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Abstract

The inference of reaction rate parameters in biochemical network models from time series concentration data is a central
task in computational systems biology. Under the assumption of well mixed conditions the network dynamics are typically
described by the chemical master equation, the Fokker Planck equation, the linear noise approximation or the macroscopic
rate equation. The inverse problem of estimating the parameters of the underlying network model can be approached in
deterministic and stochastic ways, and available methods often compare individual or mean concentration traces obtained
from experiments with theoretical model predictions when maximizing likelihoods, minimizing regularized least squares
functionals, approximating posterior distributions or sequentially processing the data. In this article we assume that the
biological reaction network can be observed at least partially and repeatedly over time such that sample moments of
species molecule numbers for various time points can be calculated from the data. Based on the chemical master equation
we furthermore derive closed systems of parameter dependent nonlinear ordinary differential equations that predict the
time evolution of the statistical moments. For inferring the reaction rate parameters we suggest to not only compare the
sample mean with the theoretical mean prediction but also to take the residual of higher order moments explicitly into
account. Cost functions that involve residuals of higher order moments may form landscapes in the parameter space that
have more pronounced curvatures at the minimizer and hence may weaken or even overcome parameter sloppiness and
uncertainty. As a consequence both deterministic and stochastic parameter inference algorithms may be improved with
respect to accuracy and efficiency. We demonstrate the potential of moment fitting for parameter inference by means of
illustrative stochastic biological models from the literature and address topics for future research.
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Introduction

The traditional approach to modelling of biological reaction

networks is based on deterministic mass action kinetics in which

the time course of the species concentrations averaged over the

population is described by a set of coupled ordinary differential

equations [1], often referred to as the macroscopic rate equations.

For the description of intra-cellular processes characterized by a

low number of reacting molecules the stochastic modelling

approach [2] is an alternative that explicitly takes the discreteness

and stochasticity of chemical kinetics into account. In well-mixed

conditions the system dynamics are captured by the Kolmogorov

differential equation, also referred to as the chemical master

equation, for the transition probability kernel of a continuous time

Markov process with discrete state space. Numerical solutions of

the master equation, even after projection to finite state space [3],

are computationally expensive, but realizations of the stochastic

process can be achieved by the Gillespie algorithm and its variants

[4], [2]. A stochastic differential equation approximation to the

true process is given by the chemical Langevin equation [5], the

associated Fokker Planck equation then describes the probability

density function of the continuous state variable. An alternative

approximative description is the linear noise approximation [6]

that features a partial differential equation for the probability

distribution of the fluctuations around the deterministic part

governed by the macroscopic rate equation.

Parameter estimation in differential equation models is a classic

nonlinear inverse problem that arises in a variety of scientific,

industrial and financial applications and is approached both in

deterministic and statistical ways [7], [8], [9], [10]. The advances

of experimental biology even at the single cell level [11], [12] along

with the ever growing quality and amount of species concentration

data have also stimulated recent interest in the inference of

reaction rate parameters in kinetic biological models. A common

feature of many parameter estimation methods is the comparison

of time series data with parameter-dependent model predictions.

For instance, [13], [14], [15] compare time series data with the

solution of the macroscopic rate equation in the minimization of

unregularized and regularized least squares functionals by

deterministic and stochastic optimization routines, [16] compares

finite differences of time series data with the drift term of the

chemical Langevin equation in Bayesian inference, [17] compares

time series data with the solution of the macroscopic rate equation

or with averaged outcomes of the Gillespie algorithm in

approximate Bayesian inference, [18] compares time series data

with the solution of the macroscopic rate equation in maximum

likelihood estimation, [19] compares time series data with the

mean component of the linear noise approximation in Bayesian
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inference, [20] compares probability density or cumulative density

functions obtained from the data with their counterparts

constructed from repeated realizations of the Gillespie algorithm,

and [21], [22], [23] sequentially compare time series data with the

solution of the macroscopic rate equation when applying extended

Kalman filters or nonlinear observers. For inferring the rate

parameters q from a time series data vector x, some of the

available approaches explicitly take parameter dependent predic-

tions of the mean m1(q) (the first moment) as well as of higher

moments, e.g., of the variance mc,2(q) (the second central moment),

of the state variable x(q) into account, for instance, for building

the (simplified) likelihood function

L(q)~ P
nt

i~1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmc,2(ti; q)2

q exp {
(xi{m1(ti; q))2

2mc,2(ti; q)2

 !

for a multivariate normal distribution or a weighted sum of

squared residuals

SS(q)~
Xnt

i~1

(xi{m1(ti; q))2

mc,2(ti; q)2
,

see [24], [19], [16], [25]. However, an adjustment of model

parameters in order to actually also fit higher sample moments derived

from time series data, e.g., by computing the distance between the

sample variance m̂mc,2 and the variance model prediction mc,2(q), so

far has - to the best of our knowledge - not been considered.

Furthermore, studies of parameter sensitivities and identifiability

[26], [27], [28], [29], [30] typically are based on macroscopic rate

equation models where the Hessian matrix of {L(q) or SS(q)

(usually with mc,2(ti; q) replaced by parameter independent

weights) to be analyzed involves only a comparison of the data

xi with the first order moment m1(ti; q). Small or zero eigenvalues

of the Hessian at a minimizer point to small or even vanishing

curvatures of the landscape function in parameter space, a

situation called parameter sloppiness [27] as parameters then are

only poorly constrained by the data and not uniquely identifiable.

Parameter sensitivities have also been studied for stochastic

chemical kinetics models [31] based on the linear noise

approximation, still the distance between sample and theoretical

moments is not part of this analysis. Finally, the design of

experimental stimulation protocols for improving the parameter

identifiability in macroscopic equation models has been studied in

[32].

In this paper we present a moment fitting approach to parameter

inference in stochastic biological models from time series data that

to the best of our knowledge has not been studied before. First, we

suppose that the state variable vector of molecule numbers can be

partially - both with respect to time and state variable components

- and repeatedly, say N times, observed such that sample moments

m̂mo up to some order �kkw1 of interest for the observable

components can be computed from the data. Experimental

techniques that may provide molecule number information are

presented in [33], [34], [35], [36]. Second, we consider closed

systems of ordinary differential equations

L
Lt

m(t)~F (m(t),q), t[(0,tf �,

m(0)~m0

that describe the time evolution of parameter dependent moment

approximations m(q) up to the order �kk and can be obtained from

the chemical master equation via moment closure techniques, the

Fokker Planck equation or the linear noise approximation [37],

[38], [39], [40], [41], [42]. Now, let mo(q) denote those

components of m(q) that depend only on the observable state

variables. For solving the parameter inference problem we then

suggest to utilize the distance d(m̂mo,mo(q)) between the sample

moments m̂mo and the equation output mo(q) in global and local

minimization techniques or approximate Bayesian methods. For
�kkw1 the span of the eigenvalues of the Hessian matrix of

d(m̂mo,mo(q)) may be strongly reduced in comparison to cost

functions that only involve the first moment (the mean) such that

problems of non-identifiability or parameter sloppiness can be

relieved or even overcome. That way the efficiency and accuracy

of distance based parameter inference strategies may be enhanced

by higher order moment fitting. In comparison to [20], where the

focus is on a comparison of probability density functions rather

than on a comparison of statistical moments, model predictions

based on the above mentioned ODE system are computationally

much cheaper than those based on repeated realizations of the

Gillespie algorithm. Analytic expressions for the steady state mean

and variance of a scalar variable have been used in [35] in order to

obtain initial guesses for a parameter inference routine based on

comparing experimental histograms from stationary data with

model predictions. Still, the latter are obtained as in [20] from

repeated simulations of the (stationary) chemical master equation.

The moment fitting approach presented in our paper handles time

series data and involves only the solution of a single moment ODE

system rather than repeated stochastic simulations. This reduces

the computational costs and allows one to build parameter

sensitivities for gradient based optimization and solution analysis.

In a sequence of illustrative examples with simulated data from the

literature we demonstrate potential benefits of our approach and

address future challenges.

Results

We studied the concept of moment fitting for parameter inference

in stochastic biological models from time series data by means of

three reference examples, see Materials and Methods for all model

details, and chose �kk~2 as highest moment order in all of our tests.

Results for Linear Birth and Death Process
The Kolmogorov differential equation (11) in this example reads

as

Lp

Lt
(x,t)~q1(x{1)p(x{1,t){(q1zq2)xp(x,t)

zq2(xz1)p(xz1,t)

and implies the ODE system

Lm1

Lt
(t)~(q1{q2)m1(t), m1(0)~x0 ð1Þ

Moment Fitting for Rate Parameter Inference
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Lmc,2

Lt
(t)~2(q1{q2)mc,2(t)z(q1zq2)m1(t), mc,2(0)~0

for the mean m1(:; q) (the first moment) and the variance mc,2(:; q)
(the second central moment) approximation of the discrete state

variable x, see Supporting Information S1 for a derivation. Due to

the linearity of the rate function h with respect to x, the very same

system (1) is obtained if the true stochastic process is approximated

by the diffusion approximation (12), (13) or by the linear noise

approximation (22). Furthermore, m1(:; q) and mc,2(:; q) coincide

with the true moments m1(:; q) and mc,2(:; q). Another conse-

quence of the linearity of h is that (1) admits an analytical solution

given by

m1(t; q) ~ m1(0)e(q1{q2)t, ð2Þ

mc,2(t; q) ~ m1(0)
q1zq2

q1{q2
e(q1{q2)t(e(q1{q2)t{1): ð3Þ

For the purpose of data generation we have simulated the true

stochastic process N~1000 times by means of the Gillespie

algorithm [4]. Figure 1 B shows 3 (out of 1000) realizations as

example, Figures 1 C and D display the sample mean m̂m1 and the

sample variance m̂mc,2 at the process observation times tj derived

from the data.

In order to infer the rate parameters q1 and q2 we first utilized

the cost (or distance) function

d1(q)~
Xnt

j~1

(m̂m1
j {m1(tj ; q))2 ð4Þ

for a comparison of the sample mean with the analytic mean

expression (2). Choosing the initial parameter guess q0~½1,11�T
and the MATLAB [42] trust region optimization algorithm with

default setting we obtained the parameter solution

~qq~½1:2392,2:2487�T after 10 iteration steps. Though the mean

concentration data are perfectly fit by m1(t; ~qq), see Figure 2 A, the

solution ~qq strongly deviates from the true parameter values

q�~½3,4�T . If mc,2(t,~qq) is used to predict the sample variance, large

errors can also be observed in the data space, see Figure 2 B.

The problem of non-identifiability is overcome if not only the

first moment but also the second central moment is fitted to the

available data, e.g., by minimizing the cost function

d2(q)~
Xnt

j~1

(m̂m1
j {m1(tj ; q))2z0:1

Xnt

j~1

(m̂mc,2
j {mc,2(tj ; q))2: ð5Þ

Again starting from q0~½1,11�T the minimization of d2(q) after

13 iteration steps led to the parameter estimate

q̂q~½2:9492,3:9415�T which is nearly identical to the true solution

q�. Figures 2 C and D indicate the quality of the data fit by the

analytic moment expressions m1(t; q̂q) and mc,2(t; q̂q).

Figure 1. Simulation and data of the linear birth death process. (A) A single realization of the true stochastic process with x0~50 and rate
parameters q�1~3, q�2~4. (B) Three (out of N~1000) realizations of the true stochastic process. The process is finished as soon as the case x~0

occurs. (C) Sample mean m̂m1
j at the discrete observation times tj . (D) Sample variance m̂mc,2

j at the discrete observation times tj .

doi:10.1371/journal.pone.0043001.g001
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In a further test, we utilized the likelihood function

L(q)~ P
nt

j~1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmc,2(tj ; q)2

q exp {
(m̂m1

j {m1(tj ; q))2

2mc,2(tj ; q)2

 !
, ð6Þ

which compares m̂m1
j to m1(tj ; q) but does not involve the error between

m̂mc,2
j and mc,2(tj ; q), in a MCMC Metropolis random walk algorithm

[2]. Even if we chose the favourable gamma distributions

q1*C(3,1) and q2*C(3,1)

as priors for the parameters, the algorithm failed to yield

acceptable marginal posterior density distributions due to the

ignorance of the sample variance m̂mc,2, see Figure 3 for details.

Results for Dimerisation Kinetics
Based on the Fokker Planck equation (13) of the diffusion

modelling approach

L
Lt

p(x,t)~{
L
Lx

({q1x(x{1)zq2(x0{x))p(x,t)f g

z
1

2

L2

Lx2
(2q1x(x{1)z2q2(x0{x))p(x,t)f g

the normal moment closure technique yields the nonlinear ODE

system

L
Lt

m1(t)~q1m1(t)(1{m1(t))zq2(x0{m1(t)){q1mc,2(t),

m1(0)~x0

L
Lt

mc,2(t)~{2q1(2m1(t)z2)mc,2(t){2q2mc,2(t)

z2q1m1(t)(m1(t){1)z2q2(x0{m1(t)), mc,2(0)~0

for the (approximative) mean m1(t; q) and the (approximative)

variance mc,2(t; q) of the continuous state variable x(t), see

Supporting Information S1 for the derivation. The true stochastic

process was simulated N~1000 times by means of the Gillespie

algorithm [4] with initial molecule number x0~301 and rate

parameters q�~½0:005,0:03�T .

We first only focused on the sample mean data m̂m1 and

minimized the least squares objective function

d1(q)~
Xnt

j~1

(m̂m1
j {m1(tj ; q))2 ð7Þ

Figure 2. Moment fitting for the linear birth death process. (A) The minimization of the cost function (4) yields a perfect match between the
mean data and the first moment expression m1(t; ~qq), but a parameter result ~qq~½1:2392,2:2487�T with large deviations from the true values q�~½3,4�T .
(B) As a consequence, the variance data cannot be explained by the second order moment expression mc,2(t; ~qq). (C) The alternative minimization of (5)
once more yields a perfect match between the mean data and m1(t; q̂q) but in addition the significantly improved parameter estimate

q̂q~½2:9492,3:9415�T . (D) As the fitting of the central second order moment has been explicitly taken into account by (5), now also the variance data is
reproduced by mc,2(t; q̂q).
doi:10.1371/journal.pone.0043001.g002
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by means of the MATLAB [42] trust region routine. The initial

parameter guess chosen was q(0)~½0:0047,0:0177�T , for any q the

model predictions m1(tj ; q), j~1, . . . ,nt, were obtained by solving

the above mentioned ODE system, and the gradient of d1(q) was

provided by means of the adjoint method, see Supporting

Information S2. Figures 4 A,C,E show that convergence of the

iterates towards ~qq~½0:005,0:0294�T is obtained after 180 iteration

steps. Though the mean data in this example is sufficient to obtain

reliable parameter estimates (also for more distant initial guesses),

a significant computational speed up is gained if not only the mean

data but also the variance data m̂mc,2 is taken into account. Figures 4

B,D,F display the performance of the same optimization algorithm

with identical initial guess if applied to the minimization of the

alternative objective function

d2(q)~
Xnt

j~1

(m̂m1
j {m1(tj ; q))2z0:1

Xnt

j~1

(m̂mc,2
j {mc,2(tj ; q))2: ð8Þ

The accuracy of the parameter estimate q̂q obtained with (8) is the

same as of ~qq obtained with (7), however, convergence is now

already achieved after 55 iterations. The outcome d2(q̂q)wd1(~qq) is

solely due to the additional variance term in (8) and does not allow

for a comparative judgement of the inferred parameters.

Results for p53 Signalling System
The linear noise approximation (14) yields a nonlinear ODE

system describing the temporal development of the mean

approximation m1(t; q)[R3 and the covariance matrix approxima-

tion mc,2(t; q)[R3|3. For data generation, the true stochastic

process was simulated N~1000 times by means of the Gillespie

algorithm [4] with the initial molecule numbers x0~½10,10,80�T

and the rate parameter vector q�~½90,0:002,1:7,1,1:1,0:8,2�T .

First, we supposed that the two components x1 and x2 of the state

vector x[N3
0 can be observed. The minimization of the objective

function

d1(q)~
Xnt

j~1

(m̂m1
1,j{m1

1(tj ; q))2z
Xnt

j~1

(m̂m1
2,j{m1

2(tj ; q))2 ð9Þ

with the initial guess q
(0)
j ~(1z0:1:({1)j):q�j , j~1,:::,7, showed

that the corresponding sample mean data m̂m1
1 and m̂m1

2 are not

sufficient to identify the true vector q�. Though the parameter

estimate ~qq obtained after 120 iterations is able to reproduce the

data, see Figures 5 A and B, it features a maximal relative error of

156% in its second component, see Figures 6 A and B for details.

For comparison, we next supposed that only the component x1 is

amenable to observations but build both the corresponding mean

estimate m̂m1
1 and the variance estimate m̂mc,2

11 from the data, see

Figures 5 A and C. The minimization of the objective function

Figure 3. MCMC Metropolis random walk for the linear birth death process. Figures (A)–(F) show the output of a MCMC Metropolis random
walk for the inference of the marginal parameter posterior density distributions using the likelihood function (6). The prior parameter distributions
were chosen as q1*C(3,1) and q2*C(3,1), and the candidate parameter vector qc at stage j was given by qc~q(j{1)zs(j) with random innovations

s(j) drawn from U({0:5,0:5). The iteration number of the sampler was set to 100000 and the first 1000 steps were discarded as burn-in and ignored in
the monitoring plots (A)-(F). (A,B) Trace plots of the marginal posterior distributions for q1 and q2 with only small movement around the mean values

~qq~½0:0343,1:1739�T , largely deviating from the true values q�~½3,4�T . (C,D) Frequency histograms with 50 bins corresponding to the trace plots of
(A,B).
doi:10.1371/journal.pone.0043001.g003
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d2(q)~
Xnt

j~1

(m̂m1
1,j{m1

1(tj ; q))2z0:01
Xnt

j~1

(m̂mc,2
11,j{mc,2

11 (tj ; q))2 ð10Þ

(with the same initial guess and MATLAB trust region algorithm

as for (9), gradient information again provided by the adjoint

method) led - after only 33 iterations - to an improved parameter

estimate q̂q whose maximal relative error (again in the second

component) was reduced to 22:44%, see Figures 6 C and D for

details.

Discussion

Our numerical tests by means of reference models from the

literature show that comparing sample moments with theoretical

moments may enhance parameter identifiability and the perfor-

mance of parameter identification algorithms in comparison to

mean-only approaches. These observations can be explained by an

examination of the cost functions that have been used for the

parameter inference. In the linear birth death example the mean

expression (2) shows that any parameter combination (~qq1,~qq2)T

with ~qq1{~qq2~{1 equally well explains the sample mean data as

the true parameter vector q�~(3,4)T . The failure of the MCMC

approach based on the likelihood (6) can be understood from

plotting the negative log-likelihood along the line ~qq2~~qq1z1 which

assumes its minimum at the boundary imposed by parameter

positivity and far away from q�. With respect to the cost function

(4) we have d1(~qq)~d1(q�), see Figure 7 A. This non-identifiability

is also revealed by a parameter sensitivity analysis [26], [27], [28],

[29], [30] based on an eigenvector decomposition of the Hessian

matrix

H1
ij(q)~

Ld1(q)

LqiLqj

, i,j[ 1,2f g

of d1. If evaluated at q� the two (normalized) eigenvectors are

v1(q�)~½{
ffiffiffiffiffiffiffi
0:5
p

,
ffiffiffiffiffiffiffi
0:5
p

�T and v2(q�)~½{
ffiffiffiffiffiffiffi
0:5
p

,{
ffiffiffiffiffiffiffi
0:5
p

�T with

corresponding eigenvalues l1(q�)~2:52:104 and l2(q�)~0. While

v1(q�) points towards the direction of maximal curvature (or the

stiff direction), l2(q�)~0 indicates that there is no curvature at all

along the direction of v2(q�) (the soft or sloppy direction). A large

eigenvalue spectrum, which in this extreme example spans

infinitely many decades, is referred to as parameter sloppiness.

The results of the analysis of the Hessian are also reflected in

Figure 7 D which plots the level sets of (4). The cost function is

minimal on a whole line, whose direction is given by v2(q�), rather

than on an isolated point. The situation significantly improves if

instead of (4) the cost function (5) is chosen which also takes the

mismatch between the sample covariance and the analytic

expression (3) into account. The eigenvector decomposition of

the Hessian matrix

Figure 4. Iterative minimization for inference of the dimerisation process parameters. Iterative minimization of the cost functions (7) and
(8) using the MATLAB trust region algorithm with default settings and and initial guess q(0)~½0:0047,0:0177�T . The gradient information both for (7)
and (8) was provided by means of the adjoint method in order to avoid error-prone finite differencing. (A) Plot of the value of the cost function (7) at

the iterate q(j). The optimization algorithm terminates after 180 (outer) iteration steps and yields the minimizer ~qq~½0:005,0:0294�T . (B) Using the cost

function (8) instead of (7), the algorithm already terminates after 55 (outer) iteration steps and yields the minimizer ~qq~½0:005,0:0295�T . (C,E) Plots of

the relative errors 100:
Dq(j)

i {q�i D
Dq�i D

, i~1,2 show that convergence to the true parameter vector q� is obtained (up to a negligible error in q2) if (7) is

chosen as objective function. (D,F) Parameter convergence is also obtained if (8) is chosen instead of (7). However, parameter convergence is much
faster in this case.
doi:10.1371/journal.pone.0043001.g004
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Figure 5. Moment fitting for the p53 model. (A, B) The minimization of the cost function (9) yields a perfect match between the sample mean
data m̂m1

1, m̂m1
2 and the outputs m̂m1

1(:; ~qq), m̂m1
2(:; ~qq) (red curves) of the linear noise approximation for the d1-minimizer ~qq. (C) The plot shows the variance data

m̂mc,2
11 and the model output m̂mc,2

11 (:; q̂q) (green curve) calculated with the minimizer q̂q of the cost function (10). Though the approximation errors are more

pronounced the consideration of m̂mc,2
11 in the inference task yields a improved parameter estimate q̂q.

doi:10.1371/journal.pone.0043001.g005

Figure 6. Iterative minimization for inference of the p53 model parameters. Iterative minimization of the cost functions (9) and (10) using
the MATLAB trust region algorithm with default settings, the initial guess q

(0)
i ~(1z0:1:({1)i)q�i , i~1, . . . ,7, and the adjoint method for providing

the gradient information. (A) Plot of the value of the cost function at the iterate q(j). The optimization algorithm terminates after 120 (outer) iteration
steps and yields the minimizer ~qq. (B) Plot of the relative errors of ~qq in % showing a huge deviation from the true parameter q� in the second and
fourth components. (C) Plot of the value of the cost function at the iterate q(j) . The optimization algorithm terminates after only 33 (outer) iteration
steps and yields the minimizer q̂q. (D) The quality of the parameter estimate q̂q has significantly improved in comparison to ~qq.
doi:10.1371/journal.pone.0043001.g006

Moment Fitting for Rate Parameter Inference
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H2
ij(q)~

Ld2(q)

LqiLqj

, i,j[ 1,2f g

of (5) evaluated at q� yields the eigenvectors v1(q�)~

½{0:749,0:663�T and v2(q�)~½{0:663,{0:749�T with corre-

sponding eigenvalues l1(q�)~1:44:105 and l2(q�)~306:14.

Though the directions of largest and smallest curvature are similar

as before, the Hessian now is regular with a narrow span of the

eigenvalues. A plot of the level sets, see Figure 7 D, indicates that -

as opposed to d1 - the function d2 admits a landscape with a sharp

trough in the neighborhood of the isolated minimizer. The unique

parameter identifiability is also evident from the quadratic

behaviour of the cost function d2 along the line ~qq2~~qq1z1 (with

direction ½{
ffiffiffiffiffiffiffi
0:5
p

,{
ffiffiffiffiffiffiffi
0:5
p

�T ), see Figure 7 C, with its global

minimizer corresponding to q�. These results hold true if the

weighting parameter w2 in the definition of d2 is changed from 0:1
to, e.g., 1 or 0:01.

For the dimerisation example the level sets of the cost function

(7) are shown in Figure 8 A. In this example the mean sample data

is sufficient to uniquely determine the model parameter vector q�,
at least if a nearby initial guess is chosen. But even then the iterates

of a gradient based optimizer may be forced to slowly wander

along the elongated and flat valley of d1 before they reach the

unique minimizer. In comparison, the level sets of the alternative

cost function (8) show a considerably smaller ratio between the

major and minor axes of the ellipses, see Figure 8 B, such that the

iterates may faster approach the minimizer. The condition

number of the Hessian matrix H1(q�) for d1 is given by

k1(q�)~lmax(q�)=lmin(q�)~1911:3, while for the Hessian

H2(q�) for d2 a reduction by 25% is achieved. The observed

algorithmic improvement is in agreement with gradient based

optimization theory [43] according to which the rate of

convergence improves if the condition number of the Hessian

matrix, also reflected in the contour plots of the level sets,

decreases.

Similar conclusions can be drawn from the p53 example in

which we put focus on the practicability of our approach in case of

partial state observations. The parameters in this example have

different units and varying scales. As a consequence we build the

Hessian matrices of the cost functions d1 and d2

Hk
ij (q)~

Ldk(q)

L log (qi)L log (qj)
, i,j[ 1,2f g, k~1,2

Figure 7. Distance functions for the linear birth death process. The problem of minimizing the least squares error between the sample mean

and the analytic mean m1(q) has infinitely many global solutions q(s)~½0,1�Tzs½1,1�T with s[Rz
0 . (A) Values of the cost function d1(q(s)) from (4) for

s[½0,6�. (B) Values of the negative log-likelihood function { log (L(q(s))) for s[½0,6� with L(q) as in (6). The likelihood L(q(s)) is maximal for s~0 which

explains the observation made in Figure 3. (C) Values of the cost function d2(q(s)) from (5) for s[½0,6�. The function also measures the distance

between the second order sample and analytic moments and as a consequence admit a unique global minimum at s&3 corresponding to the true

parameter solution, i.e., q(3)~½3,4�T ~q� . In this example, s&3 and d1(q(s))=0 are due to the finite sampling number N . (D) Level sets of the cost

function d1 indicate extreme parameter sloppiness and infinitely many parameter solutions. (E) Ellipsoidal level sets of the cost function d2 in the

neighbourhood of the true solution q� indicate its unique identifiability.
doi:10.1371/journal.pone.0043001.g007
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by differentiation with respect to log (q) in order to take relative

changes in parameter values into account [27]. A relative

comparison of the two condition numbers k1(q�) and k2(q�) yields

k2(q�){k1(q�)

k1(q�)
~{0:85

which corresponds to a reduction of the eigenvalue ratio

lmax(q�)=lmin(q�) by 85% when using d2 instead of d1. This

improvement is even more pronounced if the derivatives in the

Hessian are taken with respect to q and is also clearly reflected in

Figure 6.

Based on accepted mathematical descriptions of stochastic reaction

networks in well-mixed conditions we have introduced the concept of

moment fitting for parameter inference from time series data of

repeated measurements. In numerical tests for simple reference

examples we observed that if the common comparison of sample

mean data with the parameter-dependent mean expression derived

from the model is augmented by consideration of higher moments

such as covariance, improvements both with respect to parameter

estimate accuracy and algorithmic efficiency are achieved.

Our approach offers opportunities for extension and further

research. In case of larger models and real data, then also affected

by external noise, measures against data instability and overfitting

become necessary. The regularization theory of nonlinear inverse

problems [7], [44] suggests the application of stopping rules for the

iterative minimization of cost functions in dependence on the

quality of the data. Stopping for overfitting avoidance is also

recommended from the view point of data mining [35], then also

referred to as pruning. Pruning in order to obtain a simple

description that still fits the data can also be realized by augmenting

the cost function with sparsity enforcing ‘p-priors or penalties, i.e.,

dreg(q)~d(q)zl
X

Dqi Dp, 0vpƒ1,

see [45], [46], [47]. In the context of parameter inference for

biochemical reaction networks ‘p-penalization has been previously

used in [48], [49], [50]. As the eigenvalues of the Hessian of a cost

function d also reflect the degree of ill-conditioning of the

parameter inference problem, our examples show that even the

pure consideration of higher moments may have a beneficial effect

with respect to the amplification of measurement errors. Other

possible expansions of the moment fitting approach include the

consideration of more elaborate state observation operators,

unknown initial conditions or reaction rate parameters that

themselves are treated as stochastic quantities.

In our examples we used squared errors to build the distance

functions. This not only allowed us to numerically demonstrate the

advantages of moment fitting but also to give explanations of the

results in terms of Hessian matrices which in the squared error

case can be computed in a straightforward manner. Furthermore,

the squared error approach enables the straightforward utilization

of the adjoint method, see Materials and Methods, for providing

gradient information to the optimizer. Still, as moments of

different order may be correlated [51], distance functions based

on generalized least squares [52] might be an alternative in more

demanding situations which then would require to provide

covariance estimates for the moments to be fitted. Another idea

is to use cost functions that are motivated by f -divergences [53] for

the comparison of probability distributions such as the Hellinger

divergence or the Kullback-Leiber divergence. For instance, the

KL-divergence for multivariate normal distributions would suggest

the cost function

Figure 8. Level sets of the cost functions for the dimerisation process. (A) The level sets of the cost function d1 reveal an elongated and flat
valley in which the iterates of gradient based optimizers may only slowly converge towards the minimizer q� . (B) The level sets of the cost function d2

form ellipses with smaller ratio of major axis over minor axis and correspond to a more pronounced trough. As a consequence the iterates converge
faster towards q� .
doi:10.1371/journal.pone.0043001.g008
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d(q)~
1

2

Xnt

i~1

log
Dm̂mc,2,o

j D
Dmc,2,o(tj ; q)D

 !
z trace m̂mc,2,o{1

j
:mc,2,o(tj ; q)

� �(

z m̂m1,o
j {m1,o(tj ; q)

� �
m̂mc,2,o{1

j m̂m1,o
j {m1,o(tj ; q)

� �o

but then poses severe challenges with respect to an efficient

computational realization.

The moment fitting approach presented in this paper rests upon

the availability of sufficient data for the estimation of higher

moments as only then more traditional mean-only approaches

may be outperformed. This raises the question of selecting the

sample size N in the design of the experiments. In order to go

beyond heuristics it is the goal of our future research to combine

error estimates of sample moments, e.g.,

E½(m̂m1{m1)2�~ mc,2ffiffiffiffiffi
N
p
� �2

,

E½(m̂mc,2{mc,2)2�~ 1

N
mc,4{

N{3

N{1
mc,2
� �2

� �
,

see [54], with error estimates for the theoretical moment

approximations described by the ODE system (21), see [55],

[56], [41], [37] for preliminary results. An integrative error

analysis may then also guide the choice of the moment order �kk of

truncation and the choice of the factors wk in weighted cost

functions.

Materials and Methods

Modelling Strategies
In well-mixed conditions a network of l coupled chemical

reactions R1,:::,Rl involving n chemical species X1, . . . ,Xn can be

characterized by the formalism [2]

Rj : s{j1X1z . . . zs{jnXn�?
qj

szj1X1z . . . zszjnXn,

where the integers s{ji and szji, i~1, . . . ,n denote the numbers of

molecules consumed and produced in a single step of reaction Rj .

If x[Nn
0 represents the vector of species molecule numbers and

sij~szji{s{ji denote the components of the stoichiometric

matrix S[Zn|l , then the state vector is updated according to

x?xzS:,j whenever reaction Rj fires. Each reaction Rj is

associated with a rate law (or hazard function) hj(x,qj) and a

stochastic rate constant qj .

Let p(x,t) denote the probability of being in state x at time t
given the initial condition x(0). Then, the time evolution of p(x,t)
is described by the Kolmogorov differential equation (or chemical

Master equation)

Lp

Lt
(x,t)~

Xl

j~1

p(x{S:,j ,t)hj(x{S:,j ,qj){p(x,t)hj(x,qj)
	 


: ð11Þ

With h(x,q)~(h1(x,q1), . . . ,hl(x,ql))
T[Rl the diffusion approx-

imation to the true process is based on the chemical Langevin

equation [5]

dx~Sh(x,q)dtz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S diag(h(x,q))S’

p
dW , ð12Þ

where dx is the change in state x(t)[Rn in an infinitely small time

interval dt and dW is the increment of a n-dimensional Wiener

process. In the stochastic differential equation (12) the stochastic

perturbations are modelled by a state and rate parameter

dependent Gaussian noise and the associated probability density

function p(x,t) is described by the Fokker-Planck equation

Lp

Lt
(x,t)~{

Xn

i~1

L
Lxi

Sh(x,q)½ �ip(x,t)
	 


z
1

2

Xn

i,k~1

L2

LxiLxk

S diag(h(x,q))ST
� �

ik
p(x,t)

n o
:

ð13Þ

An alternative approximative description of the stochastic

process is given by the linear noise approximation [6] which is

derived from a Taylor expansion of (11) in powers of 1=
ffiffiffiffi
V
p

where

V denotes the volume of the reactive system. This leads to a

decomposition of the molecule concentration vector

c(t)~x(t)=V[Rn according to

c(t)~Q(t)z
1ffiffiffiffi
V
p j(t) ð14Þ

into a deterministic part Q that solves the macroscopic rate

equation

LQ

Lt
(t)~Sh(Q,q) ð15Þ

and a stochastic process j described by a linear diffusion equation

dj~S
Lh

LQ
(Q,q)jdtzS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag(h(Q,q))

p
dW

with the increment dW of a l-dimensional Wiener process.

Finally, the deterministic modelling approach [1], [57] ignores

(if the justifying assumptions are satisfied) random fluctuations due

to the stochasticity of the reactions and describes the time course of

the species concentration vector c(t) by the set of ordinary

differential equations

Lc

Lt
(t)~Sh(c,q) ð16Þ

which corresponds to (15) with the setting Q(t)~c(t).

Moments of the Random State Variable
Depending on the chosen modelling approach the state variable

of a stochastic biochemical reaction network is described as a

discrete or a continuous random quantity. In the discrete case

associated to the Kolmogorov differential equation (11) the first

order moments [58] of the n-dimensional state variable x(t) are

given by
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m1
r1,...,rn

½x(t)�~E P
n

i~1
x

ri
i (t)

 �

~
X
~xx[X

P
n

i~1
~xx

ri
i (t)

� �
p(~xx,t), with r1z � � �zrn~1,

where E is the expectation operator and X denotes the countable

state space. Using this formalism the n-dimensional mean vector

m1½x(t)� of x(t) is described by

m1½x(t)�~

m1
1,0,...,0(x,t)

..

.

m1
0,...,0,1(x,t)

0
BB@

1
CCA~

E½x1(t)�
..
.

E½xn(t)�

0
BB@

1
CCA~

P
~xx[X

~xx1(t)p(~xx,t)

..

.

P
~xx[X

~xxn(t)p(~xx,t)

0
BBBB@

1
CCCCA:

In general, the k-th order moments [58] are given by

mk
r1,...,rn

(x,t)~E½P
n

i~1
x

ri
i (t)�

~
X
~xx[X

P
n

i~1
~xx

ri
i (t)

� �
p(~xx,t), with r1z � � �zrn~k

ð17Þ

and the k-th central moments [58] are given by

mc,k
r1,...,rn

(x,t)~E½P
n

i~1
xi(t){E½xi(t)�ð Þri �

~
X
~xx[X

P
n

i~1
(~xxi(t){E½xi(t)�)ri

� �
p(~xx,t)

with r1z � � �zrn~k. For instance, the covariance matrix

mc,2½x(t)�[Rn|n of x(t) is described by the 2-nd order central

moments according to

mc,2½x(t)�~

mc,2
2,0,...,0(x,t) mc,2

1,1,...,0(x,t) . . . mc,2
1,0,...,1(x,t)

mc,2
1,1,...,0(x,t) mc,2

0,2,...,0(x,t) . . . mc,2
0,1,...,1(x,t)

..

.
P

mc,2
1,0,...,1(x,t) mc,2

0,1,...,1(x,t) . . . mc,2
0,0,...,2(x,t)

0
BBBBB@

1
CCCCCA:

In case the state space of the biological system is modelled as a

continuous random variable x its moments are described the same

way after switching from the summation over a probability mass

function p(x,t) to an integration over a probability density

function p(x,t) as, e.g., defined by the Fokker Planck equation

(13). For instance, the k-th order moments then are given by

mk
r1,...,rn

(x,t)~E½P
n

i~1
x

ri
i (t)�~

ð?
{?

. . .

ð?
{?

P
n

i~1
~xx

ri
i (t)

� �

p(~xx,t)d~xx1 . . . d~xxn, with r1z � � �zrn~k:

ð18Þ

Differential Equations for the Moments
Based on the differential equations (11) and (13) for the

probability mass and density functions, differential equations that

approximatively describe the time evolution of the k-th order

moments (17) and (18) or their centered counterparts can be

derived. For instance, the time evolution of the mean vector

m1½x(t)�[Rn of the discrete state x(t)[Nn
0 is given by

L
Lt

m1½x(t)�~
X
~xx[X

~xx
Lp

Lt
(~xx,t)~SE½h(x(t),q)�, ð19Þ

see [2], [37]. Note that (19) corresponds only to the deterministic

rate equation (16) in case of a propensity function h(x,q) that is

linear in x as

E½h(x(t),q)�~h(m1½x(t)�,q)

holds only then. Another example is the time evolution of the k-th

order moments of a continuous state variable x(t)[R which based

on the Fokker Planck equation (13) for n~1 is given by

L
Lt

mk½x(t)�~ L
Lt

ð?
{?

~xxkp(~xx,t)d~xx

~k

ð?
{?

~xxk{1Sh(~xx,q)p(~xx,t)d~xxz
k(k{1)

2ð?
{?

~xxk{2S diag(h(~xx,q))ST p(~xx,t)d~xx

~kE½x(t)k{1Sh(x(t),q)�z k(k{1)

2

E½x(t)k{2S diag(h(x(t),q))ST �:
ð20Þ

The simple example l~n~1 with h(x,q)~qx2 in (20) yields.

kE½x(t)k{1Sh(x(t),q)�~kqE½x(t)kz1�~kqmkz1½x(t)�

and implies the dependency of the ordinary differential equation

for mk½x(t)� on the higher moment mkz1½x(t)�. This type of

dependency is typical for the moments mk
r1,...,rn

½x(t)� or

mk
r1,...,rn

½x(t)� whenever h(x,q) is a nonlinear function of x and

may render the exact differential equations for their time evolution

impossible to solve analytically or numerically. The problem may

be overcome by the technique of moment closure [37], [38], [39],

[40], [41] which sets moments or central moments above a certain

order �kk of interest equal to zero or alternatively replaces them by

expressions depending only on moments up to order �kk. As a result

one obtains (manually or supported by symbolic computation tools

[39], [59]) a self-contained (or closed) set of coupled ordinary

differential equations

mt(t)~F (m(t),q), ð21Þ
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in which m(t)~ m1(t),m2(t), . . . ,m
�kk(t)

� �
or m(t)~ m1(t),mc,2(t) . . . ,

�
mc,�kk(t)Þ approximatively describes the time evolution of the true

moments m(t)~ m1
r1,...,rn

½x(t)�,m2
r1,...,rn

½x(t)�, . . . ,m
�kk
r1,...,rn

½x(t)�
� �

or

m(t)~ m1
r1,...,rn

½x(t)�,mc,2
r1,...,rn

½x(t)�, . . . ,mc,�kk
r1,...,rn

½x(t)�
� �

. In our no-

tation we emphasize the dependency of m on the rate parameters

by writing the solution of (21) (to be supplemented by appropriate

initial conditions) as m(t; q). The final form of (21) depends on the

underlying modelling approach, the choice of �kk and the choice of

the closure technique.

As an alternative to the moment closure approach, a closed

form (21) for the approximative description of the moment time

course for �kk~2 can be obtained from the linear noise

approximation [6], [31], [19] which with m(t; q)~ m1(t; q),mc,2
�

(t; q)Þ as approximation of m m1½x(t)�,mc,2½x(t)�
� �

yields the

nonlinear ODE system

L
Lt

m1(t)~Sh(m1(t),q),

L
Lt

mc,2(t)~Shx(m1(t),q)mc,2(t)zmc,2(t)hx(m1(t),q)T ST

zS diag(h(m1(t),q))ST :

ð22Þ

Here, hx(x,q)[Rl|n denotes the Jacobian matrix of h(x,q) with

respect to x.

Test Models
Linear birth and death process. A classic and illustrative

reaction system widely studied in the literature is the linear birth

and death process [60], [58], [2] for the species X with molecule

number x[N0. The birth and death reactions are given by

R1 : X�?
q1

2X

R2 : X�?
q2 1

with the associated stoichiometric matrix S and the rate

functions h

S~ 1 {1ð Þ, h(x,q)~
h1(x,q1)

h2(x,q2)

� �
~

q1x

q2x

� �
:

In all simulations of the discrete stochastic dynamics of the

model we chose the rate parameters q�~(q�1,q�2)T~(3,4)T and the

initial condition x(0)~50.

With respect to the parameter inference problem we suppose

that the state variable

x~ x(t) D t[½0,tf �
	 


[F (½0,tf �,N0)

can be only partially observed at the nt discrete times

tjz1~tjz(jz1)
tf

nt

, j~0, . . . ,nt{1, ð23Þ

obtained from an (without loss of generality) equidistant

discretization of the time interval ½0,tf � with t0~0. Then, this

gives rise to a state observation operator

O : F (½0,tf �,N0)?R1|nt , x?y~(x(t1), . . . ,x(tnt )), ð24Þ

such that the partial state observation can be compactly described

as y~Ox. Here, F (½0,tf �,N0) denotes the set of all functions from

½0,tf � to N0. In the example we chose the setting tf ~8:5 and

nt~85. In particular, we do not consider the times and types of

the reactions that are fired during the realisation of the stochastic

process as amenable to our observations.

Dimerisation kinetics. A simple reaction system featuring a

nonlinear rate function is the dimerisation process [2], [39]. For

the species P and P2 with molecule numbers x1 and x2 we

consider

R1 : 2P�?
q1

P2

R2 : P2�?
q2

2P:

The conservation of the total number x0 of molecules

x1z2x2~x0

allows to formulate the stoichiometric matrix S and the rate

functions h in terms of P only, i.e., with X~P and x~x1[N0 we

obtain

S~ {2 2ð Þ, h~
h1(x,q1)

h2(x,q2)

� �
~

q1
x(x{1)

2

q2
x0{x

2

0
B@

1
CA

for a one-dimensional state space. In all simulations of the discrete

stochastic dynamics of the model we chose the rate parameters

q�~(q�1,q�2)T~(0:005,0:03)T , the total molecule number x0~301

and the initial condition x(0)~x0. With respect to the parameter

inference problem we chose the same observation operator O as in

(24), now with the setting tf ~6:7 and nt~67.

p53 Signalling System. For testing the practicability of our

approach in case of partial state observations we have chosen a

model for the p53 signalling system which features a feedback loop

between the tumor suppressor p53, the oncogene Mdm2 and its

precursor pre Mdm2. The model was introduced in [61] and also

studied in [31]. With X~(p53, pre Mdm2,Mdm2) and the

associated vector x~(x1,x2,x3)T[N3
0 of molecule copy numbers,

its stoichiometric matrix S and rate functions h are given by
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S~

1 {1 {1 0 0 0

0 0 0 1 {1 0

0 0 0 0 1 {1

0
BB@

1
CCA,

h(x,q)~

h1(x,q1)

h2(x,q2)

h3(x,q3)

h4(x,q4)

h5(x,q5)

h6(x,q6)

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

~

q1

q2x1

q3a
x1x3

x1zq3b

q4x1

q5x2

q6x3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

In all simulations of the discrete stochastic dynamics of the

model we chose the rate parameters

q�~½q�1,q�2,q�3a,q�3b,q�4,q�5,q�6�
T
~½90,0:002,1:7,1,1:1,0:8,2�T and

the initial conditions x(0)~½10,10,80�T . With respect to the

parameter inference problem we chose the time discretization as in

the previous examples and supposed that either the component x1

or both the components x1 and x2 are amenable to observations.

The corresponding observation operators are

O1 : F (½0,tf �,N3
0)?R1|nt , x?y~ x1(t1) . . . x1(tnt )

� �

and

O2 : F (½0,tf �,N3
0)?R2|nt , x?y~

x1(t1)

x2(t1)

. . .

. . .

x1(tnt )

x2(tnt )

� �
:

The time observation parameters were chosen as tf ~11:1 and

nt~111.

Data Generation and Sample Moments
All molecular copy numbers used in our tests have been

generated by MATLAB [42] simulations of the discrete stochastic

model dynamics using the Gillespie algorithm [4]. In general, a

single realization of the process allows to mimic a single

observation of the system giving rise to an experimental

concentration data matrix ŷy[Rd|nt . Here, nt is the time

discretization parameter and d is the number of observable

components of the state variable as defined by the state

observation operator

O : F (½0,tf �,Nn
0)?Rd|nt , x?y:

A N-time repetition of the experimental observation of the

system (or the computational realization of the stochastic process)

then yields the sequence

ŷy1, . . . ,ŷyN ð25Þ

of data matrices. For each discrete time point tj the data matrix ŷyj

allows to calculate sample moments [62], [63]. For instance, the

sample mean of the observables at time tj is given by

m̂m1,o
j ~

1

N

XN

i~1

ŷyi
:,j[Rd ,

while the empirical covariance matrix of the observables at time tj

is given by

m̂mc,2,o
j ~

1

N{1

XN

i~1

ŷyi
1,j{m̂m1,o

1,j

� �
ŷyi

1,j{m̂m1,o
1,j

� �
. . . ŷyi

1,j{m̂m1,o
1,j

� �
ŷyi

d,j{m̂m1,o
d,j

� �
..
.

P
..
.

ŷyi
d,j{m̂m1,o

d,j

� �
ŷyi

d,j{m̂m1,o
d,j

� �
. . . ŷyi

d,j{m̂m1,o
d,j

� �
ŷyi

d,j{m̂m1,o
d,j

� �

0
BBBB@

1
CCCCA

[Rd|d ,

in which ŷyi
s,j , m̂m1,o

s,j denote the s-th components of the vectors ŷyi
j ,

m̂m1,o
j . An alternative covariance matrix estimate that is more

suitable if N%d is not satisfied is given in [64]. In general, the data

tensor ŷy[Rd|nt|N allows to compute the tupel

m̂mo~ m̂mo
1, . . . ,m̂mo

nt

� �

of length nt, where m̂mo
j denotes the sample moments of the

observable state components up to the order �kk at time tj . An

example with �kk~2 is

m̂mo~ (m̂m1,o
1 ,m̂mc,2,o

1 ), . . . ,(m̂m1,o
nt

,m̂mc,2,o
nt

)
� �

with sample mean vector m̂m1,o
j and sample covariance matrix m̂mc,2,o

j

at time tj .

Cost Functions and Adjoint Method
If we split the state variable x[Nn

0 into the observable part

xo[Nd
0 and the unobservable part xu[Nn{d

0 according to

x~½xo; xu�, this separation carries over to the k-th order moments

of x approximatively described by the ODE system (21), i.e.,

m(:; q)~½mo(:; q); mu(:; q)�. This is to be understood in the sense

that there exists a (linear) splitting operator N with

mo(:; q)~N m(:; q):

Then, in order to compare the parameter dependent solution

component mo(:; q) of the ODE system (21) with the available

sample moment tuple m̂mo various distance measures

d(m̂mo,Dmo(q)) ð26Þ

may be utilized where the time discretization operator D simply

evaluates the time-dependent mo(:; q) function at the discrete times

tj of (23), i.e.,
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D : mo(:; q)?(mo(t1; q), . . . ,mo(tnt ; q)):

Examples for �kk~2 with m(:; q)~(m1(:; q),mc,2(:; q)) include

d(m̂mo,DN m(q))~w1

Xnt

j~1

Em̂m1,o
j {m1,o(tj ; q)E2

2

zw2

Xnt

j~1

Em̂mc,2,o
j {mc,2,o(tj ; q)E2

2,

d(m̂mo,DNm(q))~w1

Xnt

j~1

(m̂m1,o
j {m1,o(tj ; q))T mc,2,o(tj ; q){1

(m̂m1,o
j {m1,o(tj ; q))zw2

Xnt

j~1

Em̂mc,2,o
j {mc,2,o(tj ; q)E2

2,

d(m̂mo,DN m(q))~w1

Xnt

j~1

Xd

s~1

1

mc,2,o
ss (tj ; q)

(m̂m1,o
s,j {m1,o

s (tj ; q)�)2

zw2

Xnt

j~1

Em̂mc,2,o
j {mc,2,o(tj ; q)E2

2,

where, in general, wk denotes the weight associated to the k-th

order moment comparison. As shown in the results section the

choice wk=0 for kw1 can make a decisive difference in the

parameter inference problem for stochastic biological models. As

lower order statistical moments in general are easier to approx-

imate an ordering of the weights according to wkwwkz1 seems

reasonable. In our tests we chose the weights by trial and error

heuristics. Though we observed comparable performances for

weights within a proper range, rules for the choice of wk in

dependence on k and the quality of data are desirable, see

Discussion.

With respect to parameter inference the difference function (26)

can be utilized in various manners. For instance, it can be

minimized by deterministic or stochastic optimization routines, it

can be incorporated as a cost function in approximate Bayesian

methods or used in building Kalman filters or Luenberger type

observers. In the context of gradient based optimization, the

gradient information can be efficiently provided by means of the

so-called adjoint technique whenever d can be written as a

parameter dependent S:,:Tq or parameter independent S:,:T inner

product of the residual r(q)~m̂mo{DN m(q) with itself, see

Supporting Information S2.

Supporting Information

Supporting Information S1 Moment Equations for Test
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(PDF)

Supporting Information S2 Adjoint Method for Gradient
based Optimization.

(PDF)
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