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Simple Summary: Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the seven oncogenic
viruses currently recognized by the International Agency for Research on Cancer. Its presence for
Kaposi’s sarcoma development is essential and knowledge on the oncogenic process has increased
since its discovery in 1994. However, some uncertainties remain to be clarified, in particular on the
exact routes of transmission and disparities in KSHV seroprevalence and the prevalence of Kaposi’s
sarcoma worldwide. Here, we summarized the current data on the KSHV viral particle’s structure,
its genome, the replication, its seroprevalence, the viral diversity and the lytic and latent oncogenesis
proteins involved in Kaposi’s sarcoma. Lastly, we reported the environmental, immunological
and viral factors possibly associated with KSHV transmission that could also play a role in the
development of Kaposi’s sarcoma.

Abstract: Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8),
is an oncogenic virus belonging to the Herpesviridae family. The viral particle is composed of a
double-stranded DNA harboring 90 open reading frames, incorporated in an icosahedral capsid
and enveloped. The viral cycle is divided in the following two states: a short lytic phase, and a
latency phase that leads to a persistent infection in target cells and the expression of a small number
of genes, including LANA-1, v-FLIP and v-cyclin. The seroprevalence and risk factors of infection
differ around the world, and saliva seems to play a major role in viral transmission. KSHV is found
in all epidemiological forms of Kaposi’s sarcoma including classic, endemic, iatrogenic, epidemic
and non-epidemic forms. In a Kaposi’s sarcoma lesion, KSHV is mainly in a latent state; however,
a small proportion of viral particles (<5%) are in a replicative state and are reported to be poten-
tially involved in the proliferation of neighboring cells, suggesting they have crucial roles in the
process of tumorigenesis. KSHV encodes oncogenic proteins (LANA-1, v-FLIP, v-cyclin, v-GPCR,
v-IL6, v-CCL, v-MIP, v-IRF, etc.) that can modulate cellular pathways in order to induce the char-
acteristics found in all cancer, including the inhibition of apoptosis, cells’ proliferation stimulation,
angiogenesis, inflammation and immune escape, and, therefore, are involved in the development of
Kaposi’s sarcoma.

Keywords: KSHV; HHV-8; oncogenic virus; Kaposi’s sarcoma; latency; oncogenic viral proteins;
LANA-1

1. Introduction

Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8
(HHV-8), is an oncogenic virus that was discovered in 1994 by Chang et al. in the USA [1].
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They described, for the first time, two viral fragments of 330 and 631 base pairs (bp) in
skin biopsies issued from AIDS patients with Kaposi’s sarcoma (KS). These fragments,
identified through a representational difference analysis assay, were phylogenetically closed
to the Epstein–Barr virus (EBV), and to the saimiri herpesvirus (Saimirine herpesvirus 2,
SaHV-2). The following year, KSHV was also detected in two hemopathies, the primary
effusion lymphoma (PEL) [2], a rare type of non-Hodgkin’s malignant lymphoma (LMNH)
and a lymphoproliferative syndrome, Multicentric Castleman’s disease (MCD) [3]. Thus
far, epidemiological and molecular studies have subsequently confirmed the association
between KSHV and Kaposi’s sarcoma, and it became one of the ten carcinogenic infectious
agents in humans listed by the International Agency for Research on Cancer (IARC)
(https://monographs.iarc.who.int/list-of-classifications, accessed on 4 December 2021.)

2. Classification

On the basis of phylogenic analysis, KSHV belongs to the Herpesviridae family and
the Gammaherpevirinae subfamily, and, to date, it is the first and only human Rhadinovirus
identified [4,5]. KSHV is also related to the rhadinoviruses herpesvirus saimiri, identified
in 1968 in squirrel monkeys [6] and herpesvirus ateles found in spider monkeys in 1972 [7].
Since, several studies have described a rhadinovirus related to KSHV infecting macaques,
African green monkeys, monkeys and chimpanzees [8–12].

3. Structure
3.1. Viral Particle

As with all herpesvirus, KSHV is a large double-stranded DNA virus of approxi-
mately 165 to 170 kilo bp associated with a typical herpesvirus icosahedral capsid com-
posed of four structural proteins (MCP (major capsid protein), TRI-1, TRI-2 (triplex
component 1 and 2), SCIP (small capsomer-interacting protein) and CSAF (scaffolding
or assembly protein)) [13,14] that is not a part of the capsid but is essential for its assembly.
The capsid is surrounded by a tegument, defined as an electron dense material, and com-
posed of an inner and external layers associated with the following eight proteins encoded
by the ORF: 11, 21, 33, 45, 52, 63, 64 and 75 [15,16]. They may contribute to the early events
of viral replication as well as the entry of the genome during the primary infection. Finally,
the tegument is surrounded by an envelope deriving from the nucleus membrane (lipid
bilayer) of a KSHV-infected cell [17]. Eight glycoproteins are incorporated in this layer (gB,
K8.1A, K8.1B, gH, gL, gM, gN) and involved in the interaction with host cells [14,15,18–21].
KSHV’s viral particle size is about 110 to 150 nm in diameter (Figure 1).

3.2. Viral Genome

KSHV’s genome was firstly sequenced from the PEL cell line, BC-1 [5]. The central
long unique region (LUR), about 137 kilo bp in length, is flanked with highly GC-rich
801 pb long terminal repeat sequences [5]. The LUR includes the 90 open reading frames
(ORFs) and the 13 pre microRNA (miRNA) encoding for 25 miRNAs. Most of the ORFs
are common in the human herpesvirus (from ORF4 to ORF75) [14], whereas fifteen are
specific to the Rhadinovirus (K1 to K15) (Figure 2). Several of these ORFs encode numerous
proteins involved in lytic and latent infection programs. The viral genes encoded by KSHV
also include cellular homologous genes that may be included in the common or specific
genes (for example, v-IL-6 (viral interleukin 6), v-BCL-2, v-FLIP (viral Fas-associated
protein with death domain-like interleukin-1β-converting enzyme/caspase-8-inhibitory
protein), v-Cyclin) [22]. Furthermore, consistent with its transforming potential, KSHV
encodes numerous proteins with proliferative, antiapoptotic, angiogenic, immuno-evasion
properties and inflammation [23]. More recently, KSHV has been found to generate circular
RNAs (circRNAs) from several KSHV genes, most abundantly from K10 (vIRF4, viral
interferon regulatory factor 4), K7.3 and polyadenylated nuclear (PAN) RNA. All the KSHV
circRNAs are incorporated into KSHV virions and are potentially expressed as immediate
early products in newly infected cells [24].

https://monographs.iarc.who.int/list-of-classifications
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Figure 1. Structure of the Kaposi’s sarcoma-associated herpesvirus viral particle. Similar to the other human herpesviruses,
the KSHV virion is composed of the following four morphologically distinct components: The double-stranded viral
DNA genome, an icosahedral capsid that encloses the viral DNA, a lipid envelope derived from cellular membranes and
the electron-dense material between the capsid and the envelope, which is defined as tegument. In each layer, several
viral proteins are incorporated. CSAF: Scaffolding or assembly protein; DNA acid desoxyribonucleic; gX: Glycoprotein;
MCP: Major capsid protein; ORF: Open reading frame; SCIP: Small capsomer-interacting protein; TRI 1 and 2: Triplex
component 1 and 2. Created with BioRender.com.

During the latency state, the KSHV genome appears in a circular form, called an
episome (or circular mini chromosome), not integrated in the genome of the host cell. In
the lytic phase, the KSHV genome takes a linear conformation in order to replicate and
express the various proteins inherent in this phase.
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Figure 2. Structure of the Kaposi’s sarcoma herpesvirus genome. The long central unique region, about 137 kilo bp in length,
is flanked with highly GC-rich 801-pb-long terminal repeat sequences. The genome harbors 90 open reading frames (ORFs)
and 13 pre microRNAs (miRNAs) encoding for 25 miRNAs. Most of the ORFs are common in the human herpesvirus (region
in orange), whereas fifteen are specific to the Rhadinovirus (K1 to K15, region in red). As oncovirus, KSHV also encoded
proteins involved in tumorigenesis (in blue) and having proliferative, antiapoptotic, angiogenic, immuno-evasion and in-
flammatory properties. The main genes encoding proteins involved in the latency state, including LANA-1, v-FLIP, v-cyclin,
mtRNAs and Kaposin, are grouped in the latency-associated region located at the right end of the genome. DNA acid des-
oxyribonucleic; gX: Glycoprotein; Kb: Kilo base; K-bZIP: K basic leucine zipper protein; LANA-1: latency associated nuclear
antigen 1; MCP: Major capsid protein; ORF: Open reading frame; PAN RNA: Polyadenylated nuclear RNA; RTA: Replication
and transcription activator; TRI 1 and 2: Triplex component 1 and 2; v-IL6: Viral interleukin 6; v-MIP: Viral macrophage
inflammatory protein; v-CCL: Viral-encoded chemokines; v-IRF: Viral interferon regulatory factor; v-cyclin: Viral cyclin;
v-FLIP: Viral Fas-associated protein with death domain-like interleukin-1β-converting enzyme/caspase-8-inhibitory protein;
v-GPCR: Viral G-protein coupled receptor.

4. Viral Replication

As with all herpesviruses, KSHV undergoes either latent or lytic infection programs
that are differentiated by complex but characteristic genes expression patterns: latent
infection, which is its default pathway, and episodes of lytic reactivation, leading to the
production of infectious particles and the death of the host cell.

4.1. Entry in the Cell

The entry of KSHV is a sequential, multistep process [25]. First, the surface glyco-
proteins of KSHV bind nonspecifically onto its target cell. Multiple interactions with cell
surface proteoglycans facilitate its attachment, and these are primarily mediated by gB,
gHgL and K8.1A [20,26,27]. Although these proteoglycans are not essentials, they enhance
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the entry of KSHV by concentrating the virions on the surface of the target cell [20,26,28].
The viral glycoproteins can then interact with their specific cellular receptors, such as the
heparan sulfate, the α3β1 integrin, the xCT (cystine-glutamate transporter) or DC-SIGN
(Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin), depend-
ing on the target cell, and stimulate different endocytosis pathways (mostly fusion or
endocytosis) leading to the entry of the viral particle [29–32]. Once the nucleocapsid is in
the cytosol, KSHV undergoes activated intracellular transport by the cytoskeletal machin-
ery to perinuclear regions, where it delivers the viral genome into the nuclei, resulting in
the expression of viral genes and the reprogramming of host cell genes [32–34].

4.2. KSHV Latent Cycle

In the latent state, the viral circular episome appears attached to the chromosome of
the host cell and replicates during each cell division according to the cellular replication
machinery to be distributed in each daughter cell. This is a non-productive replication that
leads neither to the production of infectious virions nor the lysis of the host cell. Only a
small fraction of viral genes is expressed, allowing the KSHV to escape the immune system
and to maintain the genome in dividing cells, resulting in a persistent latent infection.

The central protein of the latent phase is the LANA-1(latency-associated nuclear
antigen 1) protein encoded by the ORF-73 [35]. LANA-1 is involved in the maintenance of
the viral genome in the nucleus by interacting with the histones of the host DNA via MeCP2
(methyl CpG binding protein 2) and DEK, leading to the transmission of the KSHV genome
to daughter cells during cell division. LANA-1 also has the role of transcriptional regulator,
in particular by repressing the expression of the RTA (replication and transcription activator)
protein that is responsible for the entry of the virus into the multiplication phase. The
other two main proteins expressed are two homologues of human cellular proteins as
follows: the v-cyclin encoded by the ORF-72 and the v-FLIP encoded by the ORF-71/K13.
These three latency proteins will also be able to modulate various oncogenic processes,
such as cell proliferation, differentiation and survival, allowing the transformation and
immortalization of the cell, and thus induce the various phenotypic characteristics that are
observed in KSHV-associated diseases [15].

A few other proteins are also expressed during the latent cycle, including the Ka-
posin proteins, encoded by ORF-K12, and 25 miRNAs (micro RNAs), non-coding single-
stranded RNAs of approximately 19–23 nucleotides, encoded by 13 pre-miRNAs [36–38].
The latter are involved both in the regulation of the viral cycle—for example, miRNA-
K7-5p and miRNA-K9-5p repress the expression of the viral protein RTA at the post-
transcriptional level [39]—and also in the regulation of the cell cycle and in the interaction
with the host cell to promote the persistence of the virus and the development of related
diseases [37,38,40–42].

4.3. KSHV Lytic Cycle

KSHV is able to reactivate and enter in the replicative phase under the influence of
various protein stimuli (ex: PKC, ERK) and physiological (ex: hypoxia, oxidative stress,
reactive oxygen species, etc.) [43,44] or chemical substances such as TPA (tetradecanoyl
phorbol myristyl acetate) and n-butyrate [45]. This replicative phase leads to the lysis of
the infected cells and the production of new infectious viral particles. Similar to the other
herpesviruses, KSHV expresses genes following a temporal and sequential expression
pattern divided in the following three phases: immediate–early (IE), early (E) and late (L).
The IE genes encode transactivators of the E and L genes, including, in particular, the
ORF-50 encoding the RTA protein, the leader for the initiation of the lytic phase [46,47].
To do so, the RTA protein associates with the cellular transcription factor RBP-Jk in order
to activate its own promoter and, thus, maintains itself at a sufficient level for perpetu-
ating the lytic cycle [48,49]. Other genes, such as ORF K8 and ORF57, are also expressed
concomitantly with ORF50. More recently, PAN RNA, a non-coding viral RNA encoded
by ORF-K7, has also been reported to play a role in viral reactivation by sequestering the
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LANA-1 protein, and thus lifting its inhibition on lytic gene expression [50,51]. After the
IE phase, the E genes expressed an encoded viral protein primarily required for DNA repli-
cation and gene expression, in particular, among others, the viral DNA polymerase (ORF9)
involved in the replication of the viral genome, the viral thymidine kinase (ORF21) and
the viral phosphotransferase (ORF36, homologue of the UL97 protein kinase encoded by
human cytomegalovirus), bZIP, vIRF-1 (viral interferon regulatory factor), v-IL-6, v-CCLs
(viral-encoded chemokines) and v-GPCR (viral G-protein coupled receptor) [52]. Finally,
about 24 h after the initiation of the lytic phase, the L genes encoding structural and matu-
ration proteins of the viral particles are expressed. Once all of the three phases have been
achieved, the assembly of the new viral particle begins in the nucleus. The KSHV genome
is incorporated into the newly synthesized capsids in the nucleus, then acquires teguments
in the cytoplasm and, buds through host membranes to obtain envelopes. Finally, the viral
progeny are released from the host cell [48] (Figure 3).
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Figure 3. Viral cycles of Kaposi’s sarcoma-associated herpesvirus. The viral glycoproteins of KSHV interact with their
specific cellular receptors (different receptors available depending on the target cell) and stimulate different endocytosis
pathways leading to the entry of the viral particle. Once the nucleocapsid is in the cytosol, it is transported to the cell nucleus
where only the viral genome is released. In the nucleus, the following two viral cycles can be achieved: (i) the lytic cycle
leading to the production of new infectious particles and host cell lysis, (ii) the latent cycle leading to the persistence of the
viral episome in the nucleus, binding through LANA-1 to the host cell genome. Diverse stimuli (physiological, chemical, etc.)
lead to the reactivation of the KSHV and the expression of lytic genes following a temporal and sequential expression pattern
divided into the following three phases: immediate early (IE), early (E) and late (L). xCT: cystine-glutamate transporter;
DC-SIGN: Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin. Created with BioRender.com.

Importantly, the boundary between the latency and lytic phases is not obvious as it
was supposed. Thus far, the idea that there are interactions between the two phases of the
cycle, and that the expressions of some viral transcripts overlap on both phases, is well
integrated now [53–56].
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5. Epidemiology
5.1. KSHV Seroprevalence and Transmission

Unlike other human herpesviruses, KSHV’s seroprevalence differs according to the
geographical area worldwide with a North–South gradient. Indeed, in Sub-Saharan Africa,
more than 50% of the population is infected with KSHV, whereas in Western Europe, North
America and Asia, KSHV infection remains anecdotic, with less than 10% of the population
having encountered this virus. Around the Mediterranean basin and in Eastern Europe,
KSHV seroprevalence varies between 10 and 30%, depending on the studies [22,55] (Table 1).
The reasons for these disparities are not yet clear. However, it appears that environmental
factors such as infectious agents (malaria and co-infection with other parasites) [57–59] or
the presence of soils rich in metals (such as aluminum, silica or iron) in some parts of the
world may increase the risk of KSHV transmission as well as the risk of Kaposi’s sarcoma
development [60–63].

Table 1. Seroprevalence of Kaposi’s sarcoma-associated herpesvirus and risk factors of transmission.

Low Intermediate High

World region
North America
Western Europe

Eastern Asia

Mediterranean basin
Eastern Europe

Southern America
Western Africa

Central Africa
Eastern Africa

KSHV
Seroprevalence <10% 10–30% >50%

Transmission Sexual
Iatrogenic

Sexual
Iatrogenic
Nonsexual

Childhood
Sexual

Risk factors

Risky sexual behavior: STIs
including HIV, number of
different sexual partners

Use of poppers?

Infectious agents (malaria)?
Soils rich in metals?

Chemical substances from plants?

Infectious agents (malaria)?
Soils rich in metals?

Chemical substances from plants?
Transfusion

At-risk population MSM
Organ transplant patients

MSM
Organ transplant patients

Elderly men

Children
Elderly men

Low socio-economic level

MSM: Men having sex with men; STIs: Sexually transmitted infections; HIV: Human immunodeficiency virus; KSHV: Kaposi’s sarcoma-
associated herpesvirus.

5.1.1. Transmission in Countries with Low Seroprevalence

In non-endemic regions, KSHV transmission mainly occurs in men who have sex
with men (MSM), with a seroprevalence ranging from 30 to 60% depending on the HIV
status [64–68]. Recently, Liu et al. reported an overall seroprevalence of 33% among MSM
whatever their HIV status [69]. Several studies have shown that KSHV transmission is
linked to risky sexual behavior, including the number of different sexual partners [70], the
duration of sexual activity [71], HIV infection [71,72], history of other sexually transmitted
infections (STIs) [73], the use of oral or inhaled poppers and oral–penile [64,74] or oral–
anal contacts [75]. Although saliva appears to play an essential role in the transmission,
it remains uncertain. Indeed, in MSM infected with KSHV, KSHV-DNA is frequently
and intermittently detected in saliva [76], whereas in seminal fluid, its detection varies
depending on the HIV status and the studied population [77–80]. On the other hand, KSHV
is rarely found in a urine or anal site [81]. One of the hypotheses on transmission in this
population is based on the practice of others forms of intimate contact, especially during
oral–anal sex [65,82]. This hypothesis is also reinforced by the fact that in the heterosexual
population, no evidence of sexual transmission appears, although the results of different
studies are inconsistent [73,83–86]. The two other possible ways of transmitting KSHV
in these regions are blood and transplantation. However, transmission through blood is
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not clearly proven with a seroprevalence described in drug addicts, hemophiliacs and
poly transfused individuals comparable to that of blood donors [87–91]. The safety of
blood products by systematic leucocytes depletion probably contributes to this low risk of
transmission. On the contrary, KSHV transmission by solid organ transplantation should
be considered [92]. According to the studies, seroconversion occurs in 14 to 31% of cases,
regardless of the type of graft [93–95].

5.1.2. Transmission in Endemic Regions

In highly endemic countries, the epidemiology and modes of KSHV transmission
appear to be different with a seroprevalence that is often already high in childhood and
increases with age until a plateau is reached toward the end of puberty [96,97]. Several
studies have shown family cases of KSHV seropositivity, suggesting transmission in child-
hood from mother to child or between siblings [98,99]. Saliva is also thought to play
a preponderant role in the transmission [100], and the following hypotheses have been
made: pre-chewing of food, application of maternal saliva to arthropod bites or sharing
toothbrushes [101,102]. Maternal-to-fetal, perinatal and human milk transmission remains
rare [103]. In some parts of Sub-Saharan Africa, Kaposi’s sarcoma is very common due
to the importance of co-infection with HIV-1. However, the association between KSHV
seropositivity and HIV infection, especially in heterosexual populations, remains uncer-
tain [104,105]. Finally, the risk of transmission by blood transfusion was reported in the
literature and should be considered [106].

5.2. Molecular Epidemiology

Initially, the study of the KSHV genetic diversity relied on the sequencing of the two
genes firstly discovered and led to the identification of three viral subtypes, A, B and C,
from lesions of AIDS patients with Kaposi’s sarcoma. However, the low variability of these
genes between different subtypes (less than 3%) limited their interest in describing the
genetic diversity of KSHV.

5.2.1. ORF-K1

From the end of the 1990s, several teams were interested in ORF-K1, a gene located at
the end left of the KSHV genome [107,108], similarly to the genes encoding LMP-1 (latent
membrane protein) in EBV and STP (saimiri transformation protein) in SaHV. This ORF
encodes for a glycosylated transmembrane protein of 289 amino acids, a structure also
found in the immunoglobulin receptor family. Its extracellular domain contains conserved
regions (C1 and C2) and two hypervariable regions (VR1 and VR2), whereas the C-terminal
intracytoplasmic domain carries a conserved ITAM motif involved in the activation of
transduction pathways and the oncogenic process [108–111]. The variability of this gene,
mainly located in the VR1 (54 to 93 AA) and the VR2 (191 to 228 AA) domains, led to the
identification of the seven subtypes (A, B, C, D, E, F and Z) currently described with up
to 44% of amino acid sequence variability between them. The subtypes B and D differ from
subtypes A and C by about 30 and 24%, respectively, whereas subtypes A and C differ by
about 15% from each other. These subtypes were also subdivided into genotypic variants
(e.g., A1, A2, A3) when their amino acid sequences varied by approximately 10% [108].

For now, the diversity of KSHV is mainly related to the origin of the patients; subtypes
A and C are found worldwide and particularly in North America, Western Europe, the
Mediterranean basin and Asia [112–114]. The variant A5, on the contrary, was first, and is
mainly, reported in Africa, as is the subtype B [115,116]. The subtype D is described in the
Pacific Island and Taiwan [117]; the subtype E is in Native Americans in Brazil [118,119];
the subtype F is in a few individuals in Uganda (variant F1) [120] and, more recently, in
Caucasian MSM living in France (variant F2) [121]; finally, the subtype Z is described in a
small cohort of children in Zambia [122] (Figure 4).
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5.2.2. Other Genes

ORF-K15, located at the right end of the LUR, is the second most variable gene in
KSHV and on the basis of a second molecular classification. This gene contains eight
alternately spliced exons, and when all eight are included, the transcript encodes a 45 kilo
Dalton K15 protein with 12 membrane domains [123]. At least three diverging alleles of K15,
with less than 33% amino acid sequence similarity, have currently been identified and were
designated as P (predominant), M (minor) and N [124,125]. Other ORFs have also been used
to describe KSHV diversity, such as the ORF-26 with nine identified subtypes (A, B, C, D, E,
J, K, Q and R) whose geographical distribution is parallel to that of the subtypes obtained
with ORF-K1 [126], or even ORF-73. More recently, next generation sequencing (NGS) has
made it possible to increase the sequencing capacities and to understand the entire KSHV
genome. By whole genome sequencing, four new genes were identified as varying between
the following different KSHV strains: K4.2, K8.1, K11/vIRF2 and K12/Kaposin, suggesting
that the entire genome should be considered to precisely characterize each strain [127].
In addition, Sallah et al. reported that large-scale genome sequencing is also necessary to
capture the full extent of genetic diversity, including KSHV recombination, and provided
evidence to suggest a revision of KSHV genotype nomenclature [128].



Cancers 2021, 13, 6208 10 of 23

5.2.3. Molecular Diversity and Pathogenicity

Some studies have suggested that different subtypes of KSHV could have different
pathogenic and tumor properties, and thus could be associated with different clinical
presentation severities and progressions [129–131]. However, the results reported in the
literature are inconsistent. For example, White et al. did not describe any difference in the
clinical presentation between subtypes A and B in patients with the epidemic KS form in
Zimbabwe [132], as Kadyrova et al., who compared patients with classic, post-transplant
and epidemic forms in Russia, did [133]. On the other hand, Mancuso et al. described
the classic form of KS evolving faster when they involved a subtype A and associated
it with higher blood KSHV viral loads [130]. In the past year, we also reported that the
KSHV viral load in the blood compartment was higher for subtype A than for subtype C,
regardless of the immunovirological status, in MSM with the epidemic KS form [121].
According to Isaac et al., variant A5 in the epidemic KS form in Africa was reported to be
associated with more than 10 KS lesion at diagnosis, whereas variants A1 and A4 were
reported to be associated with a lower risk of an extensive form and variant A1 with a lower
risk of lower limb involvement [115]. In addition, Tozetto et al. reported that subtype B
was associated with a better prognosis in patients with epidemic KS in Brazil [134] and
Barete et al. reported that subtypes A and B’ have more aggressive forms of KS after
transplantation than subtype C [135]. However, most of the studies have been conducted
with a small number of cases and all the subtypes were not necessarily represented in the
geographic zones where the studies were performed.

On the other hand, a study has shown in vitro that the K1 gene in the epidemic form
was associated with a higher transforming activity compared with those in the classic form.
This higher activity was also correlated with the severity of the clinical presentation [136].

Thus far, the interest of KSHV typing for the management of KS and for predicting its
evolution remains to be defined.

6. KSHV Oncogenesis and Kaposi’s Sarcoma
6.1. KSHV, Cells Tropism and Risk Factors

After primo-infection, KSHV primarily infects B-cells and endothelial cells in vivo but
also can infect several kinds of cells, including dendritic cells, macrophages, epithelial cells,
fibroblast and mesenchymal stem cells in laboratory cell culture [25,137]. Then, KSHV
enters in a latent state, notably in B lymphocytes and monocytes. Several studies have men-
tioned the potential involvement of some environmental factors, such as the consumption
of chemical molecules from plants [138], the presence of a malaria parasite [139,140] or the
absorption of iron found in volcanic soils [63,141], to promote the transmission and the
pathogenesis associated with KSHV by stimulating KSHV reactivation.

More classically, iatrogenic immunosuppression after transplantation or HIV infection
are strong cofactors promoting KHSV pathologies [142,143]. The postulate of a synergy
between HIV and KSHV promoting cell transformation has been put forward, but in-depth
studies are still needed. Indeed, some secretory proteins of HIV, such as Tat and Nef,
could be released into the bloodstream in order to promote the appearance of Kaposi’s
sarcoma [144,145]. In particular, it has been shown in vitro that the Tat protein induces a
reactivation of KSHV in order to promote the growth of endothelial cells infected with
KSHV in cooperation with the protein K1 [146–150]. The persistence of a detectable HIV-1
RNA viral load in vivo, despite antiretroviral treatment and an effective reconstitution of
the immune system, has also been reported as a greater risk factor for developing Kaposi’s
sarcoma [151].

Importantly, KSHV is found in the lesions of all epidemiological forms of Kaposi’s sar-
coma [152] with an average of one to two copies of the viral genome per infected cell [153],
and its presence and persistence has been shown experimentally to be necessary to initiate
and maintain tumor growth [154,155]. The modulation of several cellular pathways by the
oncogenic viral proteins allows the KSHV-infected cell to override the tumor suppressor
and apoptotic signals, leading to its proliferation and immortalization, but also to induce
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other characteristics found in all types of cancer, including angiogenesis, inflammation and
escape from the immune system [23,156]. In Kaposi’s sarcoma, the spindle cells (typical
cells infected with KSHV) presumably derive from the endothelial cell line; however, the
lymphatic or vascular nature of these cells is still subject to debate. Indeed, the spindle cells
express markers of both vascular and lymphatic endothelial cells (VEGF-3, LYVE-1 and
podoplanin or CD34, CD31 and CD36, respectively) and possess the phenotypic character-
istics of the two cells [157–159]. On the other hand, their gene expression profile does not
accurately represent either of these two endothelial lineages [160]. In the vast majority of
Kaposi’s sarcoma cells, the KSHV virus is found in a persistent state of latency, indicating
the central role of viral latent proteins in the development of this disease. However, a small
proportion of spindle cells undergoes spontaneous lytic viral reactivation, resulting in the
expression of lytic proteins and the production of virions, (<5% according to the litera-
ture [161,162]) potentially involved in the proliferation of neighboring cells, by stimulating
the production of secreted pro-inflammatory and pro-angiogenic factors, suggesting their
crucial roles in the process of tumorigenesis [161,163–165].

6.2. KSHV Latency Proteins and Oncogenesis

Gene-encoded latency proteins strongly contribute to the establishment of a latent
infection and the oncogenesis process. These proteins possess the ability to constitutively
and/or transiently modulate cellular signaling pathways that are essential for tumor trans-
formation and the survival of the infected cells, such as PI3K-AKT-mTOR, MAPK and
NF-kB [110,166,167] (Table 2). They also participate in the production of pro-angiogenic
and pro-inflammatory signals involved in the pathogenesis of cancers associated with
KSHV. Among others, LANA-1 is the central protein for the establishment of KSHV latency
and is strongly involved in promoting tumorigenesis. First, in the initial establishment
of the latent state after primo-infection, LANA-1 recruits many components of the host
epigenetic machinery to promote the formation of latent KSHV episomes [168,169]. More-
over, LANA-1 is essential for episomal maintenance, replication and segregation during
cell division [35,169]. LANA can interfere with cell cycle progression and apoptosis, in
particular by inhibiting the transcription factor p53, and also plays an important role in
the activation of the cell proliferation and transformation pathways [22]. LANA-1 also
contributes to angiogenesis [170] and participates in cell immortalization by increasing
the expression of the telomerase and, thus, prolonging the life of the infected cell [171].
Considering the few other genes expressed, the v-cyclin, v-FLIP, Kaposin and miRNAs
are also able to regulate several host-signaling pathways. In particular, KSHV-encoded
miRNAs are involved in the maintenance of viral latency and play roles in tumorigenesis
by inhibiting the expression of multiple viral and host genes. Some of them intervene
in the inhibition of apoptosis, whereas others promote the immune escape by regulating
the host response [37,38,40]. Some miRNAs are also able to modulate angiogenesis, cell
migration and adhesion or endothelial cells’ transformation, which are essential for the
dissemination of KSHV infection and its viral pathogenicity [41,42,172]. Otherwise, for
example, v-FLIP can activate a key cellular pathway, the NF-kB pathway, leading to cell
survival and proliferation during latency [173], but also inducing the production of in-
flammatory cytokines and chemokines [174,175]. KSHV also encodes a viral homolog to
cellular cyclin, v-cyclin, that associates with cellular cyclin-dependent kinase 6 (CDK6). The
v-cyclin-CDK6 complex ensures the phosphorylation and inactivation of cell cycle inhibitor
proteins such as p21 and p27, leading to an accelerated transition of the G1/S phase of the
cell cycle [176].
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Table 2. Essential gene-encoded proteins involved in latency/lytic cycles and tumorigenesis of Kaposi’s sarcoma-
associated herpesvirus.

Proteins
or RNA Gene Viral

Cycle
Cellular

Homologs Essential Functions

LANA-1 ORF73 Latent -

Inhibition of lytic cycle by inhibiting the expression of RTA [177]
Sequestration of KSHV episome in nucleus and
transmission to daughters’ cell during mitosis

Inhibition of apoptosis by interacting with p53 and pRB
Recruitment of DNA methyltransferase [178]

Recruitment of host PRC and KAP1 to
suppress lytic gene expression [179,180]
Cytoplasmic isoform of LANA-1 inhibits

cGAS to promote KSHV reactivation [181]

v-cyclin ORF72 Latent Cyclin D2 Cell proliferation: v-cyclin-CDK6 => inhibition of p21 and p27
Cell transformation

v-FLIP ORF71 Latent FLICE
Inhibition of apoptosis

Activation of NF-kB pathway by interaction with NEMO [182]
Inhibition of RBP-Jk (co-activator of RTA)

miRNA
miRNA-K7-5p
miRNA-K9-5p

miRNA K1

-
-
-

miR-K11

Latent -

Immunomodulation, immune escape, inhibition of apoptosis
Post transcriptional inhibition of RTA expression
Post transcriptional inhibition of RTA expression

Activation of NF-kB pathway

Kaposin ORF-K12 Latent - Cell transformation
Activation of p18/MK2 pathways

LANA-2
/v-IRF3 ORF 10.5 Latent - Inhibition of p53 pathway

Immune escape

RTA ORF50 Lytic -

Activation of lytic cycle
Stimulation of human IL-6 production

Inhibition of p53
Activation of LANA-1 expression [177]

K-bZIP/RAP ORF K8 Lytic Zta (ZEBRA)
in EBV

Bind to RTA protein and suppression of its transactivation
Interaction with CREB binding protein

Stimulation of p53 and p21 and promotion of cell cycle arrest

v-IL-6 ORF K2 Lytic IL-6

Inhibition of apoptosis
Interaction with cellular cycle

Activation of JAK-STAT, MAPK-ERK and PI3-AKT
pathways => Cell survival, and pro-inflammatory

and pro-angiogenic environment
Functional modulation of B cell by promoting CSR [183]

v-GPCR ORF 74 Lytic IL8 receptor,
CXCR2

Interaction with MAPKs, PI3K-AKT and NF-kB pathways
Cell transformation

Stimulation of angiogenesis

v-bcl-2 ORF 16 Lytic Bcl-2 Inhibition of apoptosis

K1 (KIST) ORF K1 Lytic STP in SaHV
Inhibition of NF-kB pathway

Cell survival by activating PI3K-AKT pathway
Immune escape by the ITAM motif

v-IRF1 ORF K9 Lytic IRF1
Inhibition of NF-kB pathway

Cell proliferation
Inhibition of genes expression induced by INF

K14 ORF K14 Lytic - Inhibition of NF-kB pathway

PAN RNA ORF K7 Lytic -
LANA-1 sequestration [50]

Recruitment of histone demethylase to the viral chromosome [184]
Generated circRNA potentially involved in early infection [24]
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Table 2. Cont.

Proteins
or RNA Gene Viral

Cycle
Cellular

Homologs Essential Functions

v-MIP-1
v-MIP-2
v-MIP-3

ORF K6
ORF K4

ORF K4.1
Lytic

MIP-1alpha
-

MIP-1béta

Stimulation of angiogenesis
Inhibition of naïve and active human NK cells [185]

LANA: Latency Associated Nuclear Antigen; ORF: Open Reading Frame; FLIP: Flice-Inhibitory Protein; cGAS: cGMP-AMP syn-
thase; PRC: polycomb repressive complex; STP: Saimiri Transforming Protein; IL-6: Interleukin 6; CSR: class-switch recombination;
pRB: Retinoblastoma Protein; RTA: Replication and Transcription Activator; PAN ARN: polyadenylated nuclear Acid ribonucleic;
IRF: Interféron Regulatory Factor; RBP-Jk: Recombination Signal Binding Protein For Immunoglobulin Kappa J Region; HVS: herpèsvirus
samiri; vGPCR: viral G-protein coupled receptor; VEGF: vascular endothelial growth factor; EBV: Epstein–Barr Virus; ITAM: immunore-
ceptor tyrosine-based activation motifs; v-MIP: viral macrophage inflammatory protein; CDK6: cellular cyclin-dependent kinase 6;
NK: natural killer.

6.3. Lytic Proteins and Oncogenesis

While latency proteins are expressed in all infected cells, lytic proteins are produced
by only a small proportion of tumor cells. However, their presence is essential for the
tumorigenesis of KSHV [186]. Indeed, they lead not only to maintenance of the viral
infection by producing new infectious particles, but also to the escape of the immune system
and the production of cytokine and growth factors. Thus, they can influence surrounding
cells by establishing an inflammatory and angiogenic environment favorable to tumor
progression. Among them, the main lytic proteins involved in the pathogenicity of the
KSHV are, in particular, ORF-K1, v-IL-6, v-BCL2, v-GPCR, v-IRFs 1-4, vCCCL-1, -2 and -3
and v-IAPs, and the majority are homologs of cellular proteins (Table 2).

For example, the K1 protein increases cell survival by activating the anti-apoptotic
pathway PI3K-AKT whereas the v-GPCR contributes to angiogenesis by stimulating the
secretion of pro-inflammatory and pro-angiogenic factors, such as VEGF, IL-6 and -8,
leading to tumor progression in a paracrine fashion [22,110,187–190]. On the other hand,
v-IL-6 is able to activate the JAK-STAT, MAPK-ERK and PI3-AKT pathways through gp130
and might induce cell survival and proliferation [22,55,189]. Viral IL-6 can also induce
the excretion of pro-inflammatory cytokines, such as human IL-6, contributing to the
pro-inflammatory and pro-angiogenic environment of KS [189]. On the other hand, the
v-CCL proteins are involved in the immune escape and the stimulation of angiogenesis in
Kaposi’s sarcoma by inducing VEGF [191]. These viral chemokines also have the ability to
act as paracrine contributors on the survival of latently infected or uninfected cells, thus
participating in KSHV pathogenesis [192]. Finally, the v-IRF proteins are lytic proteins that
are able to inhibit the production and signaling of type I interferons (INFs I) by targeting
cellular IRFs and leading to a reduction in immune defense [52,193].

7. Rationale and Feasibility of KSHV Vaccine

Currently, there is no KSHV vaccine available to prevent KSHV infection or treat its
associated diseases. However, Kaposi’s sarcoma remains one of the most common cancers
in Africa and still occurs in HIV-1-infected patients, although immunovirological control of
the HIV-1 infection has been achieved [194,195]. In addition, the therapeutic approaches to
treat Kaposi’s sarcoma are limited, as some are associated with a limit toxic dose [196] and
are not readily accessible in resource-limited countries, especially in Sub-Saharan Africa.
Thus, the development of a KSHV vaccine could have a major impact on public health
worldwide, and more specifically, in endemic areas and on those people who are at risk of
KSHV infection or immunosuppressed.

An immune response against KSHV is essential to prevent the development of Ka-
posi’s sarcoma, and includes the following different immune pathways: (i) Natural killer
cells by downregulating the expression of MHC type 1 molecules on tumor cells infected
with KSHV [197,198], (ii) KSHV-specific CD8 T-cells’ responses, which is lower in HIV-
infected patients with Kaposi’s sarcoma compared with those infected with KSHV but
without symptoms [199,200]. KSHV-specific CD8 T-cells were reported to target both early
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and late lytic proteins, as well as two KSHV proteins, LANA and K12/Kaposin [201];
(iii) neutralizing antibodies (nAbs) are also induced by KSHV infection [202,203] and may
represent the most promising way for the development of KSHV prophylactic vaccines.
Recently, Mortazavi et al. characterized the antigenic targets of KSHV-specific nAbs and
found that, of the eight envelope glycoproteins, the gH/gL complex is the predominant
antigenic determinant of KSHV-specific nAbs [204].

8. Conclusions

KSHV is one of the seven oncogenic viruses currently known, and it is found in all
the epidemiological forms of Kaposi’s sarcoma. However, the mechanisms of transmission
and oncogenesis leading to Kaposi’s sarcoma are complex. Indeed, the global distribution
of KSHV infection diverges by region, suggesting the impact of cofactors not identified
yet. Otherwise, although KSHV encodes several oncogenes that could potentially induce
a tumor phenotype, KSHV infection in the general population rarely leads to Kaposi’s
sarcoma, suggesting the importance of cofactors, such as immune deficiency. Thus far,
further studies are required to improve our knowledge on KSHV’s transmission, molecular
characteristics and oncogenesis.
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