candidates and suggest that some non-coding mutations recurrently affect expression and play a role in cancer development.
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INTRODUCTION
Cancer develops and progresses by accumulation of somatic
mutations. However, identification and characterization of driver
mutations implicated in cancer development is challenging as
they are greatly outnumbered by neutral passenger mutations.1–3

Driver mutations increase cell proliferation, and other properties,
by impacting cellular functions. Their presence is thus a result of
positive selection during cancer development. Although the
stochastic mutational processes differ between patients, their
cancer cells are subject to shared selection pressures. Driver
mutations are therefore expected to recurrently hit the same
cellular functions and underlying functional genomic elements,
such as genes or regulatory regions, across patients.4 This allows
statistical identification of candidate driver genes and elements by
analysis of mutational recurrence across sets of cancer genomes.1–
3 In addition, the driver potential of individual cases can be
supported by a correlation of presence of mutations with gene
expression or patient survival.
Concerted sequencing efforts and systematic statistical analysis

by the International Cancer Genome Consortium (ICGC) and
others have successfully cataloged protein-coding driver genes
and their mutational frequency in pan-cancer and individual
cancer types.5,6 While this initial focus on protein-coding regions

has dramatically expanded our knowledge of cancer genetics, the
remaining 98% non-coding part of the genome has been largely
unexplored. With the emergence of large sets of cancer genomes,7

it is now possible to systematically study the role and extent of
non-coding drivers in cancer development. As most non-coding
functional elements are either involved in transcriptional regula-
tion (promoters and enhancers) or post-transcriptional regulation
(non-coding RNAs, ncRNAs), non-coding drivers are expected to
impact cellular function through gene regulation. A central aim of
this study is therefore to systematically couple non-coding driver
detection with the study of gene expression.
Few non-coding driver candidates have been identified and

only a small subset has been shown to have functional or clinical
consequences. The best-studied example is the TERT promoter,
with frequent mutations in melanoma and other cancer types that
increase expression in cellular assays.8,9 A few other cases of non-
coding drivers have been reported, including splice site mutations
in TP53 and GATA3,10,11 as well as mutations in a distal PAX5
enhancer that affect expression.12

Three recent studies2,3,13 have screened for drivers among
promoters, enhancers, and individual transcription factor binding
sites (TFBSs) using mutational recurrence in large sets of pan-
cancer whole-genomes. In combination, they report several
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hundred non-coding elements. The potential for affecting
expression has only been studied for a subset of these. Promoter
mutations were found to correlate with expression in cancer
samples for PLEKHS1,3 SDHD,2 BCL2, MYC, CD83, and WWOX.13

Melton et al. additionally identified mutations near GP6 and
between SETD3 and BCL11B that reduced expression in cellular
assays.2 Negative correlation with survival was observed for
promoter mutations in SDHD3 and RBM513 for melanoma patients.
Taking a different approach, Fredriksson et al. screened for
expression correlation of mutations in promoters of all genes but
only found TERT significant.14 In addition, mutations in the TERT
promoter were associated with decreased survival in patients with
thyroid cancer.14

Here, we screened for non-coding elements with surprisingly
high conservation levels and cancer specificity followed by a
characterization of mutations correlation with expression and
survival. An extended set of regulatory element types and ncRNAs
was created for this purpose. We developed a two-stage
procedure, called ncDriver, to screen for candidate driver elements
to reduce the false positive rate. In this procedure, we first
identified recurrently mutated elements and then evaluated these
based on combined significance of cancer-type specificity and
functional impact, as measured by conservation. Considering the
local relative distribution of mutations between positions, cancer
type and conservation level, ensures robustness against mutation
rate variation along the genome. Furthermore, for cancer-type
specificity, we estimate the expected mutation frequency given
the mutation context and cancer type to account for cancer-
specific mutation signatures. This approach is conceptually similar
to the recent OncodriveFML method.15 In contrast to most
previous studies, we included both SNVs (single-nucleotide
variants) and INDELs (small insertions and deletions) in the
analysis. The screen identified 160 significant non-coding ele-
ments, though some may be caused by localized mutational
processes and artefacts, we saw an enrichment of regulatory
elements near known protein-coding cancer drivers. We also
screened genome-wide TFBS sets for individual transcription
factors (TFs) to investigate whether entire TF regulatory networks
collectively had surprising mutational patterns and showed
potential driver evidence.
To further evaluate the identified significant elements and

shortlist candidates with additional supporting driver evidence,
we characterized the mutations in these elements through
expression perturbation using correlation of mutations in reg-
ulatory regions with gene expression levels. For this purpose, we
used an independent pan-cancer set of 4128 exome capture
samples with paired RNAseq samples.16 This identified significant
expression correlations for individual candidates as well as for
genome-wide TFBS sets, extending observations by Fredriksson
et al.14 We further evaluated the association of mutations in
significant elements with patient survival. Though limited by small
numbers of patients mutated for individual elements, this analysis
identified candidate drivers and mutations of potential clinical
relevance, including liver cancer mutations of the poor prognosis
biomarker microRNA (miRNA) MIR122.

RESULTS
Pan-cancer screen for non-coding elements with conserved and
cancer-specific mutations
To screen for non-coding elements with elevated conservation
and cancer specificity, we used a set of 3.4 M SNVs and 214 K
INDELs from a previous study of 507 whole-cancer-genomes from
10 different cancer types (Supplementary Table 1).7 Mutation rates
varied more than five orders of magnitude across samples, with
the number of SNVs per sample (median = 1988) about 10 times
higher than for INDELs (median = 198; Fig. 1a). More than 10

million non-coding elements spanning 26% of the genome
collected from ENCODE and GENCODE were screened, including
long ncRNAs (lncRNAs), short ncRNAs (sncRNAs), pseudogenes,
promoters, DNaseI Hypersensitive Sites (DHSs), enhancers, and
TFBSs (Methods; Fig. 1b, c).17,18 Protein-coding genes (n = 20,020;
1.1% span) were included as a positive control.
Each element type was separately screened using a new two-

stage procedure, called ncDriver (Fig. 1d). Its underlying idea is to
restrict the element selection (second stage) to tests that are
robust to the variation in the mutation rate1 and thereby reduce
the false positive rate. These tests evaluate the relative distribution
of mutations instead of the overall number of mutations. More
specifically, these tests consider the cancer-type-specific muta-
tional processes and sequence context preferences, when
evaluating cancer specificity, and evaluate mutations enriched
for conserved and functional sites. This is conceptually similar to
tests of positive selection for protein-coding regions that evaluate
the enrichment of amino acid changing substitutions over silent
ones.19 To reduce the number of tests performed and focus on
relevant elements with enough mutations for the tests to be
powerful, we first identified elements with mutational recurrence
(first stage) and among these we evaluate the actual driver
significance using a combination of cancer specificity and
conservation (second stage).
In more detail, first, a lenient test of mutational recurrence

identified a total of 6529 elements (nSNV = 4908, nINDEL = 1621)
with elevated mutation rates (Fig. 1e). Second, for each element
type the recurrently mutated elements were passed on to three
separate driver tests for candidate selection. Each of these tests
address different aspects of the mutations’ distribution. Cancer
specificity test: Based on previous observations of cancer
specificity of known protein-coding drivers,5 we evaluated if the
mutations within each element showed a surprising cancer-
specific distribution given the cancer-specific mutational signa-
tures (Fig. 1d i). Local conservation test: Since it is often not
understood how function is encoded in non-coding elements, we
used evolutionary conservation as a generic measure of functional
importance. We tested if mutations showed a surprising
preference for highly conserved positions within each element,
which suggests that mutations of functional impact are enriched
and have been selected for (Fig. 1d ii). Global conservation test: As
highly conserved elements are more likely to be key regulators,17

we also tested if the conservation level of mutated positions in a
given element was surprisingly high compared to the overall
conservation distribution across all elements of the same type (Fig.
1d iii). Finally, we used Fisher’s method to combine the
significance of the cancer specificity and conservation tests and
q-values (q) were used to threshold (25% false discovery rate, FDR)
and rank the final lists for each element type for a total of
295 significant elements (Fig. 1f; Supplementary Table 2). The final
selection is thus based on a combination of three different aspects
of the mutations distribution, given the cancer-type-specific
mutational signatures, to improve overall driver detection power.
For the final set, the most significant element was selected

when overlap occurred, which resulted in 160 unique non-coding
elements and 48 protein-coding genes. Of these, 35% (39 of 208)
were found based on INDELs, despite they only comprise 4% of
the full mutation set (Fig. 1f). The contribution of the three
different driver tests to the significance of the final candidates
varied among element and mutation types (Fig. 1g, h). Generally,
the Local conservation test made the largest contribution for
INDELs and the Global conservation test made the largest
contribution for SNVs. The contribution of the cancer specificity
test was largest for sncRNAs called by SNVs.
For protein-coding genes, known cancer drivers in COSMIC6 are

top-ranked and enriched among significant elements for both the
SNV set (13.0×; p-value = p = 2.4 × 10−9) and the INDEL set (102.6×;
p = 9.1 × 10−5; Supplementary Table 3).6 If applied individually, all
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three driver tests also resulted in enrichment of known protein-
coding drivers, with 34.6× enrichment for the cancer specificity
test (p = 4.8 × 10−11), 17.1× for the local conservation test (p =
1.7 × 10−3), and 10.6× for the global conservation test (p = 6.5 ×
10−8; Supplementary Table 3). All three tests are thus able to
detect signals from known protein-coding drivers, despite not
tailored for this purpose.
To further evaluate driver evidence for both individually

identified elements and the set as a whole, we asked if the
findings were supported by an independent whole-genome data
set from TCGA.14 We specifically screened the above defined set of
208 significant elements applying ncDriver to the TCGA set
consisting of 505 whole-genomes from 14 cancer types (Supple-
mentary Fig. 1). Even for true drivers, we only expected limited
recall of individual non-coding elements as the two sets differ in
their cancer-type composition affecting the statistical power to

recall cancer-type-specific drivers. Furthermore, the available
whole-genome data sets generally have limited statistical power
to detect true drivers if they only have few driver mutations and
hence small effect sizes. Such drivers are unlikely to be
consistently detected across sets, known as winner’s curse.20

Overall 17 elements were recalled (Supplementary Table 2),
including eight protein-coding genes (TP53, KRAS, FBXW7, PIK3CA,
TMEM132C, CSMD1, BRINP3, and CDH10), one enhancer (associated
with the known TERT promoter sites8,9), two protein-coding gene
promoters (CDH10 and MEF2C), three lncRNA promoters (RP11-
760D2.11, RP11-805F19.1, and RP11-463J17.1), two TFBS peaks
(TFPs) (associated with PFKP and MROH1), and one TFBS motif
associated with FSHR (Supplementary Fig. 3). The overall number
of elements recalled is six times higher than expected by chance
(Supplementary Table 4; p = 0.001; Monte Carlo test, see Methods).
Among the element types, where any number of elements were

Fig. 1 Overview of the two-stage procedure detecting for non-coding elements with cancer-specific and conserved mutations and its
application to a pan-cancer whole-genome data set. a Summary of the input data, showing the cancer type (Cancer), mutation type (Mut.),
number of samples (N), and number of mutations per sample in the whole-genome data set.7 SNVs are indicated by red color, INDELs by blue
color, and the median number of mutations is indicated with a black bar. b, c Genomic span and count of input elements for each element
type. d Workflow of ncDriver, a two-stage procedure for non-coding driver detection. Elements passing the Mutational recurrence test of the
first stage are passed on to the second-stage tests Cancer specificity test (i), Local conservation test (ii), and Global conservation test (iii). e
Counts of elements that passed the Mutational recurrence test at a 25% FDR threshold for SNVs (red) and INDELs (blue). f Counts of significant
elements that passed the combined significance using Fisher’s method and 25% FDR threshold. g, h Relative contribution of the Cancer
specificity test (i; orange), Local conservation test (ii; red), Global conservation test (iii; yellow) to the combined significance of the significant
elements of each element type for INDELs and SNVs
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recalled, we identified three element types with significant
enrichment (p < 0.003) (Supplementary Table 4).
A given driver gene may be affected by mutations at different

nearby regulatory elements. We therefore performed another
recall analysis, using the same independent data set, in which we

extended the element set to include all elements associated with
the same genes as our elements (n = 208). We analyzed this
extended set using the original approach to screen for possible
driver evidence in the independent set of cancer genomes
(Supplementary Fig. 1). For this we screened 251,333 elements
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(2.3% of all input elements) associated with these 208 genes. At
the gene level, 82 genes were recalled by one or more non-coding
elements, with only three called by evidence in the protein-coding
gene itself (Fig. 2a; Supplementary Table 2). The recall rate was a
bit higher for known cancer genes6 (48%; 11 of 23) than for other
genes (37%; 68 of 185), though not significant (p = 0.36; Fisher’s
exact test).
We were able to recall known cancer drivers in the independent

data set of cancer genomes. However, the relatively low number
of recalled elements (17 out of 208) indicates that there are few
non-coding drivers with high pan-cancer mutations rates and
potentially a presence of false positives.

Significant non-coding elements identified in the pan-cancer
screen
Significant non-coding elements were found in all element types,
though in varying number and significance, with most for TFPs
(nSNV = 68; nINDEL = 14) and least for sncRNAs (nSNV = 1) (Fig. 2a;
Supplementary Table 2). The non-coding regulatory elements are
annotated to protein-coding genes based on the nearest
transcription start site (TSS). Overall, the significant non-coding
(regulatory) elements show an enriched (4.6×) association with
known cancer driver genes (14 of 121; p = 8.6 × 10−6; Supplemen-
tary Table 3). The highest enrichments are seen for promoters
(14.7×; p = 1.5 × 10−5) and enhancers (16.2×; p = 2.9 × 10−7).
The significant elements include the well-studied TERT promo-

ter region (Supplementary Table 2).8,9 As an overlapping enhancer
element achieved higher significance, it was selected to represent
the region in the final list (Fig. 2a 1, i.e., case 1 in column three in
Fig. 2a). Several candidates from previous screens are also present
(n = 5; Supplementary Table 2).2,3

The primary miRNA transcript MIR142, a lncRNA, is the most
significant non-coding driver candidate overall (q = 4.8 × 10−9; Fig.
2a 2; Supplementary Fig. 2a, b). Ten SNVs from AML, CLL, and BCL
lymphomas fall in the 1.6 kb-long transcript. Three of these hit the
highly conserved precursor miRNA (pre-miRNA) region (88 bp),
which forms a hairpin RNA structure, potentially directly affecting
the biogenesis of the mature miRNA. While SNVs in the miRNA
precursor were previously reported for AML and CLL,12,21 we here
find SNVs across the entire primary miRNA and for all three
hematological types (Fig. 2b). Apart from an uncharacterized
lncRNA (RP11-76E17), a U5 spliceosomal RNA (RNU5A-1; Fig. 2a 3;
Supplementary Fig. 2c, d), and two pseudogenes (Supplementary
Table 2), the remaining non-coding elements are gene regulatory.
A distant enhancer of the B-cell-specific TF PAX5 was recently

found to be recurrently mutated in CLL and other leukemias with
an effect on expression.12 Here we detect an overlapping TFP for
RAD21, associated with the non-coding gene RP11-397D12.4, with
four SNVs in both of CLL and BCL (q = 7.2 × 10−2; Fig. 3a, b). In
addition, our top-ranked enhancer element is located within the
first intron of PAX5 and hit by eight SNVs in BCL and two in LUAD

(q = 6.3 × 10−6; Figs. 2a 4, 3c). Interestingly, five of the mutations
fall within a TFBS for CTCF (q = 2.4 × 10−4; Fig. 3c).
Among the SNV top-ranked promoters (DMD), DHS elements

(LRMP) and enhancers (PAX5, BACH2, BCL2, CXCR4, and BCL7A) are
highly cancer-type-specific cases with many BCL or CLL mutations
(Figs. 2a 4–10, b, 3). These are known targets of somatic
hypermutations affected either through translocations to Immu-
noglobulin loci (e.g., BCL2 and PAX5) or by aberrant somatic
hypermutations targeting TSS regions of genes highly expressed
in the germinal center (e.g., DMD and CRCX4).12,22,23 However, the
conservation tests show a non-random mutation pattern for some
of these (PAX5 and DMD in particular), suggesting an effect of
selection and driver mutations. Similarly, highly expressed,
lineage-specific genes have been shown to be enriched for indels,
including Albumin in liver cancer.24 Though the source of these
have not been determined, they may be caused by mutational
mechanisms and explain our observation of significance with
eight INDELs in the promoter of Albumin (Supplementary Table 2).
Among promoters, the 3′-end processing and transcription

termination factor PCF11 is ranked first by SNVs. It is is hit by seven
SNVs (q = 6.2 × 10−3) from breast, lung, and liver cancer types
(Supplementary Table 2) in its 5′UTR, which has a high density of
TFBSs.17,25 The mutations are biased toward highly conserved
positions, as evidenced by the conservation test contributions
(Figs. 2a 11, 4a). Downregulation of PCF11 affects both transcrip-
tion termination26 as well as the rate of transcription re-initiation
at gene loops.27,28 Mutational perturbation of PCF11 may thereby
affect transcriptional regulation.
A 1.9 Kb-long enhancer in an intron of TOX3 is ranked second by

SNVs and also achieves significance primarily from the conserva-
tion tests (Figs. 2a 12, 4b). It is hit by 10 SNVs (q = 1.3 × 10−4) in
breast, liver, lung, and BCL cancer types. Numerous TFPs overlap
the mutations, with a JUND TFBS achieving the highest individual
significance (q = 5.0 × 10−3). TOX3 is involved in bending and
unwinding of DNA and alteration of chromatin structure.29 It is a
known risk gene for breast cancer,30 where it is also somatically
mutated at a moderate rate.31 In line with this, we observed the
most SNVs in breast cancer (n = 5).
The SNV top-ranked DHS element (q = 7.0 × 10−3) is located

upstream of the MAPRE3 gene (Figs. 2a 13, 4c). It is hit by five
mutations in liver cancer, which also overlap a TFBS for CTCF (q =
0.1). The lower final significance of the TFBS than the DHS
elements is a result of the multiple testing correction procedure.
There is high mutational recurrence for the CTCF TFBS (q = 1.9 ×
10−3). The MAPRE3 gene is microtubule associated, with frameshift
mutations reported for gastric and colorectal cancers.32

The SNV top-ranked SMC3 TFBS motif downstream of FSHR
provides a similar example of a previously unknown recurrently
mutated TFBS with three liver cancer mutations and three
additional SNVs located just outside the element (Fig. 2a 14;
Supplementary Fig. 3).
Overall a large fraction of the candidate TFBSs from both SNVs

and INDELs are either CTCF, RAD21, or SMC3 binding sites (25 of

Fig. 2 Top-ranked significant non-coding elements from pan-cancer driver screen. a Table with top 10 significant elements for each element
type for both SNVs and INDELs ranked by combined significance. Gene: Gene name or name of gene with nearest transcription start site in
case of regulatory elements (DHS, enhancers, and TFBS). Case reference: Reference number of specific cases. q-value: ncDriver combined
significance using Fisher’s method and Benjamini–Hochberg corrected for each element type. Gene in COSMIC: Gene name present in
COSMIC database of known drivers.6 TF in COSMIC: Transcription factor of TFBS element present in COSMIC. Previously published: Element is
overlapping a region found in previously published non-coding driver screens.2,3 Only most significant element retained when elements
overlap between element types. Hypermutated gene: Gene name previously characterized as a hypermutated gene.22 TCGA recall INDEL/SNV:
Individual element recalled in TCGA-independent whole-genome data set.14 TCGA recall gene INDEL/SNV: Number of elements recalled at the
gene level in TCGA-independent whole-genome data set. Test contribution: Relative contribution of Cancer specificity test (orange), Local
conservation test (red), and Global conservation test (yellow) to the combined significance using Fisher’s method. b Heatmap of mutation
count per cancer type. Cancer-type abbreviations defined in Fig. 1. Pseudogenes and 4 kb promoters are listed in Supplementary Table 2. c
Overview of the procedure for mutation significance analysis in TFBS sets for individual transcription factors. d The top-ranked significant
TFBS sets, denoted by their transcription factor, for SNVs and INDELs
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91; Supplementary Table 2; Fig. 2a 14–21), which are associated
with the cohesin complex.33 Recently, an elevated SNV rate at
binding sites of the cohesin complex have been reported for
several cancer types.34,35 The cohesin complex is a key player in
formation and maintenance of topological chromatin
domains,36,37 suggesting that non-coding mutations could play
a role shaping the chromatin structure during cancer develop-
ment. Alternatively, the specific environment induced by the
binding of cohesin-associated TFs could lead to an elevated
mutation rate.38

The large fraction of significant cohesin-associated binding sites
suggests that binding sites of some TFs may be overall more
mutated than others in cancer development. To answer this, we
screened genome-wide sets of ENCODE TF binding site motifs
(ntotal = 1.7 M) found within TFPs for 109 individual TFs (compris-
ing 915 individual subtypes)39 for overall driver evidence using the
ncDriver approach. As the number of hypotheses is smaller than
for the above screen of individual elements, we did not apply the
initial mutation recurrence filter (Supplementary Note 1).
This identified TFs with significant binding site sets for both

SNVs (n = 25) and INDELS (n = 4; q < 0.05; Fig. 2d; Supplementary
Table 5). The genes associated with the mutated sites are enriched
for functional terms related to cancer for seven of the top-ranked
TFBS sets (Supplementary Table 6). The TFs associated with the
cohesin complex (SMC3, RAD21, and CTCF) were top-ranked for
both SNVs (q < 1.1 × 10−7) and INDELs (q < 3.4 × 10−2; Fig. 2d). The
binding site motif sequences for these TFs are similar and the
binding site coordinates are thus highly overlapping throughout
the genome, leading to correlated results. We further performed a

genome-wide analysis of the mutations in CTCF binding sites to
investigate their functional properties, focussing on the binding
sites of the most common subtype (subtype descriptor 1; disc1)
(Supplementary Note 2). Together, our results show that the
mutation rate is elevated at highly conserved and high-affinity
CTCF binding sites in active, open-chromatin regions40 (Supple-
mentary Fig. 4). The increase in mutation rate not only at
functionally important sites (position 16), but also at apparently
non-functional sites (3′ flanking region), suggests that much of the
increase may be driven by mutational mechanisms coupled to
CTCF binding. Specifically, spacer DNA regions between the core
CTCF binding site and flanking optional binding sites appear to be
physically bent during binding,41,42 which may affect mutation
rates.

Correlation of mutations in significant non-coding elements with
gene expression
Mutations in non-coding elements may affect gene expression
and thereby cellular function, exemplified by mutations in the
TERT promoter.8,9,14 The effect may be caused by various
mechanisms, including perturbation of transcription initiation,8,9

chromatin structure,43 and post-transcriptional regulation.44 The
potential for mutations in elements impacting cellular function
can be evaluated by analyzing differences in gene expression. We
therefore developed a pan-cancer test for mutations correlating
with increased or decreased gene expression levels and applied it
to a large independent expression data set from TCGA (Fig. 5a–f).
As before, each regulatory element was associated with the

Fig. 3 Significant regulatory elements associated with PAX5. a Genomic context of PAX5 with protein-coding genes (blue), non-coding genes
(brown), significant regulatory elements, PhyloP conservation, and SNVs. b The element RAD21 TFBS peak (Supplementary Table 2) overlaps an
enhancer with known mutational recurrence and effect on PAX5 expression.12 Mutations (triangles) are annotated with nucleotide change
(from/to), cancer type (abbreviation and color), and sample number (s1–k). The relative significance contribution from each of the three
mutational distribution tests shown as in Fig. 2a (the same applies to the other case illustrations). c Regulatory elements in the first intron of
PAX5. Both enhancer and CTCF peaks are individually significant with contributions from the conservation tests
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expression level of its nearest protein-coding gene (Methods).
Though we cannot evaluate whether the mutations cause
expression difference, significant expression correlation can help
identify and prioritize driver candidates and lead to specific
functional hypotheses.
In brief, the idea is to first make expression levels comparable

across cancer types by applying z-score normalization to the
expression values for a given gene within each cancer type (Fig.
5b, c). Then evaluate differences between mutated samples and
non-mutated samples combined across cancer types, using a non-
parametric rank-sum test (Fig. 5d, e). Finally, where relevant,
combine such statistical evidence across all the genes regulated
by a given set of non-coding elements, e.g., all TFP elements
found significant in the driver analysis (Fig. 5f). Each tested
element was associated to the nearest gene, and the test was
based on gene expression in an independent set of 7382 RNAseq
samples of which 4128 had paired exome mutation calls (both
SNVs and INDELs).16 Though the power to call mutations from
exome capture data is highest in protein-coding regions, 50% of
the calls are found in the non-coding part of the genome.

We first focused on sets of elements with regulatory potential
and evaluated correlation effects in TFP, 1 kb promoter and DHS
element types. Mutations in the set of TFP candidates correlated
overall with unusual expression levels (p = 1.2 × 10−3; Fig. 5f). The
significant expression correlation was primarily driven by muta-
tions at two known cancer drivers TP53 (p = 2.3 × 10−4) and GATA3
(p = 2.1 × 10−4), with MYC also nominally significant (p = 3.7 ×
10−2). The promoter and DHS candidate sets did not achieve
overall significance (Supplementary Fig. 6). The GATA3 mutations
(n = 15) all reside in intron four of the gene and most are INDELs
from breast cancer (n = 11) that disrupt the acceptor splice site,
which leads to abnormal splicing and codon frame shift as
described previously for the luminal-A subtype of breast
cancer.10,11 In addition, one lung adenoma SNV also disrupt the
splice site. The association between GATA3 splice-site mutations
and higher GATA3 expression is, to our knowledge, novel.
Similarly, most of the TP53 mutations affect splice sites in intron
eight. Both germline and somatic driver mutations in splice sites
are known for TP53.45,46 The GATA3 and TP53 results show that the
expression test can identify known non-coding driver mutations
that correlate with transcript abundance.

Fig. 4 Cases of significant regulatory elements. Top rows show the genomic context with nearby gene and rows below show detailed views of
the regulatory elements, PhyloP conservation scores, and SNVs. SNV annotations and color scheme as in Fig. 3. a Mutations in the significant
upstream promoter element of PCF11. b Mutations in significant intronic elements of TOX3. The three elements achieve similar combined
significance after multiple testing correction. c Mutations in the significant CTCF TFBS element upstream of MAPRE3. The CTCF sequence logo
and nucleotide sequence of the region is shown
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We next focused on the effect of TFBS mutations on nearby
gene expression. For this, we applied the expression test to the
29 significant TFBS sets (Supplementary Table 5) and subsets
thereof as indicated in Fig. 5n, i. In combination, the expression
correlation of the full set of TFBS mutations showed borderline
significance (p = 0.053; Fig. 5g), with a limited set of genes that
deviate from the expected p-values.
Both passenger and driver mutations may impact expression. As

it is unlikely that passenger mutations in different patients hit the
same short TFBS twice by chance, we expect enrichment for true
drivers among those that do. To further pursue this idea and
enrich for driver mutations, we analyzed expression correlation
separately for different numbers of pan-cancer mutations hitting
the same type of TFBS. For most TFBS sets, the stratified subsets
became small and we therefore focused on the large CTCF set (Fig.
5h). Overall, the set of double-hit mutations had a much stronger
correlation with expression (p = 3.4 × 10−4) than single-hit muta-
tions (p = 0.64). For double-hit mutations, the majority shows a
deviation from the expectation, whereas for single-hit mutations
this is only the case for the five most significant genes (Fig. 5h).
This shows a generally stronger correlation and a larger potential
for cellular impact for double-hit than single-hit mutations,
consistent with an enrichment of true drivers. To rule out that
the difference was caused by additional power to detect
expression deviations with two mutations (double-hit), compared
with one mutation (single-hit), we confirmed that p-values for

individual double-hit mutations were generally smaller than
single-hit mutations (p = 0.01; one-sided rank-sum test).
Among the individual TFBS-associated genes top-ranked by the

expression correlation analysis are well-studied cancer genes,
often with tissue-specific mutation patterns. CDC6, which is found
in the COSMIC Gene Census database,6 is top-ranked for all TFBS’s
and also for the CTCF double-hit mutations (Fig. 5g, h), with two
mutations in breast cancer (Fig. 5j). CDC6 is a necessary
component of the pre-replication complex at origins of replication
and involved in cell-cycle progression-control via a mitotic
checkpoint.47 It mediates oncogenic activity through repression
of the INK4/ARF tumor suppressor pathway48 and is an activator of
oncogenic senescence.49 In breast cancer, its expression correlates
with poor prognosis.50 PTPRK is among the few CTCF TFBS single-
hit genes with unexpected expression correlation, with a single
mutation in liver cancer (Fig. 5h, j). It is a tyrosine phosphatase
associated with several cancer types.51,52 Four liver cancer
mutations in an associated YY1 TFBS of PTPRK also correlate
positively with expression (p = 2.7 × 10−2). Individual TFBSs are hit
by more than five mutations in numerous cases (n = 154). Though
recurrent technical artifacts may underlie most of these extreme
cases, some exhibit convincing expression correlations (Fig. 5i).
One such example is ZNF217, which is hit in an associated RAD21
binding site by eight breast cancer mutations and by four in other
cancer types. The breast cancer mutations correlate strongly with
increased expression level (p = 2.7 × 10−3; Fig. 5j). ZNF217 is well
studied in cancer.53 It is a known breast cancer oncogene and an

Fig. 5 Test method and correlation analysis of mutations in significant non-coding elements with gene expression. a–f Overview of
expression correlation test, exemplified by GATA3 and the set of significant TFBS peak elements (TFPs). a Elements are associated to genes
using the nearest TSS. b Raw expression levels (log2 RSEM) are obtained for 7382 samples across 22 cancer types and mutated samples are
identified. c Expression levels are z-score normalized within each cancer type and d combined. e The p-value of the mutated samples in the
distribution of the combined z-score-ranked set is found using a rank-sum test. f p-values of significant elements and their associated genes
are shown in a qq-plot with GATA3 highlighted. The red line indicates expected p-values under the null hypothesis of no expression
correlation. The combined p-value of the correlation between mutations and expression levels across the set of candidate regions is found
using Fisher’s method. Cancer-type abbreviations: LUAD lung adenocarcinoma, BRCA breast cancer, BLCA bladder cancer, CESC cervical
squamous cell carcinoma. g Gene-expression correlation for all mutations (both SNVs and INDELs) in significant TFBS sets. Rank-sum test p-
values of individual genes are shown as qq-plot. Combined significance across all genes is found using Fisher’s method and shown in upper
left corner (similarly for h and i). h Expression correlation for CTCF TFBSs mutated once (black) or twice (green). The combination of p-values
was done separately for the set of TFBSs mutated once and twice. i Expression correlation for RAD21 TFBSs mutated more than five times. j
Examples of mutated TFBSs and their associated gene-expression distributions in individual cancer types (exemplified genes emphasized in h,
i). Expression levels of mutated samples are shown (red circles). The expression correlation significance within each individual cancers type is
given below the plot. Cancer-type abbreviations: LIHC liver hepatocarcinoma, BRCA breast cancer, ACC adrenocortical carcinoma
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expression marker for poor prognosis and metastases develop-
ment.54 Given this, it would be a natural candidate for further
studies of the clinical relevance of regulatory mutations once
larger data sets become available.

Association of mutations in significant non-coding elements with
patient survival
Driver mutations may affect not only cancer development, but
also cell proliferation, immune evasion, metastatic potential,
therapy resistance, etc., and thereby disease progression and
potentially clinical outcome.55 An association between candidate
driver mutations and clinical outcome would therefore support a
functional impact on cancer biology as well as point to a potential
as clinical biomarker.
To pursue this, we focused on the TCGA whole-genome and

exome data sets where we have information on patient overall
survival time (Supplementary Tables 10 and 11). For the exome
data set, we evaluated all candidate elements found in the original
driver screen (n = 208), whereas we restricted the focus to the
subset of recalled elements (n = 17) for the smaller, less well-
powered whole-genomes data set (Supplementary Fig. 1). For
each candidate element, we restricted the focus to cancer types
with at least three mutations, to retain statistical power. For each
cancer type, we asked whether the patients with a mutation in the
element had significantly decreased overall survival compared to
patients without a mutation using a one-sided score test on the
coefficient estimated using the Cox proportional hazards model.
The one-sided test55 reflected our hypothesis that driver muta-
tions would decrease survival. For an overall pan-cancer measure
of significance, we combined the p-values of the individual cancer
types, using Fisher’s method. Finally, elements with an estimated
FDR of less than 25% were considered significant, which resulted
in three protein-coding genes across both data sets and four non-
coding elements based on exomes only (Supplementary Tables
12–15).
For protein-coding genes, TP53 and KRAS were independently

found to be significant in both the exome and whole-genome
data sets (Supplementary Tables 12 and 14), with nominal
significance (p < 0.05) in a range of individual cancer types
(Supplementary Fig. 7a, b, f, j) in line with the literature.56,57 In
addition, NRXN1 was found significant in the exome set (q = 0.09),
with nominal significance (p < 0.02) for the breast cancer, liver
hepatocellular carcinoma (HCC), and thyroid cancer types
(Supplementary Fig. 7c, d, e). Though NRXN1 has not previously
been described as a driver, it is a known recurrent target of
hepatitis B virus DNA integration in liver HCC.58

For non-coding elements, enhancer nearby TERT is ranked first
in the whole-genome data set with near significance (q = 0.32;
Supplementary Table 15). The highest significance for individual
cancer types is seen for glioblastomas (p = 0.057) and thyroid
cancer (p = 0.063), which are also the cancer types where TERT
promoter mutations have previously been shown to correlate with
cancer progression.59,60

The top-ranked non-coding element is a promoter of lncRNA
LINC00879 (q = 1.6 × 10−6), with nominal significance in esopha-
geal cancer (p = 0.013) and liver HCC (p = 1.5 × 10−10) (Supple-
mentary Fig. 8a, b). The lncRNA is uncharacterized. Its promoter
region overlaps the pseudogene WDR82P1. The promoter of the
kinase SGK1 is second-ranked (q = 0.22), with nominal significance
in stomach cancer (p = 0.0002; Supplementary Fig. 8f). SGK1 is
overexpressed in epithelial tumors and recently associated with
resistance to chemotherapy and radiotherapy.61

A TF peak near PCDH10 is ranked fourth (q = 0.22; Supplemen-
tary Fig. 8c). PCDH10 is a protocadherin involved in regulating
cancer cell motility.62 Finally, the promoter of TP53 is ranked fifth,
with overall near significance (q = 0.28) and nominal significance
for head and neck squamous cancer (p = 0.043) as well as

Chromophobe kidney cancer (p = 0.006; Supplementary Fig. 8d,
e). These mutations affect splice sites and thus post-transcriptional
regulation.
The miR-122 promoter region is third-ranked (q = 0.22), with

nominal significance in liver HCC (p = 0.022). The miR-122 region
was originally detected as a driver candidate based on liver cancer
indel mutations (q = 0.043; Supplementary Table 2, Fig. 6a). The
liver cancer mutations (n = 5) from the exome set were also
primarily INDELs (n = 3). The exome mutations were generally
centered around the pre-miRNA, though this is probably a
consequence of its inclusion in the capture. In addition, skin-
cancer mutations also overlap pre-miR-122, though mostly lacking
survival data (Fig. 6b). Interestingly, low levels of miR-122 is
associated with poor prognosis in HCC,63,64 where it has been
discussed as a therapeutic target.65

By use of same sample miRNA profiles, we asked if the
mutations in miR-122 were associated with low miR-122 expres-
sion levels (Fig. 6c). This was generally the case, though the effect
was only significant compared to normal liver samples (p = 2.6 ×
10−7) and not when compared to HCC cancers without mutations
(p = 0.13), which are generally downregulated. We also asked if
mutations in miR-122 were associated with expression perturba-
tions in the miR-122 target genes. This was the case for a patient
(A122) with a 4 bp deletion that affects the 5′-end of miR-122 (p =
2.4 × 10−9; see Methods). In general a highly significant correlation
between miR-122 expression levels and target gene perturbation
was observed in HCC samples (p = 8.1 × 10−28). The patient with
the 4 bp deletion both had the lowest miR-122 expression level
and the shortest overall survival of the five (Fig. 6d).

DISCUSSION
Our two-stage procedure, ncDriver, identified non-coding ele-
ments with elevated conservation and cancer specificity of their
mutations, which were further characterized by correlation with
expression and survival to shortlist and highlight a small number
of non-coding driver candidates. Importantly, the procedure is
designed to be robust to variation in the mutation rate along the
genome, as significance evaluation and candidate selection is
based on surprising mutational properties, given sequence
context, and not the overall rate. In addition to recovering known
protein-coding drivers, it top-ranked known non-coding driver
elements, such as promoters and enhancers of TERT and
PAX5.3,8,9,12 It also recalled a surprising intensity and distribution
of mutations in CTCF binding sites that localize with the cohesin
complex,35 which were found to correlate with high conservation
and DNase I hypersensitivity.
Distinguishing non-coding driver elements shaped by recurrent

positive selection from localized mutational mechanisms and
technical artefacts is challenging. It may therefore be only a
minority of the identified significant elements that are indeed true
drivers, which stresses the importance of careful case-based
analysis. To assist in the prioritization and shortlisting of non-
coding driver candidates, we systematically evaluated the
association of mutations in the identified elements with expres-
sion as well as patient overall survival using independent data
sets. The expression correlation identified known drivers, an
increased correlation at recurrently mutated TFBS sites, and
pinpointed individual recurrently mutated candidate elements
with strong mutation-to-expression correlations. Similarly, the
survival analysis top-ranked known protein-coding and non-
coding drivers identified non-coding candidates where mutations
associated significantly with decreased survival for individual
cancer types, and supported miR-122 as a potential non-coding
driver in liver HCC.
In general, few non-coding elements showed the same level of

mutational significance as the known protein-coding drivers. The
integration of multiple sources of evidence therefore becomes
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necessary for robust detection. We found the introduction of a
cancer specificity test contributed both to the top ranking of
known driver elements and the evidence underlying some novel
candidates. Similarly, integration of both expression and patient
survival data may provide further insight into the functional
impact and driver potential of mutations.14 With low recurrence
and few mutations, we evaluated only pre-selected candidate
elements that passed a mutational recurrence test and thereby
retained power compared to a more inclusive screening approach.
Some driver mutations may only affect gene expression in early

cancer stages and be undetectable by the expression analysis. On
the other hand, passenger mutations could potentially affect
expression without affecting cell survival. However, the much
higher expression correlation signal among double-hit than
single-hit mutations in CTCF binding sites is compatible with a
selective enrichment for functional impact and hence presence of
driver mutations. However, mutational mechanisms may also
correlate with expression in some cases (see below).22,23

Similarly, some driver mutations may affect cancer onset but
not disease progression and overall survival. Even if the mutations
do affect survival, the effect has to be relatively large to be
detected with the current cohort sizes and the small numbers of
mutated elements for individual cancer types.
On the other hand, mutational processes may lead to false

positive driver candidates in some cases. Although the cancer

specificity tests model the cancer-specific context-dependent
mutation rates in each element type, highly localized and
potentially uncharacterized mutational processes may inflate the
FDR. Specifically, somatic hypermutation in lymphomas appear to
underlie the significance of several of the transcription-start-site
proximal top-ranked elements. Here, a mutational mechanism
may therefore explain overall mutational recurrence and cancer-
type specificity—additional evidence is needed to support them
as driver candidates. Nonetheless, some of these also exhibit an
enrichment of mutations affecting highly conserved positions,
including the intronic PAX5 enhancer and the DMD promoter,
suggesting that there may be an enrichment of driver mutations
that affect function. The expression-correlation analysis also top-
ranked known targets of somatic hypermutation (MYC and BCL6;
Fig. 5). However, correlation between somatic hypermutations and
expression level as well as translocation of some genes to
immunoglobulin enhancers can explain this signal more
parsimoniously.12,22

Several of the identified non-coding driver candidates are
associated with chromatin regulation, either through association
to regulatory genes (e.g., TOX3 intronic enhancer) or as binding
sites for chromatin regulators (e.g., both PAX5 enhancers and CTCF
TFBS near MAPRE3). In addition, the full set of cohesin binding
sites show elevated mutation rates,35 though micro-environment-
specific mutational processes may potentially underlie most of

Fig. 6 Mutations in driver candidate miR-122 and their correlation with expression and survival. a The 4 kb genomic region of the MIR122
gene detected as a significant element in the driver screen of the original data set with PhyloP conservation scores, INDELs, and SNVs. Cancer
types are color coded in the gray shaded box. b Close up of the miR-122 region with tracks for pre-miRNA, mature miRNA, EvoFold secondary
structure prediction, PhyloP conservation scores, and exome mutations from TCGA. Mutations are named by their associated sample ID and
colored red if used later in the correlation analysis of expression and survival shown in c and d. c Correlation between miR-122 expression and
miR-122 target site motif enrichment in 266 TCGA liver cancer samples. Motif enrichment is based on expression of mRNAs and motif
occurrences in their 3′UTRs (see Methods). Samples mutated in the miR-122 region in b are indicated in red. d Survival correlation analysis of
TCGA liver mutations in miR-122. The number of mutated samples and non-mutated samples at each time point is indicated below the plot
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these.66 This could suggest a potential role of non-coding
mutations in shaping chromatin structure during cancer develop-
ment, which is supported by the recent finding of chromatin-
affecting non-coding mutations that create a super enhancer in
lymphoblastic leukemia.43 Systematic integration of sample-level
chromatin data in large cancer genomics studies would help
reveal the broader relationship between non-coding mutations
and epigenomics, which may both be driven by mutational
mechanisms and selection.
This study has identified elements with surprising mutational

distributions and shortlisted a small number of non-coding driver
candidates with mutations that associate with expression and
patient survival across independent data sets. However, given the
small number of mutated samples and the resulting lack of power,
validation in large independent cohorts will be needed. The power
to discover and validate non-coding driver elements will increase
with larger sample sets and further integration of functional
genomics and clinical data,67 as will be provided by the next
phases of TCGA and ICGC, providing a basis for biomarker
discovery, precision medicine, and clinical use.

METHODS
Pan-cancer whole-genome mutations and non-coding element
annotations
Pan-cancer whole-genome mutations were extracted from a previous ICGC
mutation signature study containing 3,382,751 SNVs from 507 samples of
10 tumor types and 214,062 INDELs from a subset of 265 samples of five
tumor types (Fig. 1a; Supplementary Table 1).7 The INDELs were included
by mapping them to their first (lowest) coordinate. All analysis is done in
reference assembly GRCh37 (hg19) coordinates. INDELs were cleaned by
removing those that overlap known common genetic polymorphisms
identified in the thousand genomes project phase 3 version 5b (2013-05-
02).68

Annotations of protein-coding genes, lncRNAs, sncRNAs, and pseudo-
genes were taken from GENCODE version 19, Basic set.18 Only coding-
sequence features were included for protein-coding genes. Promoter
elements of size 1 kb and 4 kb were defined symmetrically around
GENCODE TSSs. Annotations of regulatory elements included DHSs, TFPs,
TFBS motifs in peak regions (TPMs) and enhancers were taken from a
previously compiled set.17 All regulatory elements were annotated to a
protein-coding gene based on the nearest TSS.
ENCODE blacklisted regions that are prone to read mapping errors were

subtracted from all elements.25 CRG low-mappability regions, where 100-
mers do not map uniquely with up to two mismatches, were downloaded
from the UCSC Genome Browser and subtracted.69 Finally, hypermutated
genomic segments containing GENCODE Immunoglobulin and T-cell
receptor genes together with 10 kb flanking regions, combined when
closer than 100 kb, were also subtracted. All non-coding elements were
subtracted coding sequence regions, to eliminate detection of potential
protein-coding driver mutations in these.
The processed lists of 10,982,763 input elements consisted of 56,652

transcripts for 20,020 protein-coding genes, 17,886 transcripts for 13,611
lncRNA genes, 8836 transcript for 6948 sncRNA genes, 948 transcripts for
889 pseudogenes, 94,465 promoters of size 1 kb for 41,598 genes, 94,956
promoters of size 4 kb for 41,875 genes, 2,853,220 DHSs, 417,832
enhancers, 5,677,548 TFPs, and 1,760,420 TPMs (Fig. 1c).
Mutations were mapped to elements using the intersectBed program of

the BEDTools package.70 To avoid large signal contributions from
individual samples, no more than two randomly selected mutations were
considered per sample in any individual element.

Two-stage procedure for identifying non-coding elements with
conserved and cancer-specific mutations
A two-stage test procedure, named ncDriver, was developed to evaluate
the significance of elevated conservation and cancer specificity of
mutations in non-coding elements (Fig. 1d), which was applied to each
combination of mutation type and element type (Fig. 1a, c). The first stage
identified genomic elements with surprisingly many mutations (high
recurrence) and the second assigned significance to each of these
according to the element mutation properties in terms of cancer specificity

and conservation. Importantly, the two stages are independent of each
other, as the property tests are conditional on the number of mutations.
Final significance evaluation and element selection was based only on the
mutations properties, not their recurrence, to increase robustness against
rate variation between samples and along the genome.1 The first stage
thus acts as a filtering step of elements considered for candidate selection.
Details of the stages and involved tests are given below.

Mutational recurrence test. The recurrence test evaluated if the total
number of mutations in an element was surprisingly high given its lengths
and the background mutation rate for the given element type based on a
binomial distribution. In case of overlapping elements, the most significant
element was selected. p-values were corrected for multiple testing using
the Benjamini and Hochberg (BH) procedure71 and only elements passing
a 25% FDR threshold were passed on to the second stage.
In the second stage, three separate tests evaluated the cancer specificity

and conservation of the mutations within each element. (1) Cancer
specificity test; (2) Local conservation test: average conservation level of
mutated positions compared to a local element-specific distribution; and
(3) Global conservation test: average conservation level of individual-
mutated positions compared to the genome-wide distribution for the
element type.
(1) Cancer specificity test: For each element, the number of observed

mutations in each cancer type was calculated. The expected number of
mutations was also calculated for given element type and cancer type,
grouped by mutation trinucleotide context to account for individual
cancer-type mutation signatures. We then asked if the distribution of
observed mutations across cancer types within the element was surprising
compared to the expected number of mutations using a Goodness-of-fit
test with Monte Carlo simulation (Fig. 1d i). In the local and global
conservation tests, we evaluated for each element if the mutations were
biased toward highly conserved positions and thus potentially of high
functional-impact. (2) Local conservation test: In the local conservation test,
the p-value of the mean phyloP conservation score72 across the observed
mutations was evaluated in an empirical score distribution derived from
100,000 random samples with the same number of mutations and the
same distribution of phyloP scores as the element in question (Fig. 1d ii).
(3) Global conservation test: In the global conservation test, we applied the
same sampling procedure to evaluate if mutations hit positions of
surprising high conservation compared to the observed distribution across
all elements of the given type (Fig. 1d iii). Fisher’s method was used to
combine the three individual p-values of the second stage to an overall
significance measure. Again, p-values were corrected using BH and a 25%
FDR threshold was applied to generate the final ranked candidate element
lists.

Code availability
Script codes for the two-stage ncDriver procedure can be obtained using
the following URL: https://moma.ki.au.dk/ncDriver/.

Driver recall in known cancer genes and an independent whole-
genomes data set
Driver recall in known cancer genes were evaluated by the number of
genes, associated with significant elements, that overlap genes in the
COSMIC Gene Census database version 76.73 Significance of observed
enrichments were calculated using Fisher’s exact test for two-times-two
contingency tables (Supplementary Table 3).
Recall of individual candidate driver elements was evaluated in an

independent mutation data set from 505 whole-genomes with 14,720,466
SNVs and 2,543,085 INDELs14 (Supplementary Fig. 1). Using the list of 208
unique, non-overlapping and significant elements (48 protein coding and
160 non-coding), we defined a single elements and a set containing gene-
level elements for recall testing using ncDriver (Supplementary Fig. 1a).
The single elements set (n = 208) simply consisted of all significant
elements, whereas the gene-level elements set (n = 251,333) contained all
elements sharing the same associated gene IDs (by nearest protein-coding
gene for regulatory elements) as the individual significant elements. The
single elements were analyzed as a single set, whereas the gene-level
elements were analyzed per element type, in both sets applying the
ncDriver procedure to identify significantly recalled elements (Supplemen-
tary Fig. 1b). The significantly recalled elements were further analyzed for
mutation correlation with patient survival as described in the Methods
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section “Two-stage procedure for identifying non-coding elements with
conserved and cancer-specific mutations”.
The observed number of recalled elements in the single elements set

was evaluated by significance for each element type using Monte Carlo
simulations (Supplementary Fig. 1b). The same number of elements as in
the candidate set (n = 208) were randomly drawn from the input element
set, while the maintaining the relative distribution between element types.
Each random element set was then subjected to ncDriver, the same
procedure, which was used to detect the significant elements in the
original data set. The p-value of the number of recalls for the original data
set was evaluated as the fraction of random sets that led to the same (m)
or a higher number of recalls (p = (m + 1)/(1000 + 1))74 (Supplementary
Table 4). The ncDriver driver screen procedure is described in the Methods
section “Two-stage non-coding driver detection”.

Correlation of mutations in non-coding elements with gene
expression
Exome mutations from 5802 patient samples for 22 cancer types were
downloaded from TCGA.16 Somatic mutations with the PASS annotation
were extracted and cleaned for genetic polymorphisms by subtracting
variants from dbSNP version 138. A final set of 5,621,521 mutations was
created, representing 2,726,008 INDELs and 2,895,513 SNVs. Mutations
found in elements detected as significant by ncDriver were extracted
and annotated with gene names (using gene name of nearest TSS
for regulatory element) and sample ID for expression correlation analysis
(Fig. 5a–f).
TCGA expression data for 7382 cancers from 22 cancer types (ACC (n =

79), BLCA (n = 408), BRCA (n = 1097), CESC (n = 305), COAD (n = 286), DLBC
(n = 48), GBM (n = 152), HNSC (n = 520), KICH (n = 66), KIRC (n = 533), KIRP
(n = 290), LGG (n = 516), LIHC (n = 371), LUAD (n = 515), LUSC (n = 501), OV
(n = 262), PRAD (n = 497), READ (n = 94), SKCM (n = 104), THCA (n = 505),
UCEC (n = 176), and UCS (n = 57)) was obtained using TCGA-Assembler.75

Expression calls for all genes (n = 20,525) were log2-transformed and z-
score-normalized within each cancer type. Expressions on the z-score scale
were combined for all cancer types and Wilcoxon rank-sum test scores
were calculated following addition of a rank robust small random value to
break ties. In the rank-sum test procedure, all samples for which no
mutations were observed were considered non-mutated. All samples were
used in the expression correlation analysis, though only a subset (n = 4128)
had paired exome DNAseq mutation calls. For all genes with mutations in a
given element type, a combined p-value was calculated using Fisher’s
method for combined p-values.

Correlation of miR-122 target site and expression
In each of 266 TCGA liver samples, a gene expression fold change value
was calculated by dividing with the gene median expression of the normal
liver samples. For each sample, genes were ranked by the fold change
value. We used the R package Regmex76 to calculate rank enrichment of
miR-122 target sites in the 3′UTR sequences of the genes. The motif
enrichment is a signed score corresponding in magnitude to the logarithm
of the p-value for observing the enrichment given the sequences and their
ranking. Negative values corresponds to observing the target more often
in genes expressed higher than the median level. The motif enrichment
score was correlated with the expression of miR-122 in the liver samples.

Association of mutations in non-coding elements with patient
survival
To further evaluate the driver potential of the identified significant
elements, we correlated the mutation status with survival data. We
downloaded clinical data from the TCGA data portal (2015-11-01) using the
RTCGAToolbox R library.77 For a given element, the difference in survival
between mutated and non-mutated samples was tested per cancer type
using a score test. We specifically tested a hypothesis that the presence of
candidate mutations decreases the survival.78 For this, we fitted Cox
proportional hazard models79 with mutation status as a covariate. We used
a one-sided score test to investigate if the mutated sample increased the
hazard rate against the alternative that the hazard rate is the same
between the mutated and non-mutated samples. Also, to avoid evaluating
the hypothesis in underpowered cancer types, the tests were only
performed when at least three patients had the mutation status. Evidence
was combined across cancer types using Fisher’s method.

Data availability
All data used in this study were publicly available prior to analysis
(Methods). UCSC track hubs for identified significant candidate driver
elements be obtained using the following URL: https://moma.ki.au.dk/
ncDriver/.
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