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ABSTRACT

This study analyzed magnetic resonance imaging (MRI) scans of Glioblastoma 
(GB) patients to develop an imaging-derived predictive model for assessing the extent 
of intratumoral CD3 T-cell infiltration. Pre-surgical T1-weighted post-contrast and T2-
weighted Fluid-Attenuated-Inversion-Recovery (FLAIR) MRI scans, with corresponding 
mRNA expression of CD3D/E/G were obtained through The Cancer Genome Atlas 
(TCGA) for 79 GB patients. The tumor region was contoured and 86 image-derived 
features were extracted across the T1-post contrast and FLAIR images. Six imaging 
features—kurtosis, contrast, small zone size emphasis, low gray level zone size 
emphasis, high gray level zone size emphasis, small zone high gray level emphasis—
were found associated with CD3 activity and used to build a predictive model for CD3 
infiltration in an independent data set of 69 GB patients (using a 50-50 split for training 
and testing). For the training set, the image-based prediction model for CD3 infiltration 
achieved accuracy of 97.1% and area under the curve (AUC) of 0.993. For the test set, 
the model achieved accuracy of 76.5% and AUC of 0.847. This suggests a relationship 
between image-derived textural features and CD3 T-cell infiltration enabling the non-
invasive inference of intratumoral CD3 T-cell infiltration in GB patients, with potential 
value for the radiological assessment of response to immune therapeutics.

INTRODUCTION

The presence and nature of the intratumoral 
immune response has been shown to influence tumor 
progression and prognosis [1], including in glioblastoma 
(GB), the most common primary brain tumor in humans 
[2-4]. Although a variety of markers have been used for 
assessing an intratumoral immune response, CD3 (cluster 
of differentiation 3) is one such reliable marker. CD3 is 
a protein complex composed of one chain of CD3D, one 
chain of CD3G, and two chains of CD3E, and is a general 

marker of T-cells. Robust antitumor immune responses 
have been shown to correlate with clinical responses to 
a variety of immune therapeutics [5-7], including tumor-
infiltrating CD3 T-cells within the context of a dendritic 
cell therapy for GB patients [7]. Immune therapeutics 
are demonstrating promising response rates in GB 
patients despite prior notions that the central nervous 
system (CNS) is “immune privileged”. Determination of 
intratumoral immune influx and/or response to immune 
therapeutics currently requires either biopsy or surgery, 
with their inherent risks and sampling limitations.
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A large body of work to date has examined the 
relationships between tumor-derived phenotypic features 
(tumor volume, heterogeneity etc.) and tumor genetics. 
For example, statistical summary measurements derived 
from tumor intensity histograms have been shown to 
be associated with KRAS mutation status in colorectal 
tumors [8] and non-small cell lung cancers [9], as well as 
pathology/molecular grade in gliomas [10]. These features 
are related with the use of feature ratios across spatial scale, 
derived from Laplacian-of-Gaussian filtered (PET/CT, 
CT respectively) images. Other studies have focused on 
transform-domain characterization (such as the S-transform) 
to measure association of tumor texture with p53 status 
in head and neck tumors [11]. Such characterization has 
proven useful for gliomas as well, for example in the 
assessment of MGMT methylation status [12], 1p/19q co-
deletion in oligodendrogliomas [13] and IDH mutation 
status [14]. Additionally, other studies have focused on the 
predictive value of tumor volumetrics to characterize the 
molecular subtypes in GB [15, 16]. Furthermore, for GB 
as well as other tumors, a significant amount of work has 
aimed to investigate the relationship between tumor image-
derived features and gene expression programs [10, 17-20]. 
Gray level co-occurrence based texture features extracted at 
multiple spatial scales (using wavelets etc.) have also been 
found to be relevant for understanding disease biology for 
lung tumors [21], head and neck tumors [22], and breast 
tumors [23]. Texture analyses using modalities such as 
MRI, positron emission tomography (PET), and computed 
tomography (CT) have all been shown to be promising for 
characterizing cancer genetics [24-27].

Relationships between image-derived features 
and intratumoral immune responses may enable the 
noninvasive inference of the immune status of patients 
for whom imaging is central to the diagnosis, monitoring 
and evaluation of response to immune therapeutics. 
Significant progress has been made in understanding the 
genetic alterations in GB [28, 29]. For GB, assessment 
of tumor molecular status using image-derived features 
has been explored [15, 16, 20], but such investigations 
for the noninvasive assessment of the presence of an 
immune response have not been described. The ability to 
predict intratumoral immune reactivity (specifically, CD3 
activity) in GB is relevant, as a recent study proposed that 
the ratio of tumor volume in the T2-FLAIR scan relative 
to the volume of contrast enhancement was associated 
with the mesenchymal subtype of GB [16]. This subtype 
of GB has been previously shown to have a more robust 
immunological response relative to the other three GB 
subtypes [30]. Such exploration could potentially be 
helpful to assess the response of immune therapeutics 
for GB patients based on a noninvasive assessment of 
tumor immunological status. With this goal, we sought to 
develop an approach to assess the relationship between 
the CD3 T-cell infiltration status within GBs and image-
derived gray level heterogeneity features.

RESULTS

Patients

A set of glioblastoma (GB) 79 patients were selected 
from the TCGA database based on quality assessments, as 
well as the availability of T1-weighted-post-contrast, T2-
FLAIR images and accompanying clinical and molecular 
data, specifically CD3D/E/G mRNA expression level 
data. Following image-preprocessing, tumor segmentation 
and analysis of T1w and T2-FLAIR images, 86 imaging 
(radiomic) features were obtained. Boruta feature selection 
[32] was then used to identify a set of 6 CD3-associated 
image features. An image-based predictive model (based 
on these six features) for CD3 infiltration status was 
constructed on a secondary cohort of 69 GB patients 
treated at MD Anderson. Half of the MD Anderson cohort 
was used as the training set (i.e., for model construction), 
and the other half was used for model evaluation. The 
Kruskal-Wallis test is used to assess that the clinical 
and tumor volume/intensity characteristics between the 
training and testing sets are similar (none of the p-values 
are significant at the 0.05 level).

MRI features are associated with CD3 activity

Among the 86 MRI features, 6 of them are found 
to be associated with CD3 mRNA expression (after 
minimizing inter-feature correlation). These are, kurtosis, 
contrast, small zone size emphasis, low gray-level zone 
emphasis, high gray-level zone emphasis, and small zone 
high gray emphasis.

Imaging feature-based model is capable of 
predicting CD3 T-Cell infiltration status

In the testing cohort, the performance of the model 
for prediction of CD3 T-cell infiltration was an AUC 
of 0.847 with confidence interval (CI) of [0.66, 0.94] 
(Figure 1). Spearman’s rank correlation coefficient 
between model-predictions and actual CD3 counts 
was 0.544 (p-value of 0.0009). The confusion matrix 
(Table 1) showed an accuracy of 76.5% with 95% CI of 
0.588-0.893. The model has 72.7% sensitivity, 83.33% 
specificity, and 11.1% false discovery rate (FDR). The 
corresponding AUC on the training cohort was 0.993 
(97.1% accuracy, 93.75% sensitivity, 100% specificity, 
and 0% FDR). To assess the significance of the image 
model-derived predictions for CD3 infiltration status after 
adjusting for clinical variables and tumor volumetrics, a 
multivariate regression was performed. The result of the 
multivariate regression approach is summarized in Table 
2, and only the model-derived predictions are seen to be 
significant (p-value of 0.03). In addition, a comparison of 
predictive performance (AUC) of a model based only on 
tumor volumetrics (from T1-post contrast and T2-FLAIR 
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imaging) relative to a combined model (incorporating both 
volumetrics and texture features) revealed AUCs of 0.73 
and 0.92 respectively (p-value:0.047).

Comparison of individual feature performance 
vs. combined model for predicting CD3 status

Table 3 summarizes the individual feature 
performance for modeling the binary CD3 T-cell response. 
Small zone high gray emphasis is the individual image 
feature with the highest AUC value (0.79) in the testing 
cohort, although lower when compared to the overall 
model obtained from combining all the six features 
together (AUC = 0.847).

DISCUSSION

In this study, we demonstrated that MR image-
derived textural features have predictive value for 
assessment of CD3 activity within GB. Among the 
six image-based textural features used for model 
construction, 4 are GLSZM-derived (Gray Level Size 
Zone Matrix [33]) features while the other two are 
intensity histogram-derived (kurtosis) and NGTDM-
derived (Neighborhood Gray Tone Difference Matrix 
[34]) (contrast) features. The kurtosis/ contrast features 
highlight ring-like patterns of enhancement as well 
as intensity variations at the tumor boundary. On the 
other hand, in GLSZM, the entry (i, j) represents the 
number of 3D zones of gray levels i and of size j [33]. 

Figure 1: Receiver operating curve for the prediction of CD3 T-cell infiltration. Half of internal cohort is considered as a 
training set (for model construction) and the remaining half of the internal cohort is considered as a testing set (for model evaluation).
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This matrix essentially captures coarse texture based on 
the observation that a relatively large zone size occurs 
more often in a coarse texture than in a smooth one 
[35]. Considering GB tumors exhibit large variations 
in intensity, this observation suggests that GLSZM-
derived features are potentially effective statistical 
representations of the tumor MRI image for assessment 
of CD3 infiltration. In broader context, the increased 
immune influx increases tumor heterogeneity features 
[31] which are likely reflected in image-derived textural 

diversity [36]. These features are related to variation 
[37] in extent of contrast enhancement within the tumor 
possibly related to changes [38] in vascularization 
and inflammatory status [39]. However, a systematic 
perturbation approach, possibly in an animal model, 
may clarify the nature of relationship between CD3 
infiltration status and these radiographic phenotypes.

The model achieved an AUC of 0.847 for the 
prediction of CD3 T-cell infiltration in the testing 
cohort (Figure 1). To assess that its predictive value is 
not confounded by clinical factors or tumor volume, a 
multivariate regression model reveals the association of 
CD3 infiltration status with image-based, model-derived 
predictions (p-value of 0.0309, Table 2). In addition, a 
model combining imaging and volumetrics has a superior 
AUC (0.847) relative to one with a volumetrics-only 
model (AUC 0.73). However, a study with a larger sample 
size could further clarify the predictive value (e.g. a 
narrower confidence interval for the AUC) of this image-
derived radiomic model.

This study suggests the potential value of MRI-
derived texture features for assessing the inflammatory 
status within a tumor. While additional and larger-scale 
validation studies would enable a clearer assessment of 
their clinical value, textural MRI analysis may be useful 
in stratifying patients for therapeutics that require a pre-
existing immune response [40, 41] to longitudinally 
monitor the kinetics of antitumor immune responses, 
to adjust treatment scheduling, and to obtain early 
assessments of responding patient subsets. This approach 
could also be potentially useful in low-resource healthcare 
settings where invasive genetic assessments may not 
be accessible or affordable. The textural MRI analysis 
will be prospectively validated in an immune inhibitory 
checkpoint clinical trial in patients with recurrent GB, 
which will correlate ex vivo flow cytometry quantification 
of the absolute number and functional status of T-cells 
(NCT02337686).

Our study presents several opportunities for future 
work. Because this study focuses on texture features 
derived only from T1-post and T2-FLAIR sequences, a 
suitable next step would be the investigation of other 
sequences such as multi-echo magnetization-prepared 
rapid gradient-echo (MEMPRAGE) or Diffusion 
Weighted Intensity MRI, to assess their added value. 
Further, as with any retrospective analysis of multi-site 
radiology data, a limitation in this study is the variation 
in scanning and acquisition protocols across MRI 
systems and imaging sites within the publicly available 
TCIA database. While preprocessing (isotropic reslicing 
[42] and intensity normalization) was performed to 
account for such variation, their influence (of variable 
intensity characteristics, differing spatial resolutions 
etc.) on image-derived textural features needs to be 
examined more systematically. Another avenue for 
investigation is the impact of intensity normalization 

Table 1: Confusion matrix for both training and 
testing cohorts

Training

Actual

Low 
Infiltration

High 
Infiltration

Prediction

Low 
Infiltration 19 1

High 
Infiltration 0 15

Testing

Actual

Low 
Infiltration

High 
Infiltration

Prediction

Low 
Infiltration 10 6

High 
Infiltration 2 16

Table 2: Summary of multivariate regression to 
assess relationship between image-derived prediction 
model and CD3 activity, after adjusting for various 
clinical covariates (age, KPS, gender, total intensity, 
and tumor volume). The p-values of each term in the 
multivariate model are indicated below

Variables p-value

Age 0.5591

Gender 0.2842

KPS 0.7997

T2-FLAIR Tumor Volume 0.8775

T2-FLAIR total intensity 0.8077

T1-Post Tumor Volume 0.8301

T1-Post total intensity 0.5701

Predicted Values from our 
model 0.0309
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Figure 2: The pipeline for feature extraction and predictive modeling. We contoured tumor regions from pre-processed T1-post 
and T2-FLAIR images and performed intensity normalization. 86 MRI image features were derived from TCGA data set and reduced to 6 
by robustness analysis and redundant feature removal. Using these 6 features, we constructed a predictive model for CD3 activity using the 
training set, and evaluated on the testing set.
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approaches [43] and varying gray levels (4, 16, 32, 
etc.) on texture features and their predictive accuracy 
for CD3 activity. Also, the current prediction model is 
based on a (binary) dichotomization of the CD3 activity 
status. This was done to guard against the subjectivity 
associated with human-scored measurements of CD3 
infiltration. However, the use of more automated 
methods of infiltration-assessment may allow direct 
use of continuous-valued CD3 T-cell counts within 
regression models.

To further assess the generalizability of the 
model’s predictive capabilities, a measurement of 
the relative change in texture features under the test-
retest setting [44, 45] would strengthen its path to 

clinical adoption. Further, other independent data 
sets with consistent imaging protocols accompanied 
by adjustment for molecular status (IDH1, EGFR 
mutation etc) would enable a more robust assessment 
of predictive value of this image-derived radiomic 
model. Also, since the current model is based solely 
on pre-therapy, pre-surgical images, another aspect 
would be to study the longitudinal variations in texture 
characteristics during the course of therapy. Such a 
study might illuminate a potential path to assessing 
therapy-induced changes via texture measurements and 
its feasibility in the context of determining the presence 
of intratumoral inflammation during the course of 
therapy.

Table 3: Summary of CD3-associated image features and performance of the CD3 prediction model (based on 
individual features and also of the feature combination) in the testing cohort

Modality Feature type Feature AUC 95% confidence interval

T1 Post Histogram Kurtosis 0.736 0.517-0.885

T1 Post NGTDM Contrast 0.759 0.557-0.891

T1 Post GLSZM Small Zone Size Emphasis 0.72 0.521-0.870

T1 Post GLSZM Low gray-level zone 
emphasis 0.673 0.468-0.860

T1 Post GLSZM High gray-level zone 
emphasis 0.745 0.568-0.894

T1 Post GLSZM Small zone high gray 
emphasis 0.798 0.619-0.911

All combined 0.847 0.66 -0.94

Abbreviations: NGTDM, Neighborhood Gray Tone Difference Matrix; GLSZM, Gray Level Size Zone Matrix

Table 4: Summary of clinical covariates for TCGA and the internal (MD Anderson) data cohort. Additionally, 
p-values comparing the distributions of these clinical variables between the two cohorts are shown below (p-values 
are not significant, suggesting that the TCGA and internal cohorts are comparable)

TCGA GBM cohort (mean 
+ std. dev)

IHC data cohort (MD 
Anderson Cancer Center) 

(mean +std. dev)

p-values

Age 56.84 + 14.96 57.96 + 13.78 0.638

Gender F – 26; M – 53 F – 33; M – 36 0.105

Karnofsky Performance 
Score (KPS) 81.01 + 11.86 84.64 + 14.4 0.102

FLAIR tumor volume (in 
mm3) 130761.35 + 74839.78 142820.01 + 89254.72 0.381

T1 tumor volume (in mm3) 51677.66 + 32966.17 52738.99 + 38800.02 0.86

Number of Subjects 79 69
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MATERIALS AND METHODS

Patient selection

For this study, we used imaging and genomic data 
from 79 patients with histologically confirmed GB and 
molecular information in TCGA database. Patients were 
selected based on quality assessments by the TCGA Glioma 
Phenotype Research group, in addition to having high 
quality T1-weighted post-contrast and T2-FLAIR images 
with accompanying clinical information. The entire case-
list of patients is presented in Table 1 of the Supplementary 
data. Pre-surgical, post-contrast axial T1-weighted and axial 
T2-weighted FLAIR images for these 79 patients were 
obtained from The Cancer Imaging Archive (https://www.
cancerimagingarchive.net/). The TCIA voxel dimensions 
range 0.469 ~ 1.016mm, 0.469 ~ 1.016mm, and 0.700 ~ 6.500 
mm for x, y, and z directions respectively (Supplementary 
Information 2). CD3D/E/G mRNA expression z-scores 
were obtained from the MSKCC cBioPortal (https://www.
cbioportal.org) for these 79 TCGA patients. This dataset was 
used for identifying CD3-associated image features. Under 
TCGA data-use agreements, this portion of the study was 
exempt from Institutional Review Board approval. A separate 
data set of 69 GB patients (from MD Anderson) in which 
CD3 cell counts were obtained by immunohistochemistry 
[3] (under the Institutional Review Board-approved protocol 
LAB03-0228), designated as the “MD Anderson cohort”, was 
used to obtain an image-based predictive model of CD3 T-cell 
infiltration, using half the cohort for model development and 
the other half for model evaluation. The voxel sizes for MD 
Anderson Cohort data range from 0.430 ~ 1.016mm, 0.430 
~ 1.016mm, 1.800 ~ 7.501mm for x, y, and z directions 
respectively (Supplementary Information 2). The clinical data 
characteristics, including age, Karnofsky Performance Score 
(KPS), tumor volume, and sex for both the TCGA and the 
MD Anderson cohort are also summarized in Table 4.

Image preprocessing

MR images from both internal study (MDACC) 
patients and public domain TCGA cases were processed 
prior to tumor segmentation. Specifically, the T1-post 
contrast and T2-FLAIR images were corrected for shading 
artifacts with non-parametric intensity non-uniformity 
normalization (N3) correction using Medical Image 
Processing Analysis and Visualization software (v 7.2.0) 
[46]. For this procedure, the signal threshold value was 
1.0, field distance was 50.0 mm, and kernel full width half 
max (FWHM) was 0.15.

Volumetric segmentation

Tumors were segmented (contoured) semi-
automatically in 3D using the Medical Image Interaction 
Toolkit –MITK3M3 Image Analysis (v 1.1.0) (www.

mint-medical.de/productssolutions/mitk3m3). This 
software has been validated as a method to segment 
tumors in various organ systems [47, 48]. The clinician 
uses the segmentation tool to contour the relevant 
regions (enhancing tumor on the T1-post contrast 
images, hyperintensity on the FLAIR images) on 
multiple slices and then interpolates those contours to 
obtain the 3D volumetric tumor mask. On the T1-post 
contrast images, the segmented region corresponds to the 
contrast enhancing tumor. For the T2-FLAIR images, the 
segmented region corresponds to the solid tumor as well as 
regions of infiltrating tumor and edema that are delineated 
by increased intensity. The semi-automatic segmentation 
tools provided by MITK3M3 permit the discrimination of 
tumor from normal surrounding brain. In addition, using 
a similar approach, normal appearing white matter area 
in the contralateral region was contoured separately on 
both T1-post contrast and T2-FLAIR images. The same 
set of preprocessing and segmentation procedures was 
followed on both (TCGA/MD Anderson) data cohorts. 
Segmentation masks were reviewed for accuracy by two 
fellowship-trained neuro-radiologists (SA and DR). The 
entire workflow along with description for each step is 
shown in Figure 2.

Image feature extraction

Tumor heterogeneity characteristics from the image 
are measured using computer-based textural analysis. 
First, tumor region intensities were normalized relative 
to the mean intensity value of normal appearing white 
matter (NAWM) region. Images were resliced for pixel 
size (1×1×1 mm) using the NIFTI toolbox [49], to make 
voxel definitions consistent across the multiple sites 
contributing imaging data to TCGA/TCIA. The intensities 
of resliced images were quantized [50] to 8 gray levels 
prior to computation of texture features.

Once scaled and quantized, we used a public 
domain MATLAB radiomics toolbox [51] to extract 3D 
tumor derived features: 6 histogram, 19 Gray Tone Spatial 
Dependence Matrix (GTSDM), 5 Neighborhood Gray 
Tone Difference Matrix (NGTDM), and 11 Gray Level 
Size Zone Matrix (GLSZM) based features (41 features 
in total) were computed from both the T1 post-contrast 
and FLAIR images. In addition, two additional (regional) 
features, sum of the normalized tumor intensities as well 
as tumor volume, were computed. In total, we obtained 86 
features, 43 each from the T1-post contrast and T2-FLAIR 
images, respectively. All the procedures were performed in 
Windows 7 environment (Intel ® Xeon ® X5570 CPU @ 
2.93 GHz and 32.0 GB RAM).

Assessment of robustness of image features

The dimensions of the final TCGA image-feature 
data matrices were 79 × 86 (79 patients, 86 image-

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
https://www.cbioportal.org
https://www.cbioportal.org
http://www.mint-medical.de/productssolutions/mitk3m3
http://www.mint-medical.de/productssolutions/mitk3m3
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derived features). For the internal cohort (corresponding 
to CD3 IHC-derived cell count measurements), the matrix 
dimensions were 69 x 86 (69 patients in the internal MDACC 
data). Following prior work [18], 8 different geometric 
perturbations were applied to the tumor ROIs (both T1-post 
contrast and T2-FLAIR) to assess feature robustness using the 
intra-class correlation (ICC). These transformations include 
horizontal translation by 2 pixels, horizontal and vertical 
translation by 2 pixels, 1-degree rotation, 5-degree rotation, 
moving each point on the ROI outline by a random value 
with (zero-mean and 0.1 and 0.5-pixel standard deviation), 
enlarging by 1 pixel radially, and shrinking by 1 pixel radially 
[18]. Intra-class correlation coefficient of 0.6 [18] was used 
to identify features that are robust between the original ROI 
and the geometrically-transformed versions.

Feature selection: identification of features 
associated with z-score transformed CD3 mRNA 
activity, using TCGA cohort

Using the robust features identified with the above-
mentioned approach, the R Boruta package [32] is used 
for feature selection, in order to identify image features 
associated with CD3E/D/G mRNA expression z-scores 
in the TCGA dataset. With a relatively large number of 
image features, it is necessary to identify the subset of 
features that are both non-redundant and “relevant” to the 
outcome. The Boruta algorithm allows one to perform “all-
relevant” feature selection [32]. Instead of only identifying 
the minimal feature subset to fit the data, it is capable 
of identifying ‘every’ feature (under some restrictions) 
associated with the outcome, (the CD3 mRNA expression 
z-scores). The algorithm works by assessing the importance 
of a feature relative to ‘shadowed’ versions (obtained by 
permuting its values across cases) and only retaining 
those features with importance more significant than 
their shadowed version. Subsequently, the CD3 mRNA-
associated image features were reduced using inter-feature 
correlations thresholded at (absolute value of) 0.6. These 
retained features were then used for classifier construction.

Determination of CD3 infiltration status based 
on image-derived features: model construction 
and evaluation

For the internal (MDACC) cohort, CD3 cell count 
z-scores were dichotomized (relative to 0) yielding low 
or high CD count classes. These are treated as (binary) 
class labels. A randomly chosen subset (of half the cases) 
was used as the training set to construct the model, while 
the other half was used as the test set. These two groups 
were ensured to have similar clinical and intensity/volume 
characteristics based on Kruskal-Wallis test (Table 4). A 
prediction model using symbolic regression [52] was 
constructed based on the training set, using the six features 
identified based on the TCGA data.

Statistical analysis

All statistical analyses were performed using R 
2.15.3. Using the ground truth class labels, we computed 
the receiver operating characteristic (ROC) curve using 
model predictions. Confidence intervals of the ROC 
area-under-curve (AUC) relative to random classification 
was computed via stratified bootstrap sampling [52]. We 
also assessed the concordance between the actual CD3 
count values and model predictions, using Spearman’s 
rank correlation analysis. In order to ensure that the 
clinical and tumor volume/intensity characteristics of the 
training and testing sets are comparable, for consistency 
during model construction and evaluation, we performed 
Kruskal-Wallis test between the two sets (Table 4). 
Further, to assess whether the model performance is 
confounded by clinical and tumor volume/intensity 
characteristics, we performed a multivariate regression 
to determine the relationship between the model 
predictions and the ground truth CD3 measurements 
after adjusting for these clinical covariates. We also 
evaluated the difference in AUCs of model involving 
only tumor volumetrics (from T1-post contrast and T2-
FLAIR) relative to a model involving both volumetrics 
and image-derived texture features, using a bootstrap 
based test [53]. Lastly, in order to assess the predictive 
performance of the 6 image features individually, we 
constructed six separate models for CD3 prediction 
based on the 6 features and compared them against the 
combined 6 feature-model on the testing set.
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