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Myosin Crossbridge, Contractile
Unit, and the Mechanism of
Contraction in Airway Smooth
Muscle: A Mechanical
Engineer’s Perspective
Muscle contraction is caused by the action of myosin motors within the structural con-
fines of contractile unit arrays. When the force generated by cyclic interactions between
myosin crossbridges and actin filaments is greater than the average load shared by the
crossbridges, sliding of the actin filaments occurs and the muscle shortens. The shorten-
ing velocity as a function of muscle load can be described mathematically by a hyper-
bola; this characteristic force–velocity relationship stems from stochastic interactions
between the crossbridges and the actin filaments. Beyond the actomyosin interaction,
there is not yet a unified theory explaining smooth muscle contraction, mainly because
the structure of the contractile unit in smooth muscle (akin to the sarcomere in striated
muscle) is still undefined. In this review, functional and structural data from airway
smooth muscle are analyzed in an engineering approach of quantification and correlation
to support a model of the contractile unit with characteristics revealed by mathematical
analyses and behavior matched by experimental observation. [DOI: 10.1115/1.4042479]
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Introduction

Muscle cells specialize in converting chemical energy to
mechanical work. At the heart of the muscle “engine” are the
myosin motors or crossbridges which are able to harness energy
derived from adenosine triphosphate hydrolysis to drive their
cyclic interactions with actin filaments leading to muscle contrac-
tion. Morphologically, the myosin molecules of striated and
smooth muscle are indistinguishable. After they are activated,
myosin crossbridges of smooth muscle interact with actin fila-
ments in a qualitatively similar manner as their counterparts do in
striated muscle [1,2]. The hyperbolic function which characterizes
the force–velocity relationship in striated muscle [3] also
describes the same relationship very well in smooth muscle [4–6].
This is taken as evidence suggesting that the molecular mecha-
nism of the actomyosin interaction seen in striated muscle is also
operative in smooth muscle.

A key difference between smooth and striated muscle appears
to be in the myosin filament structure. Unlike the bipolar filaments
found in striated muscle [7], myosin filaments in smooth muscle
are likely side-polar [8–10]. This difference in the filament struc-
ture means that the contractile-unit structure in smooth muscle
should be different from that of a striated muscle sarcomere, as
envisioned by Craig and Megerman [8] and Hodgkinson et al.
[11]; that is, a side-polar filament with crossbridges having the
same polarity along the entire length of one side of the filament
and opposite polarity on the other side and when interacting with
actin filaments of matching polarities, pulling the actin filaments
to slide in opposite directions (Fig. 1). The actin filaments (with a
myosin filament sandwiched in between) are assumed to attach to
dense bodies (equivalent to the Z-disks in striated muscle), thus

forming a functional contractile unit, at least in theory. In this
review, functional and structural data from airway smooth muscle
are analyzed with the help of mathematical models to test the
validity of the side-polar contractile unit model. Mathematical
models are also used to relate changes in force–velocity properties
to changes in the kinetics of actomyosin crossbridge cycle and to
explain why myosin filaments in smooth muscle, unlike those in
striated muscle, do not have the same length.

Hill’s Force–Velocity Hyperbola and Huxley’s

Crossbridge Kinetics

Hill, considered one of the founders of modern biophysics and
a pioneer in systematically applying mathematical analysis in
understanding biological phenomena, was the first to describe the

Fig. 1 A schematic depiction of a smooth muscle contractile
unit consisting of a side-polar myosin filament with cross-
bridges on each side of the filament possessing opposite polar-
ity, sandwiched by two actin filaments attached to dense bodies
on one end. The double arrows indicate the direction of actin fil-
ament sliding relative to the myosin filament during active mus-
cle shortening.
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relationship between muscle force and velocity as a hyperbolic
function [3]

ðFþ aÞðVþ bÞ ¼ c (1)

where F and V are force and velocity and a, b, and c are constants.
In the original measurements of heat production by muscle during
contraction [3], it was believed that there was a link between con-
stant a and shortening heat a, suggesting that the mechanical
behavior of the muscle may be closely associated with energetic
events occurring within the muscle cells. However, later measure-
ments show that a is not a constant and the hyperbolic relationship
between muscle force and shortening velocity is not a direct and
simple reflection of energy utilization in the cell [12]. Therefore,
the Hill equation for many decades had been used as an empirical
equation for fitting force–velocity data from muscle experiments
and was thought to have no connection whatsoever with the
molecular mechanism of contraction [13], until recently. What
changed our perception on the Hill equation and its physiological
meaning is the recognition by Seow [14] that there is a direct link-
age between the hyperbolic equation and Huxley’s crossbridge
models of muscle contraction [15,16].

To illustrate the linkage, we first rewrite the Hill equation in
a normalized form and compare it to an equation derived from
Huxley’s two-state actomyosin kinetics [15]. Since the maximal
shortening velocity (Vmax) occurs when force (F) is zero, and
at maximum isometric force (Fmax), the velocity (V) is zero,
from Eq. (1), we observe that c¼ (Fmaxþ a)b¼ (Vmaxþ b)a or
a/Fmax¼ b/Vmax. Hence, in the normalized form, a single constant
can be used to represent a/Fmax or b/Vmax, i.e.,

K ¼ a=Fmax ¼ b=Vmax (2)

Therefore, in the normalized form (F¼F/Fmax, V¼V/Vmax), the
Hill equation (Eq. (1)) becomes

F ¼ K 1� Vð Þ
K þ V

(3)

Next, we derive the relationship between force and velocity
from Huxley’s 1957 crossbridge model [15] (Fig. 2). In this
model, the whole crossbridge population is assumed to reside in
two states, the detached (D) and the attached (A) states. The
fractions of the crossbridge populations sum up to one; i.e.,
DþA¼ 1.

A differential equation is used to calculate the rate of change of
the crossbridge fraction in each state

dD=dt ¼ gAPP � A� fAPP � D (4)

dA=dt ¼ fAPP � D� gAPP � A (5)

where fAPP and gAPP are the apparent forward and reverse transi-
tion rates, respectively. We also know that

Dþ A ¼ 1 (6)

In a steady-state, dD/dt and dA/dt are zero. The crossbridge
fractions (D and A) in the steady-state can therefore be expressed

as functions of the transition rates by simultaneously solving
Eq. (6) and either Eq. (4) or Eq. (5). For example, from Eq. (4)
(with dD/dt¼ 0), we have

A ¼ D
fAPP

gAPP

� �
(7)

Substituting A in Eq. (6) with Eq. (7)

D ¼ gAPP

gAPP þ fAPP

(8)

Similarly

A ¼ fAPP

gAPP þ fAPP

(9)

Designating p as force per attached crossbridge (or motor), the
total force (F) produced by the muscle becomes

F ¼ pA ¼ p
fAPP

gAPP þ fAPP

� �
(10)

To transform Eq. (10) to a hyperbolic function of velocity, three
prerequisites must be met (1) force per crossbridge declines line-
arly with shortening velocity, i.e., p¼ 1�V, (2) the detachment
rate is linearly proportional to the shortening velocity, i.e.,
gAPP¼ kV, where k is a proportionality constant, and (3) the
attachment rate (fAPP) is independent of shortening velocity. The
examination of data from Piazzesi et al. [17] revealed that all three
prerequisites are met except at high forces or low velocities [14],
where velocity data have also been shown to deviate from the
hyperbolic curve [18–20].

With the three prerequisites in place, Eq. (10) becomes

F ¼ 1� Vð Þ fAPP

kV þ fAPP

� �
(11)

and by defining

K ¼ fAPP=k (12)

and from Eq. (11), we obtain F ¼ (1 � V)K/(VþK), which is
exactly the same as the Hill equation (Eq. (3)).

The Hill equation is therefore a description of the Huxley cross-
bridge model under steady-state conditions when the muscle is
not shortening against extreme high-loads. At intermediate range
of loads where a muscle is operating at or near its maximal power
and perhaps where the loads are most physiologically relevant, the
Hill equation and the Huxley model are the same in terms of their
mathematical expression and the associated insights into the
molecular mechanisms. The Hill equation is therefore no longer
just an empirical tool but contains mechanistic information of the
crossbridge cycle. For example, because K is related to the curva-
ture of a force–velocity curve [14], an increase in K will decrease
the curvature and thus increase the relative power output of the
muscle. Because K¼ fAPP/k (Eq. (12)), we now know that an
increase in muscle power can result from an increase in the appa-
rent attachment rate (fAPP) and/or a decrease in k, or in other
words, a decrease in the dependence of the apparent detachment
rate (gAPP) on shortening velocity.

The Hill equation is related not only to the Huxley two-state
model [15], but also to multi-state models [14]. Hill and Huxley
were contemporaries and had a close personal and professional rela-
tionship. Undoubtedly many of their conversations were about theo-
ries of muscle contraction. Unfortunately, data on the molecular
basis of force–velocity relations [17] were not available in their
time for them to make the connection between their most important
contributions to the understanding of muscle physiology.

Fig. 2 A two-state model for the cycle of the actomyosin inter-
action. D, detached state; A, attached state. fAPP and gAPP are
the apparent attachment and detachment rates.
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Length–Force Relationship and the Time-Course of

Isotonic Shortening

To accommodate the side-polar feature of the myosin filaments
in smooth muscle [8], a contractile-unit structure different from
that of striated muscle and similar to that shown in Figs. 1
and 3(a) has been proposed [11]. Although there is anecdotal evi-
dence supporting such a model [21,22], structural and functional
details of the model have yet to be substantiated. The distinct fea-
tures in the length–force relationship of striated muscle (shown in
gray in Fig. 4) stem directly from physical limitations associated
with the unique sarcomeric structure of the muscle [23]; in other
words, the sarcomeric structure determines the length–force rela-
tionship. The contractile-unit model for smooth muscle (Fig. 3(a))
predicts that the ascending limb of the length–force curve should
be a straight line without a kink (Fig. 3b), unlike that of striated
muscle (Fig. 4, gray lines) where a kink in the ascending portion
of the curve is evident due to the encounter of the myosin filament
with the Z-disk of the sarcomere during excessive shortening.
Without a Z-disk in the smooth muscle contractile unit which con-
tains dense bodies instead, such a kink is not expected in the
length–force relationship of smooth muscle. Herrera et al. [22]
tested the model (Fig. 3(a)) by measuring the lengths of airway
smooth muscle at different isotonic loads while minimizing length
adaptation during the measurement and confirmed that indeed, the
ascending limb of the length–force curve in the muscle was a
straight line (solid line and open circles, Fig. 4). The obvious lack
of a kink in the ascending limb of the length–force curve indicates
that the sarcomeric structure seen in striated muscle is unlikely to

be present in smooth muscle; and furthermore, the data (Fig. 4)
are consistent with the model shown in Fig. 3(a).

As suggested by the model (Fig. 3(a)), when smooth muscle
shortens, its ability to generate force decreases linearly with
respect to its length due to a linear decrease in the amount of over-
lap between the myosin and actin filaments. That is, the number
of working crossbridges decreases as a muscle shortens. This
means that the load shared by each crossbridge will increase as
contraction proceeds even if the muscle is shortening against a
constant load. The increasing load per crossbridge (due to the
reduction in filament overlap and the resulting decrease in the
working crossbridge number) will result in a continuous decrease
in the overall shortening velocity of the muscle, if the model is
correct. This theory can be presented as a mathematical model.

The length–force (L-F) relationship (Fig. 4, solid line) can be
described by a linear function

FðLÞ ¼ Fi þ ½ðFmax–FiÞ=ðLref–LiÞ�ðL� LiÞ

where Fi is an arbitrarily chosen isotonic force (in the range of
0<Fi<Fmax) and Li is the maximally shortened length under the
corresponding isotonic load. By expressing length and force val-
ues as fractions of Lref and Fmax, respectively

F Lð Þ ¼ Fi þ
1� Fi

1� Li

� �
L� Lið Þ (13)

The shortening velocity as a function of both F and L can be
obtained by modifying the Hill equation (Eq. (3)) and replacing
Fmax with F(L)

V ¼ K F Lð Þ � Fið Þ
K þ Fi

(14)

By setting V¼�(dL/dt) (where the negative sign indicates
decreasing length) and combining Eqs. (13) and (14)

dL

dt
¼ �mK L� Lið Þ

K þ Fi
(15)

where ðð1� FiÞ=ð1� LiÞÞ ¼ m, i.e., the slope of the linear
length–force curve (Fig. 4, solid line).

Fig. 3 A model of the contractile filament lattice illustrating
the relationship between force generated by a contractile unit
and the length of the overlap between myosin and actin fila-
ments (Loverlap). An assumption associated with the model is
that the force generated by a contractile unit is directly propor-
tional to the overlap length. A: A change in Loverlap due to short-
ening of a contractile unit from Loverlap1 to Loverlap2. B: The
model predicts a linear relationship between force and Loverlap.

Fig. 4 Length–force relationship of airway smooth muscle (solid
line with open circles) compared with that of skeletal muscle (gray
lines). Lengths are expressed as fractions of the muscle’s in situ
length dessignated as a reference length (Lref); forces are
expressed as fractions of the muscle’s maximal isometric force
(Fmax). Modified from Seow (2016, Introduction to Smooth Muscle
Mechanics: Length-Force Relationship and Length Adaptation,
Friesen Press, Victoria, BC, pp. 109–131) with permission.

Journal of Engineering and Science
in Medical Diagnostics and Therapy

FEBRUARY 2019, Vol. 2 / 010804-3



Rearranging Eq. (15)

ðL

1

dL

L� Li
¼ �mK

K þ Fi

ðt

0

dt (16)

Integrating Eq. (16) to obtain

ln
L� Li

1� Li

� �
¼ �mK

K þ Fi
t (17)

Or

L� Li

1� Li

� �
¼ e

�mK
KþFi

t
(18)

Rearranging Eq. (18)

L ¼ Li þ 1� Lið Þe
�mK
KþFi

t
(19)

Mathematical modeling therefore concludes that an exponential
function should describe well the time course of isotonic shorten-
ing of smooth muscle, as illustrated in Fig. 5. Slowing of shorten-
ing velocity during an isotonic contraction in smooth muscle
sometimes is interpreted as a reflection of the presence of an inter-
nal load [24]. With insights derived from mathematical modeling
described above, it is apparent that continuous slowing of velocity
during an isotonic contraction is a reflection of the decreasing
overlap between myosin and actin filaments in the contractile
units as illustrated in Fig. 3(a). Detailed analysis by Syyong et al.
[25] concludes that the change in the contractile filament overlap
is the dominant factor determining the time course of isotonic
shortening, even though other factors such as internal loads may

be present. The exponential time course of isotonic shortening
observed in smooth muscle can be taken as supporting evidence
for the side-polar model of the contractile unit (Fig. 3(a)).

Myosin Filament Length and the Mechanism of

Filament Formation

Myosin filament is an integral part of a contractile unit. So far,
there is only one study that provided information on the frequency
distribution of myosin filament lengths in smooth muscle [26].
Surprisingly, the distribution does not follow a Gaussian pattern
but a pattern of exponential decay (Fig. 6). Although a mean
length can be obtained from the distribution, more meaningful
information can be obtained from the distribution itself. In fact,
the exponential distribution suggests that myosin filaments in
smooth muscle exist because of a dynamic equilibrium between
two opposing processes, i.e., those of filament formation (poly-
merization of dimers by adding and subtracting the dimers at both
ends of a filament) and fragmentation of existing filaments.

A mathematical model is developed to describe the dynamic
process of linear aggregation and fragmentation. In the model, we
consider a simple linear one-dimensional polymerization process
where at each “time-step,” bonds are formed between the dimers
with probability p and are simultaneously broken with probability
q. This dynamic process, when given enough time, will settle into
a steady-state. In such a state, filament length distribution can be
observed in a muscle cell fixed in a steady-state, such as the
relaxed state or at the plateau of an isometric contraction.

Before reaching a steady-state (or equilibrium), the two com-
peting processes, aggregation (formation of linear bonds between
neighboring polymerization units) and fragmentation (breaking of
the bonds) occur independently and randomly but with certain
probabilities. For a total of Nmax sites (i.e., maximal number of
sites along a linear array of myosin dimers where bonds (n) can be
made or broken between neighboring dimers), an equation
describing the evolution of the mean number of n bonds is

dn

dt
¼ Nmax � nð Þp� nq (20)

Fig. 5 (a) Mathematical simulation of the time course of an iso-
tonic contraction in smooth muscle. Shortening starts at time
zero from a reference length (Lref) toward a final length (Li) with
a time constant (2mK/[K 1 Fi]) defined by Eq. (19). (b) Experi-
mental data from an isotonic quick-release (circles) fitted with
an exponential equation (Eq. (19)) after taking into account the
viscoelastic recoil associated with the isotonic quick-release
(solid line). Modified from Ref. [25] with permission.

Fig. 6 (a) Length distribution of airway smooth muscle myosin
filaments. The dashed line is a simple exponential fit to the data
(open circles). Modified from Ref. [26] with permission. (b) Myo-
sin filaments within an actin-filament lattice. The single contin-
uous myosin filament shown in Fig. 3(a) is reproduced here as
segments of filaments of different lengths lined up end-to-end
to accommodate the observation of filament length distribution
shown in panel (a).
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The right-side first term describes the formation of bonds at
(Nmax� n) possible sites, and the second term is the decay of
existing bonds. For q> 0, this equation has a dynamic equilibrium
or steady-state where dn/dt¼ 0, and n¼ neq, where neq represents
a constant population of n at equilibrium. Under this condition,
we obtain the mean probability r for the existence of an intact
bond

r ¼ neq

Nmax

¼ p

pþ q
(21)

To obtain the distribution of filament length (i.e., the arrays of
dimers linearly bonded together in this dynamic equilibrium), all
probabilities are assumed to be independent and follow a binomial
distribution, and we are simply considering a line of sites or bonds
that are occupied with probability r. The probability P to observe
a cluster of linearly connected x number of dimers is proportional
to rx, i.e.,

PðxÞ / rx (22)

This is analogous to the probability of obtaining x consecutive
“heads” in coin tosses, which is (1=2)

x.
Because rx¼ ex�ln(r), this equation describes a simple exponen-

tial decay

PðxÞ / e�x=k (23)

where k¼�1/ln(r). k is therefore the length constant in the
exponential decay characterizing the myosin filament length dis-
tribution. Combine Eqs. (22) and (23), r can be expressed as a
function of k

r ¼ e
�1
k (24)

Because

k ¼
ð1

0

e�x=kdx

the length distribution function can be normalized

P xð Þ ¼ e�x=k

k
(25)

Mathematical modeling therefore indicates that the probability
or frequency of length distribution for myosin filaments in smooth
muscle is a pure exponential decay function (Eq. (25)), and as it
can be seen in Fig. 6, the model describes the data quite well.

The exponential distribution is quite different from the
Gaussian distribution that has been observed in vitro when puri-
fied airway smooth muscle myosin molecules polymerize in a
solution at a (unphysiological) low ionic strength of 80 mM [27].
At the relatively high physiological ionic strength of 200 mM,
there is virtually no filament formation of smooth muscle myosin
in vitro [28]. An intriguing question is why myosin filaments exist
in smooth muscle cells. The answer could lie in the fact that myo-
sin filament formation in smooth muscle occurs within the actin
filament lattices, which are known to facilitate assembly of myo-
sin filaments [29,30]. Many of the actin-filament-associated pro-
teins such as caldesmon are also known to facilitate myosin
filament assembly [31] perhaps due to their affinity to myosin
molecules (see a review by Seow [32]). Recruitment of myosin
molecules into the relatively restricted space of an actin filament
lattice could be the catalytic step leading to myosin filament for-
mation at physiological ionic strength. Within the lattice myosin
molecules are not likely to form a long and unbroken filament as
that shown in Fig. 3(a) but likely are in the form of filament seg-
ments lined up end-to-end as that shown in Fig. 6(b), with a length

distribution governed by an exponential decay function
(Fig. 6(a)). Interestingly, if we only allow myosin polymerization
and depolymerization to occur at the ends of a filament in the
modeling, then a Gaussian distribution of the filament lengths
appears [26]. The fact that exponential distribution is observed
indicates that spontaneous fragmentation of a filament is not
restricted to the two ends of the filament.

Mathematics as a Tool for Understanding

Cell Biology

As illustrated by the previous examples, mathematical analyses
could lead to deeper understanding of experimentally observed
biological processes. A link between the Hill equation and the
Huxley crossbridge model can be established only through mathe-
matical analysis. With such a link, kinetics of the actomyosin
interaction at a molecular level can be revealed by measuring
force–velocity properties of a muscle at the tissue level. The hypo-
thetical model of the smooth muscle contractile unit (Fig. 6(b))
now has an additional piece of supporting evidence because of
mathematical modeling. The exponential distribution of myosin
filament lengths in smooth muscle is not just a statement of exper-
imental observation; with mathematical analysis, it allows us to
speculate on the mechanism of myosin filament formation in a
side-polar fashion and indirectly refutes the bipolar model (which
is adopted by striated muscles) as the blue-print for myosin fila-
ments of smooth muscle.
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