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Abstract: Acetylsalicylic acid (aspirin) exhibits a broad range of activities, including analgesic, an-
tipyretic, and antiplatelet properties. Recent clinical studies also recommend aspirin prophylaxis
in women with a high risk of pre-eclampsia, a major complication of pregnancy characterized by
hypertension. We investigated the effect of aspirin on mesenteric resistance arteries and found out-
discovered the molecular mechanism underlying this action. Aspirin (10−12–10−6 M) was tested on
pregnant rat mesenteric resistance arteries by a pressurized arteriography. Aspirin was investigated
in the presence of several inhibitors of: (a) nitric oxide synthase (L-NAME 2 × 10−4 M); (b) cyclooxy-
genase (Indomethacin, 10−5 M); (c) Ca2+-activated K+ channels (Kca): small conductance (SKca,
Apamin, 10−7 M), intermediate conductance (IKca, TRAM34, 10−5 M), and big conductance (BKca,
paxilline, 10−5 M); and (d) endothelial-derived hyperpolarizing factor (high KCl, 80 mM). Aspirin
caused a concentration-dependent vasodilation. Aspirin-vasodilation was abolished by removal
of endothelium or by high KCl. Furthermore, preincubation with either apamin plus TRAM-34
or paxillin significantly attenuated aspirin vasodilation (p < 0.05). For the first time, we showed
that aspirin induced endothelium-dependent vasodilation in mesenteric resistance arteries through
the endothelial-derived hyperpolarizing factor (EDHF) and calcium-activated potassium channels.
By activating this molecular mechanism, aspirin may lower peripheral vascular resistance and be
beneficial in pregnancies complicated by hypertension.

Keywords: endothelial cells; smooth muscle cells; relaxation; pre-eclampsia; hypertension; calcium-
activated potassium channels

1. Introduction

The use of aspirin has been growing over the past decades. Initially, it was used as
an analgesic, anti-inflammatory, and antipyretic drug, as well as an antiplatelet agent due
to its ability to inhibit platelet aggregation [1,2]. Recently, aspirin has been suggested for
use in pregnancy with high cardiovascular risk to prevent the development of gestational
hypertensive disorders, such as pre-eclampsia (PE) [3,4]. PE is a major complication of
pregnancy and is one of the leading causes of maternal and perinatal morbidity and
mortality [5]. Currently, there is no cure for PE; the most effective management of the
disease is delivery [6], which can worsen neonatal outcomes if it needs to be initiated early
in pregnancy. Therefore, early-onset PE requires treatments that prevent preterm birth to
enable optimal intrauterine fetal growth [6].

Clinical studies investigating the benefits of administering aspirin in PE produce
contradictory results. In all likelihood, it is due to the different gestation period that aspirin
treatment was initiated and also to the different doses used. In fact, the benefit of aspirin
was only observed in clinical studies that initiated aspirin treatment before the 16th week
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of pregnancy and at low- and mid-dose [7]; in contrast, aspirin in late pregnancy and at
a high dose did not show beneficial effect [8]. However, the mechanisms through which
aspirin acts remain unclear. Few studies have suggested a beneficial effect of aspirin on
endothelial function, vascular activity, and a possible overall positive effect on the vascular
system [9–15].

In normal pregnancy, the maternal vasculature undergoes a significant change [16] to
meet the needs of the placental–fetal growth, including a reduction in the total peripheral
vascular resistance (PVR) [17]. On the other hand, PE is characterized by an increase in
PVR as a consequence of endothelial dysfunction [18]. The endothelium, the inner layer
of the blood vessels, plays an important role in the regulation of the vascular tone by the
release of several relaxing and contracting factors that act on the nearby smooth muscle
cells [19,20]. In PE, an imbalance between the endothelial-derived factors, named endothe-
lial dysfunction, has been reported [21], associated with microcirculatory disorder [22,23].

Vascular studies of PE are often carried out on the mesenteric vasculature, since it
contributes significantly to the total PVR in pregnancy. In this study, we used mesenteric
resistance arteries (MAs) from pregnant rats to investigate the effect and the mechanism of
action of aspirin on the systemic vasculature. Our results show, for the first time, the molec-
ular mechanisms that underlie aspirin vasodilation of mesenteric arteries, and suggest the
splanchnic circulation as a possible target and aspirin benefit in hypertensive disorders
of pregnancy.

2. Results

Aspirin was tested on preconstricted MA and induced a dose-dependent vasodilation,
reaching 62 ± 11% at the highest concentration of 10−6 M. Meanwhile, the vehicle for as-
pirin, ethanol, induced much less vasodilation (22 ± 6%, at 10−6 M), which was statistically
different compared to the vasodilation caused by aspirin (p < 0.001, Figure 1).
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Figure 1. Acetylsalicylic acid vasodilation on mesenteric arteries. Acetylsalicylic acid (ASA) and its 

vehicle ethanol (ETOH) were tested on phenylephrine preconstricted mesenteric arteries isolated 

from gravid rats. Data are reported as mean ± SEM, n = number of experiments, ***p < 0.001 (two-

way ANOVA). 

To determine whether the endothelium was involved in the aspirin vasodilation, a 

dose–response to aspirin was carried out on both intact and denuded MA. Interestingly, 

removal of the endothelium completely abolished the vasodilation in response to aspirin 

(Figure 2). 

Figure 1. Acetylsalicylic acid vasodilation on mesenteric arteries. Acetylsalicylic acid (ASA) and its
vehicle ethanol (ETOH) were tested on phenylephrine preconstricted mesenteric arteries isolated
from gravid rats. Data are reported as mean ± SEM, n = number of experiments, *** p < 0.001
(two-way ANOVA).

To determine whether the endothelium was involved in the aspirin vasodilation,
a dose–response to aspirin was carried out on both intact and denuded MA. Interestingly,
removal of the endothelium completely abolished the vasodilation in response to aspirin
(Figure 2).
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Figure 3. Effect of acetylsalicylic acid in the presence of nitric oxide synthase and cyclooxygenase 

inhibitors. Acetylsalicylic acid was tested on phenylephrine preconstricted mesenteric arteries iso-

lated from gravid rats in the absence (Control) and in the presence of inhibitors of either nitric oxide 

synthase (L-NAME, 2x10−4 M), or cyclooxygenase (Indom., 10−5 M). Data are reported as mean ± 

SEM, n = number of experiments. 

To find out if the EDHF was involved in aspirin vasodilation, MA were precon-

stricted with high KCl (80mM), which completely abolished the vasodilator effect of aspi-

rin (p < 0.001, Figure 4). 

Figure 2. Acetylsalicylic acid effect on entire and denuded mesenteric arteries. Acetylsalicylic
acid was tested on phenylephrine preconstricted mesenteric arteries entire (Control) and without
endothelium (Denuded) isolated from gravid rats. Data are reported as mean ± SEM, n = number of
experiments. *** p < 0.001 (two-way ANOVA).

Then, to determine the endothelial-derived relaxation factors involved in the vasodila-
tion of aspirin, it was tested in the presence of inhibitors of NOS (L-NAME, 2 × 10−4 M)
and COX (indomethacin, 10−5 M). Vasodilation to aspirin was not affected by either L-
NAME or indomethacin (Figure 3).
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Figure 3. Effect of acetylsalicylic acid in the presence of nitric oxide synthase and cyclooxygenase
inhibitors. Acetylsalicylic acid was tested on phenylephrine preconstricted mesenteric arteries
isolated from gravid rats in the absence (Control) and in the presence of inhibitors of either nitric
oxide synthase (L-NAME, 2 × 10−4 M), or cyclooxygenase (Indom., 10−5 M). Data are reported as
mean ± SEM, n = number of experiments.

To find out if the EDHF was involved in aspirin vasodilation, MA were precon-
stricted with high KCl (80mM), which completely abolished the vasodilator effect of aspirin
(p < 0.001, Figure 4).
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Figure 4. Effect of acetylsalicylic acid on preconstricted arteries. Acetylsalicylic acid was tested on 

mesenteric arteries isolated from gravid rats, preconstricted with phenylephrine (Control) or with 

high KCl (80 mM), which induces depolarization (Depol). Data are reported as mean ± SEM, n = 

number of experiments, ***p < 0.001 (two-way ANOVA). 

In addition, vasodilation to aspirin was significantly reduced following pre-incuba-

tion with apamin (10−7 M, p<0.05) and TRAM-34 (10−5 M, p<0.05) blockers of SKca and IKca 

channels, respectively (Figure 5). 
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Figure 5. Effect of acetylsalicylic acid in the presence of calcium-activated potassium channel inhib-

itors. Acetylsalicylic acid was tested on phenylephrine preconstricted mesenteric arteries isolated 

from gravid rats in the absence (Control) or in the presence of both calcium-activated potassium 

channel small (SkCa,) and intermediate (IKCa) inhibitors Apamin (10−7 M) and TRAM-34 (10−5 M), 

respectively. Data are reported as mean ± SEM, n = number of experiments, *p < 0.05 (two-way 

ANOVA). 

Furthermore, additional experiments demonstrated that vasodilation was signifi-

cantly reduced in MA preincubated with the BKca channel inhibitor, paxillin (10−5 M, 

p<0.05, Figure 6). 

Figure 4. Effect of acetylsalicylic acid on preconstricted arteries. Acetylsalicylic acid was tested
on mesenteric arteries isolated from gravid rats, preconstricted with phenylephrine (Control) or
with high KCl (80 mM), which induces depolarization (Depol). Data are reported as mean ± SEM,
n = number of experiments, *** p < 0.001 (two-way ANOVA).

In addition, vasodilation to aspirin was significantly reduced following pre-incubation
with apamin (10−7 M, p < 0.05) and TRAM-34 (10−5 M, p < 0.05) blockers of SKca and IKca
channels, respectively (Figure 5).
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Figure 5. Effect of acetylsalicylic acid in the presence of calcium-activated potassium channel
inhibitors. Acetylsalicylic acid was tested on phenylephrine preconstricted mesenteric arteries
isolated from gravid rats in the absence (Control) or in the presence of both calcium-activated
potassium channel small (SkCa,) and intermediate (IKCa) inhibitors Apamin (10−7 M) and TRAM-34
(10−5 M), respectively. Data are reported as mean ± SEM, n = number of experiments, * p < 0.05
(two-way ANOVA).

Furthermore, additional experiments demonstrated that vasodilation was significantly
reduced in MA preincubated with the BKca channel inhibitor, paxillin (10−5 M, p < 0.05,
Figure 6).
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Figure 6. Effect of acetylsalicylic acid in the presence of BKca channel inhibitor. Acetylsalicylic acid
was tested on mesenteric arteries isolated from gravid rats in the absence (Control) or in the presence
of big potassium channel (BKca) inhibitor (paxillin, 10−5 M). Data are reported as mean ± SEM,
n = number of experiments, * p < 0.05 (two-way ANOVA).

3. Discussion

This study demonstrates that aspirin is a potent vasodilator of resistance MA isolated
from pregnant rats, and it acts in a dose-dependent manner. The maximum vasodilation of
about 62% was achieved at 10−6 M, although the relaxation effect was already observed at
a very low concentration of 10−11 M, suggesting a high sensitivity of MA to aspirin.

Our results demonstrated that aspirin vasodilation of MA is endothelium-dependent,
is mediated by the EDHF, and involves the calcium-activated potassium channels, SKca,
IKca, and BKca.

Our data on aspirin vasodilation effect agree with previous studies in small uterine
arteries (UA) [13], as well as in rat aortic rings [11], suggesting that aspirin acts on both
resistance and conduit arteries. Small resistance arteries play an important role in the
regulation of the blood flow to the organs, contributing to the total PVR, whose changes
strongly influence blood pressure [24].

We carried out the experiments on resistance MA, which contributes significantly
to total PVR since the mesenteric circulation receives approximately one third of cardiac
output [25].

Our results demonstrate that aspirin vasodilation of MA is completely endothelium-
dependent, since denuded MA were unresponsive to aspirin. This finding is in conformity
with a previous work on UA [13]. However, in UA, aspirin vasodilation was mediated by
nitric oxide (NO) and prostacyclin (PGI2) pathways, while, in MA, it occurred via activation
of EDHF. These differences in the two types of vascular beds, one reproductive and the
other systemic, suggest a vascular region dependency for the mechanisms underlying
the aspirin vasodilation. Our results highlight the important role of EDHF in the aspirin
vasodilation of resistance MA, in agreement with studies showing that EDHF is the major
mediator of dilatation in the mesenteric vascular bed from pregnant rats [26], while, in UA,
vasodilation is mainly mediated by NO [27].

Interestingly, EDHF vasodilation is reduced in complicated pregnancy, such as PE [28],
with consequent increases in PVR, a hallmark of hypertension [29–33]. Therefore, on the
basis of our results, we speculate that aspirin may benefit pregnancy with hypertension
through lowering peripheral vascular tone by activating EDHF.

Several candidate molecules have been proposed for EDHF, such as cytochrome-
P450-derived arachidonic acid metabolite [34] myoendothelial gap junctions [35] and K+

channels [36]. In microcirculatory vascular beds, it is generally accepted that endothelial
SKca and IKca play a pivotal role in mediating EDHF effects [37].
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Our results showed that aspirin effect was reduced by the inhibition of SKca and
IKca, suggesting that the activation of those channels is involved in aspirin vasodilation
of MA. Although, in the present study, the contribution of each channel was not studied,
this possibility requires further investigation.

In addition, we also showed the involvement of BKca channels in the aspirin vasodila-
tion, since it was reduced by the inhibitor paxillin. This can be interpreted by the support
of the EDHF being the molecule that activates smooth muscle cell BKca channels, leading
to hyperpolarization and vasodilation.

The Kca channels have been reported to be involved in the hyperpolarization and
vasodilation of mesenteric arteries [38,39]. This is in agreement with our results, showing
that aspirin vasodilation was completely inhibited by depolarization induced by high
potassium chloride.

4. Materials and Methods
4.1. Animals

All experiments were conducted in accordance with the ‘3R principles’ (www.nc3rs.
org.uk, accessed on 24 February 2017) to reduce the number of animals and to optimize
experimental protocols for obtaining maximum data from each tested animal, and with the
European Guidelines for the care and use of laboratory animals (Directive 2010/63/EU).
The arteries were isolated from animals used in a study approved by the local ethical
committee at the University of Calabria and the Italian Ministry of Health (n.74/2018-PR).

Sprague–Dawley 12–14-week-old gravid rats at term (20 days of gestation) were
used in the experiments. Animals were housed at a temperature-controlled condition of
22 ◦C ± 2 ◦C and under a 12-h light/dark cycle; food and water were provided ad libitum.
Females were bred overnight in isolated pairs by the placement of a male rat. If a seminal
plug was observed the following morning, the first day of pregnancy was confirmed.

The animals were first euthanized with isoflurane (4%) and then decapitated; once
dead, the abdominal cavity was opened and the entire mesentery was dissected and placed
in a Petri dish containing cold (4 ◦C) HEPES physiological salt solution (HEPES-PSS).

4.2. Vessel Preparation

Arterial segments (2–3 mm) of mesenteric resistance arteries (MA, diameter <300 µm)
were obtained from rats. The segments were dissected free from connective and adipose
tissue and transferred to a chamber of a small-vessel arteriography (Living Systems Instru-
mentation, St. Albans City, VT, USA). One end of the vessel was tied onto a glass cannula
and flushed of any luminal content by increasing the pressure before securing the distal end
onto a second cannula using a servo-null pressure system (Living Systems Instrumentation,
St. Albans City, VT, USA). Before using the vessels for the experiments, the functionality of
both smooth muscle and endothelial cells was tested, respectively, by high KCl (80 mM)
and acetylcholine (10−5 M). The vessels that did not respond to both compounds were
discarded.

4.3. Experimental Protocol

All vessels were continuously superfused with HEPES-buffered physiological saline
solution (HEPES-PSS) at 37 ◦C and pH 7.4. Each vessel was pressurized to 50 mmHg (value
that imitates in vivo conditions) and equilibrated for 45–60 min before the beginning of
each experimentation. Lumen diameter was measured by transilluminating each vessel
segment using a video dimension analyzer (Living Systems Instrumentation, St. Albans
City, VT, USA) in conjunction with data acquisition software (Ionoptix, Westwood, MA,
USA) to continuously record lumen diameter. Following equilibration, all vessels were
preconstricted with phenylephrine to produce a 40–50% reduction in baseline diameter [40].
Once constriction was achieved and stable for about 10 min, aspirin was added in the range
of concentration of 10−12 to 10−6 M, and the resulting vasodilation was recorded. Moreover,

www.nc3rs.org.uk
www.nc3rs.org.uk
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ethanol (ETOH), as a vehicle of aspirin, was tested on phenylephrine-preconstricted artery
at the same amount present in the range 10−12–10−6 M of aspirin.

Aspirin was tested in both intact and denuded (without endothelium) arteries. The en-
dothelium was removed by air perfusion and the effectiveness of this procedure was con-
firmed by the absence of endothelium-dependent vasodilatation to acetylcholine (10–5 M).

To investigate the mechanism of action of aspirin, additional experiments were per-
formed on intact arteries using: (a) Nω-nitro-L-arginine methyl ester (L-NAME, 2 × 10−4 M)
to block nitric oxide synthase (NOS); (b) indomethacin (10−5 M) to block cyclooxygenase
(COX); (c) paxillin (10−5 M) to block BKCa channels; (d) apamin (10−7 M) to block SkCa
channels; (e) TRAM-34 (10−5 M) to block IKCa channels; and (f) HEPES-PSS high KCl
(80 mM) to block endothelial-derived hyperpolarizing factor (EDHF) vasodilation. Vessels
were preincubated with the inhibitors for 20 min before preconstriction with phenylephrine,
and then aspirin was tested.

Aspirin vasodilation was expressed as percent of maximal diameter, which was
determined at the end of each experiment in the presence of a relaxing HEPES-PSS solution
containing diltiazem (10 µM) and papaverine (100 µM).

4.4. Materials

The physiological salt solution HEPES-PSS was freshly prepared for each experiment
and comprised of: NaCl (141.8 mM), KCl (4.7 mM), MgSO4 (1.7 mM), EDTA (0.5 mM),
CaCl2 (2.8 mM), HEPES (10.0 mM), KH2PO4 (1.2 mM), and glucose (5.0 mM). The pH was
adjusted to 7.4 at 37 ◦C with 10 M NaOH. In HEPES-PSS high KCl (80 mM), the composition
was the same as HEPES-PSS, except for equimolar substitution of KCl for NaCl.

Chemicals: phenylephrine, L-NAME, indomethacin, paxillin, apamin and all the
above compounds for the HEPES-PSS preparationwere purchased from Sigma-Aldrich (Mi-
lan, Italy), while TRAM-34 was purchased from Abcam (Cambridge, UK). Acetylsalicylic
acid (aspirin, Rhodine® 3118) was kindly provided by Novacyl (Lyon, France).

4.5. Statistics

Data were expressed as mean ± SEM, where n is both the number of arterial segments
studied and animal used. Data were analyzed for normal distribution by Shapiro–Wilk
test. Differences in responses between groups were determined by two-way ANOVA,
as indicated in figure legends. p values ≤ 0.05 were considered statistically significant.

5. Conclusions

Our results provide an insight into the molecular mechanism underlying aspirin
vasodilation of resistance MA, and suggest that aspirin may be beneficial for the pregnant
cardiovascular system by lowering PVR and, therefore, blood pressure.
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