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ABSTRACT

Long distance enhancers can physically interact
with promoters to regulate gene expression through
formation of enhancer-promoter (E-P) interactions.
Identification of E-P interactions is also important
for profound understanding of normal developmen-
tal and disease-associated risk variants. Although
the state-of-art predictive computation methods fa-
cilitate the identification of E-P interactions to a cer-
tain extent, currently there is no efficient method that
can meet various requirements of usage. Here we
developed EPIXplorer, a user-friendly web server for
efficient prediction, analysis and visualization of E-P
interactions. EPIXplorer integrates 9 robust predic-
tive algorithms, supports multiple types of 3D con-
tact data and multi-omics data as input. The out-
put from EPIXplorer is scored, fully annotated by
regulatory elements and risk single-nucleotide poly-
morphisms (SNPs). In addition, the Visualization and
Downstream module provide further functional anal-
ysis, all the output files and high-quality images
are available for download. Together, EPIXplorer pro-
vides a user-friendly interface to predict the E-P
interactions in an acceptable time, as well as un-
derstand how the genome-wide association study
(GWAS) variants influence disease pathology by al-
tering DNA looping between enhancers and the tar-
get gene promoters. EPIXplorer is available at https:
//www.csuligroup.com/EPIXplorer.

GRAPHICAL ABSTRACT

INTRODUCTION

Enhancers play an important role in driving gene expression
patterns in a cell type specific manner as well as morpho-
logical differences (1). Many enhancers regulate gene ex-
pression through E-P interactions from a long genomic dis-
tance (2). Moreover, most of identified disease-associated
genetic variants, locate in non-coding intergenic regions
that often lie within or proximal to enhancer elements.
Identifying which promoters topologically engage disease-
associated mutated loci can offer important insight into
how these polymorphisms contribute to disease risk (3–5).
Modern Chromosome Conformation Capture (3C)-based
assays facilitate the identification of such long-range con-
tacts between disease loci and target promoters, such as
High-throughput Chromosome conformation capture (Hi-
C) (6), Capture Hi-C (7), Chromatin Interactive Analysis by
Paired-End Tag Sequencing (ChIA-PET) (8), HiChIP (9),
etc. However, these assays are technically challenging, ex-
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Table 1. The predictive algorithms integrated in EPIXplorer

Strategy Input Prediction output

Downstream
analysis/

Visualization Advantage Disadvantage

PreSTIGE Unsupervised
(Distance-based)

Distance,
H3K4me1,
RNA-seq

E-P interaction No/No Low running times,
does not need 3D
contact

Low accuracy

Ernst et al. Unsupervised
(Correlation-based)

CTCF, histone
marks, TF binding

E-P interaction No/No Low running times,
does not need 3D
contact

Low accuracy

Thurman et al. Unsupervised
(Correlation-based)

DHS E-P interaction No/No Low running times,
does not need 3D
contact

Low accuracy

EpiTensor Unsupervised
(Decomposition-
based)

DHS, histone
marks, RNA-seq

3D interactions No/No does not need 3D
contact

Low accuracy, slow
speed

IM-PET Supervised
(Random Forest)

DNA, histone
marks, TFBSs,
RNA-seq + ChIA-
PET

E-P interaction No/No High accuracy Need enhancer
locus and signals,
classification only

JEME Supervised (Linear
Regression)

DHS, distance,
eRNA, histone
marks + ChIA-
PET/Hi-C/eQTL

E-P interaction No/No High accuracy, does
not need 3D contact

Slow speed,
classification only

TargetFinder Supervised
(Gradient Tree
Boosting)

DHS, DNA
methylation,
TFBSs, histone
marks,
CAGE + Hi-C

E-P interaction No/No High accuracy Need 3D contact,
classification only

3DPredictor Supervised
(Gradient Boosting)

CTCF, distance,
RNA-seq + Hi-C

3D interactions No/No High accuracy Need 3D contact,
slow speed,
classification only

LoopPredictor Supervised
(Random Forest,
Gradient Boosted
Regression Trees)

RNA-seq,
ChIP-seq,
ATAC-seq,
RRBS + HiChIP

E-P interaction,
Enhancer-Enhancer
(E-E) interaction,
Promoter-Promoter
(P-P) interaction

No/No High accuracy, both
classification and
regression

Need 3D contact,
slow speed

pensive, and time-consuming, making it a great challenge
to explore the chromosome contacts of unrecognized cell
line or species.

Recently, some predictive computation tools are devel-
oped to solve the wet-lab experimental difficulties (10). Two
state-of-art strategies taken by current computational meth-
ods were unsupervised-learning and supervised-learning,
the unsupervised learning methods used inherent genomic
patterns to predict chromatin interactions, such as distance
or correlations between regulatory elements (11–13). PreS-
TIGE (12) linked cell type–specific enhancers to their tar-
get genes via the linear domain model. Ernst et al. (14) and
Thurman et al. (15) utilized the correlations between pro-
moter DNaseI-hypersensitive sites (DHS) and enhancers or
the expression levels in specific regulatory regions. EpiTen-
sor (16) employed a decomposition-based model to identify
the interaction between promoters and enhancers. The su-
pervised learning methods usually took classical learning
models, such as random forest, neural network, decision
tree, logistic regression, which trained the model with se-
quence or epigenomic data in a specific cell line, then ap-
plied the model to a similar or another cell line (17,18).
IM-PET (19) integrated multiple genomic features to distin-
guish E-P pairs with random forest model. JEME (20) iden-
tified the interactions with linear regression model, which
used epigenomics and expression features. TargetFinder
(21) was a popular method for predicting E-P interaction
in a cell-type specific manner, which used open chromatin
information, gene expression, transcription factors (TFs),

and histone marks to train the classification model. 3DPre-
dictor (22) provided quantitative prediction of chromatin
interactions by using CTCF binding signals and gene ex-
pression. LoopPredictor (23) was an ensemble machine
learning model, can be used to predict enhancer mediated
interactions in a genome-wide fashion across different cell
lines and organisms, which provided both classification and
regression of chromatin interactions.

To a certain extent, these computational methods effec-
tively solve the difficulties of identifying enhancer-mediated
chromatin interactions, while single method cannot meet
various requirements of usage (Table 1). In addition, lim-
ited by the numerous inputs, excessive memory usages and
overlong training time, these methods were hard to be
widely used. Therefore, a user-friendly web server is nec-
essary to simplify the computation procedure and facili-
tate further exploration of E-P interactions. With this in
mind, we develop EPIXplorer, a web server for prediction,
downstream analysis and visualization of E-P interactions,
which integrates 9 robust predictive algorithms. EPIXplorer
supports multiple types of 3D contact data (Hi-C, ChIA-
PET, HiChIP, etc), and multi-omics data (ChIP-seq, RRBS,
ATAC-seq, RNA-seq, etc.) as input, and provides scoring,
annotation for the predicted results with regulatory ele-
ments and risk SNPs. Additionally, the Visualization and
Downstream module facilitate the functionality exploration
of loops. Overall, EPIXplorer can predict the enhancer con-
nectomes of uncharacterized cell types, explore the func-
tional complexity of 3D genome, as well as investigate the
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Figure 1. The overall design of EPIXplorer. Multi-omics datasets and/or 3D contact data can be prepared as input. EPIXplorer provides a practical
guidance from three aspects: By Model Type (BMT), By Input Type (BIT), and By Bio Sample (BBS). Downstream and visualization modules perform
further analysis for predicted loops.

pathological mechanism of GWAS variants in the context
of 3D genome.

RESULTS

Overall design of EPIXplorer

The purpose of EPIXplorer is to facilitate the prediction
of E-P chromatin interactions. The overall design of EPIX-
plorer is summarized in Figure 1. The web server accepts
different types of input to meet the requirements of users,
such as without any data input, with only multi-omics
dataset, or with only 3D contact data. The multi-omics
datasets include, but not limited to, RNA-seq gene expres-
sion profile, Transcription Factor ChIP-seq peaks, Histone
Marks ChIP-seq peaks, and ATAC-seq peaks. The 3D con-
tact data can be chromatin interactions captured by Hi-C,
ChIA-PET, HiChIP, etc. Users can prepare the input files
following the format description on tutorial page.

The web server integrates 9 robust algorithms to perform
the prediction. To facilitate the selection of algorithms, we
provide practical guidance from three aspects: By Model
Type (BMT), By Input Type (BIT), and By Bio Sample
(BBS) (Supplementary Figure S1). Following statements
about the performance are explained later in the section
‘Performance of EPIXplorer’. BMT divides 9 algorithms
into supervised and unsupervised according to the type
of prediction model. The unsupervised models predict the
connections between distal regulatory elements and genes
based on the distance or the natural patterns of DNA se-
quences, which make the model easy to construct and save
a lot of running time, while the accuracies of unsupervised
models are relatively lower than the supervised models. For
the unsupervised algorithms, we recommend PreSTIGE,
which achieves relative higher accuracy than the other unsu-
pervised models. For the supervised algorithms, the perfor-

mance of LoopPredictor is the best. BIT characterizes these
algorithms by the input they support. If users have both 3D
contact and multi-omics data, LoopPredictor can be a good
option, the prediction accuracy of which is generally higher
than the others. If users only have epigenomic data, IM-
PET can be chosen. If there is no input file prepared, the
server provides ‘no upload’ mode to convenient the usage.
In this mode, users can obtain the predicted loops by select-
ing a specific cell line and the interested gene/locus, without
uploading any data. This mode was implemented by two
ways, one is to integrate the predicted loops from publica-
tions (such as Ernst et al., Thurman et al.). The other is to
collect the genomic distance and histone marks datasets of
some common cell types, then perform the prediction in ad-
vance. Since the unsupervised methods don’t need 3D con-
tact data as input, and no pre-training models required for
the prediction, these methods are suitable implemented by
the ‘no upload’ mode (such as EpiTensor, PreSTIGE). In
addition, most of the algorithms can only be applied to the
cell types in which they were trained, here BBS classifies all
the supported cell lines into 9 major types and lists the avail-
able algorithms for each cell line. Next, the server executes
the prediction with selected algorithm, the predicted E-P
interactions are fully annotated and scored by confidence,
which could be downloaded directly, or deposit to Down-
stream and Visualization module for further analysis.

Downstream module accepts both predicted E-P interac-
tions and published 3D contact loops as input, this mod-
ule provides GO analysis and motif analysis for users to
explore the biological function of loops. In Visualization
module, the genome-wide distribution of loops can be vi-
sualized by ideogram, the related regulatory elements and
risk SNPs within interested locus are annotated. The analy-
sis results from downstream and visualization module could
be exported as high-quality images and available for down-
load.
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Performance of EPIXplorer

To evaluate the prediction performance of 9 integrated al-
gorithms in EPIXplorer, two metrics were employed: the
area under the precision recall curve (AUPR) and accuracy
(ACC). In the study of Cao (24), AUPR is used to mea-
sure the performance of E-P interaction predictive meth-
ods, and AUPR is sensitive to unbalanced data in which
instances are unequal for different classes (25). Here we em-
ployed K562 and GM12878 BENGI datasets (26) to calcu-
late the AUPR score with 10-fold cross validation, the sepa-
ration of positive and negative samples followed the descrip-
tion of Moore et al. (26) (Supplementary Table S1). For the
supervised algorithms, four epigenomic features, including
ChIP-seq (H3K4me1, H3K27ac and H3K27me3), DNase-
seq/ATAC-seq data were applied. For the unsupervised al-
gorithms, genomic distance or correlation were applied as
required by different algorithms. In our previous work (27),
the gold standard loops were collected from the GEU-
VADIS Project, GTEx Project, ENCODE project, and
CRISPRi perturbation screening, which were regarded as
the true loops, and a computational benchmark framework
was proposed to evaluate the ChIA-PET/HiChIP data pro-
cessing methods. Here we used the K562 and GM12878 cell
lines of gold standard loops to evaluate EPIXplorer (Sup-
plementary Table S2). Although the input and the strategies
taken by the benchmarked methods were distinct from the
predictive algorithms in our web server, the purposes were
identical to obtain a set of accurate loops in specific cell
type. Thus, we use the same accuracy metrics (ACC) and
the gold standard datasets to measure the predicted loops.
The evaluation results showed that the AUPR and ACC of
supervised algorithms were generally higher than 0.6 (Fig-
ure 2A), which outperformed unsupervised algorithms, the
results were consistent with the finding of Moore et al. (26).

To evaluate the running time of EPIXplorer, we repeated
the prediction procedure with different number of inputs.
For unsupervised algorithms, PreSTIGE, Ernst et al., and
Thurman et al. were based on the calculation of distance or
correlation, which weren’t impacted by the increasing of in-
puts, and took less than 5 seconds to finish. Since EpiTensor
used a decomposition model, which took the most time to
process the calculation. For supervised algorithms, all the
prediction procedure can be finished within 1 hour (Figure
2B).

Case study

EPIXplorer provided running case for each tool, and users
can try the case by clicking ‘Load an example’ on the web
interface. Here we ran the K562 datasets with LoopPredic-
tor tool as an example since the prediction performance of
LoopPredictor outperformed the other tools in this dataset
(Supplementary Figure S2). To facilitate the interpretation
of training and predicting procedure, the corresponding in-
put data, generated features, and trained model were avail-
able for download. If users start a new prediction job by in-
putting their own data, the web server will assign a unique
job id, and the prediction results will be stored in web server
for a week, users can download or visualize the results
through this job id.

When the running procedure finished, the predicted K562
loops could be visualized in genome-wide scale, in which
the distribution of loops was showed with red lines on the
genome bars, and the colour of lines indicated the density
of loops (Figure 3A). In the study of Fulco (28), the in-
teractions between MYC and 7 enhancers were identified
via a systematic CRISPR interference (CRISPRi) screen.
To check the consistence of predicted loops and verified
CRISPRi contacts, we chose the region near MYC gene
to visualize the loops, the enhancers were annotated as
e1 through e7, which indicated the prediction results of
EPIXplorer were in accordance with the published loops.
The annotation results also indicated the elements pre-
dicted to regulate MYC harbored SNPs associated with hu-
man traits including Hodgkin’s lymphoma (rs7826413) and
height (rs6470764) (Figure 3B).

To explore the biological function of predicted loops, we
performed downstream analysis based on the K562 pre-
dicted loops. Motif analysis was taken accompanying with
RNA-seq expression data, the ranking list of significantly
enriched motifs were showed with bubble plot, which in-
dicated that the CTCF, SF1 and YY1 motifs were signifi-
cantly enriched (-log2(p-value) < 100) and were highly ex-
pressed in K562 cells (Figure 3C). We then performed the
GO enrichment analysis for the loop anchors, the enriched
terms (such as leukemia, abnormality of blood) showed the
loops contributed to the cell identity of K562 cell line, which
demonstrated the effectiveness of EPIXplorer (Figure 3D).
All the downstream analysis results visualized on the web
interface were available for download.

MATERIAL AND METHODS

Implementation of the algorithms

We implemented all the algorithms with their original
scripts/packages, which could be run normally on Ubuntu
18. To solve the environment conflicts between packages, we
created an independent anaconda (https://docs.anaconda.
com/) environment for each algorithm, the specific environ-
ment was loaded by homemade scripts. To make the server
extendable and robust, we adopted a detachable architec-
ture, which decomposed the server into front end and back
end independently. The functional modular design ensured
the operation of algorithms undisturbed and make it easy
to integrate new function or algorithms.

Generating features from multi-omics datasets

To gather the features into an integrated matrix for
model training, the web server firstly collected multi-omics
datasets from web interface, the format detection module
was used to classify the input files into peaks (ChIP-seq,
CUT&RUN, ATAC-seq, etc.) or expression profiles (RNA-
seq). For the type of peaks, the informative columns of peak
coordinates and peak scores were extracted and added into
feature library. For the type of expression profiles, which in-
cluded only gene names and corresponding expression val-
ues, we extracted the coordinates of genes by GENCODE
v19 (29) annotation file, then added into feature library ac-
cordingly. Then we obtained the candidate promoter ele-
ments and enhancer elements from ENCODE (3) to build

https://docs.anaconda.com/
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Figure 2. Performance of EPIXplorer. (A) The AUPR score and ACC of 9 integrated algorithms in EPIXplorer evaluated with K562 and GM12878
BENGI datasets and gold standard loop sets. (B) The running time of 9 integrated algorithms in EPIXplorer.

Figure 3. Example application of EPIXplorer implemented with LoopPredictor. (A) The genome-wide distribution of K562 predicted loops. (B) Validation
of predicted loops by published CRISPRi contacts. (C) Ranking list of significantly enriched motifs. (D) Top enriched GO terms for predicted loop anchors.

a regulatory library in the cell type specific manner. Next,
we overlaid the feature library with regulatory library by
bedtools (30) with the function of intersect, through which
the feature vector of regulatory elements was generated. In
the study of Whalen (21), the window regions between two
anchors were more informative, and benefit to the predic-
tion. Therefore, we extended each feature vector to the left-
flanking, in-between, right-flanking regions for anchors,
then all the feature vectors were merged into a feature ma-
trix for the subsequent procedure.

Training procedure

The feature matrix generated from regulatory elements were
regarded as positive samples, and the annotations of regu-
latory elements for anchors were used as the target of sam-
ples, we only retained four types of targets for the predic-
tion: enhancer-promoter (E-P), promoter-promoter (P-P),
enhancer-enhancer (E-E), and none. The type of E-P indi-
cated one of the two anchors was promoter, and the other
was enhancer, P-P and E-E indicated both anchors were
promoters or enhancers. The type of none-none represented
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the anchors of loop were uncertain type, including either of
two anchors or both anchors are non-regulatory elements.
Besides, negative regions were selected randomly by avoid-
ing ± 2kb around TSS locus of any gene. Then the selected
negative regions were used to overlay with the feature li-
brary as mentioned above. The amount of negative sam-
ple was consistent with positive sample. Next, we combined
the positive and negative samples, and split all the samples
into 7:3 randomly, 10-fold cross validation was used in every
training process.

Downstream analysis

To facilitate the further interpretation of predicted loops,
the web server integrated two commonly used downstream
analysis tools. Firstly, motif analysis accompanying the
gene expression level was used to identify the transcription
factors bounded near the loop anchor regions, the signifi-
cantly enriched motifs were shown with a user-interactive
table as well as bubble plot, which was implemented by
Apache Echart (31). And the motif analysis was imple-
mented by HOMER package (32) (Supplementary Figure
S3). Secondly, GO enrichment analysis was used to anno-
tate the loop anchors, the significantly enriched terms could
be selected and shown in bar blot. The package of cluster-
Profiler (33) was integrated to perform the GO enrichment
analysis (Supplementary Figure S4). The running time for
motif analysis in the example case (>500k input file) was
15 ± 3 seconds, and the running time for GO analysis was
10 ± 3 seconds. For the input file larger than 500k and less
than 1M, the running time of motif analysis and GO anal-
ysis ranged from 50 seconds to 1min.

Visualization implementation

The web server provided visualization for the predicted E-P
interactions, as well as the published loops identified from
Hi-C, ChIA-PET, HiChIP and other 3C-based techniques.
The visualization module integrated Ideogram API, which
supported viewing the distribution of loops in a genome-
wide scale, and supported the annotation of loops with reg-
ulatory elements and risk SNPs. Specific chromatin could
be selected from the web page and zoomed in to check the
interactions between genes and enhancers (Supplementary
Figure S5). The visualization results could be exported into
high-quality images and available for download.

Input format description

Multi-omics datasets were required for generating features,
which can be uploaded as tab-separated text files. The in-
put multi-omics files can be ChIP-seq peaks of interested
histone marks or transcription factor, RNA-seq expression
profile, ATAC-seq peaks, etc. The peak files should be stan-
dard Broadpeak or Narrowpeak format of ENCODE (3)
with at least 6 columns, the expression profile should be
2 columns with gene name and corresponding expression
value. According to the testing of different input amount,
the more input files, the more beneficial to the training pro-
cess. And the web server achieved a near optimal perfor-
mance with three input files, each file can be used to gener-
ate multiple features for different regions.

Chromatin loops was an optional input in BEDPE for-
mat, which can be generated by 3C-based techniques, with
at least 6 columns containing the chromosome of loops and
the coordinates of two anchors, if there were loop counts
available, the counting values should be the 7th column. For
the ChIA-PET and HiChIP data, the analysis results could
be directly transformed to BEDPE format and used as in-
put. For the Hi-C data, user needs to call loops using ade-
quate tools, such as Mustache (34), HiCExplorer (35), etc.

Output format description

The EPIXplorer generated predicted results as well as high-
quality images for download. For the supervised methods,
the predicted results included: the generated features in
plain text, the binary trained model file, the predicted E-
P interactions which was annotated by enhancers and pro-
moters, and the visual file for next step. For the unsuper-
vised methods, the predicted result was only E-P interac-
tions.

The generated features and binary trained model file were
provided for users to re-implement the prediction proce-
dure, the binary trained model was packed by scikit-learn
(36), through which users could construct their own ma-
chine learning model conveniently. The predicted E-P inter-
action was a tab-separated text file with three columns, the
first two columns were annotation of regulatory elements
for two anchors, the third column was the confident score
of the corresponding loop, the higher the score, the more
reliable the loop.

In the motif analysis function of Downstream module, all
the detected motifs and corresponding RNA-seq expression
values were showed in an interactive table, users could select
what they interested to present in the bubble plot. The size
of each bubble indicated the enrichment level of motif, then
the order of bubble was determined by normalized gene ex-
pression value. In GO analysis, all the GO terms, KEGG
terms and Reactome terms were listed in an interactive ta-
ble, and to be selected to generate a bar plot. The identities
of terms were listed on the left side of bar plot, and the color
of bars indicated the adjusted p-value of enrichment. Both
bubble plot and bar plot with high-quality could be down-
loaded from the web page.

CONCLUSION AND DISCUSSION

EPIXplorer allows to investigate E-P interactions from a
variety of epigenomic datasets by integrating 9 robust pre-
dictive algorithms. The server supports different types of in-
put to satisfy users’ requirements, the output from EPIX-
plorer is scored, fully annotated by regulatory elements
and risk single-nucleotide polymorphisms (SNPs). Down-
stream analysis (motif analysis and GO enrichment) and
Visualization benefits the non-computational biologists to
explore the biological function of E-P interactions. Over-
all, EPIXplorer provides a user-friendly platform to predict
the E-P interactions and explore the functional complexity
of 3D genome. The web server makes it possible to study
the pathological mechanism of GWAS SNPs under the 3D
genome architecture.

EPIXplorer still faces some limitations, which need to be
improved in the future. Firstly, TAD is a fundamental unit
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of the chromosomal structure, and greatly limits the forma-
tion of regulatory interactions between different domains
(37). Although the E-P interactions usually locate inside
the TAD structure, recent study has revealed that E-P in-
teractions can cross TAD boundaries, and these boundary-
crossing interactions largely correlate with transcriptional
output (38). Therefore, it is necessary to learn about the re-
lationships between predicted E-P interactions and TADs,
which helps understand the formation of loops, as well as
investigate the regulatory function of predicted loops. From
this point of view, the predicted loops can be viewed cooper-
ated with the Hi-C matrix and epigenetic data in the specific
cell type. And the visualization results could be exported as
universal formats, such as cool or hic, which can be trans-
formed to the other tools to produce publication quality
plots, like HiGlass (39). Secondly, the server can only pre-
dict the E-P interactions for human genome, which should
consider in the future a possibility to work for a wider
species and bio-samples. Cross-species/cross-cell lines pre-
diction is an increasing demand for non-computational bi-
ologists.
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