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Abstract
Background: Evolutionary trees are family trees that represent the relationships between a group
of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in
tree space. Given that better tree scores are believed to be better approximations of the true
phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that
find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic
heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two
popular Maximum Parsimony search algorithms.

Results: Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same
best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees
cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using
parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the
two heuristics, we also develop entropy-based methods to show the diversity of the trees found.
Overall, Pauprat identifies more diverse trees than Rec-I-DCM3.

Conclusion: Overall, our work shows that there is value to comparing heuristics beyond the
parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our
work shows that there is tremendous value in using Pauprat to reconstruct trees—especially since
it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat,
effort should go in improving its implementation. Ultimately, improved performance measures lead
to better phylogenetic heuristics and will result in better approximations of the true evolutionary
history of the organisms of interest.

Background
Phylogenetics is concerned with inferring the genealogical
relationships between a group of organisms (or taxa).
These evolutionary relationships are typically depicted in
a binary tree, where leaves represent the organisms of
interest and edges represent the evolutionary relation-
ships. Phylogenetic trees have been used successfully in

designing more effective drugs, tracing the transmission of
deadly viruses, and guiding conservation and biodiversity
efforts [1,2]. The grand challenge problem in phylogenet-
ics is reconstructing the Tree of Life, the evolutionary his-
tory of the 10 to 100 million estimated organisms on
earth. However, inferring evolutionary trees is not a trivial
task. Since the true evolutionary history for a set of
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organisms is unknown, the problem is often reformulated
as an NP-hard optimization problem. Trees are given a
score, where trees with better scores are believed to be bet-
ter approximations of the true evolutionary history. For n
taxa, there are an exponential number of evolutionary
hypotheses: (2n - 3)!! possible solutions to be exact. As a
result, an exhaustive exploration of the space of possible
solutions (or "tree space") is infeasible. Thus, the most
popular techniques in the field use heuristics to recon-
struct phylogenetic trees.

In this paper, we develop new techniques to compare the
performance of phylogenetic heuristics. While phyloge-
netic heuristics are used to search stochastically for the
best trees in tree space, their results often vary across each
run of the heuristic. As a result, it is difficult to compare
performance among heuristics that produce different
solutions. Our work evaluates phylogenetic heuristics
based on both the score and topology of the trees found.
More specifically, our work centers around the following
two questions.

1. What value (if any) do slower heuristics provide?

2. How effective are parsimony scores in distinguishing
between different tree topologies?

Traditional techniques for comparing phylogenetic heu-
ristics use convergence plots to show how the best score
improves over time, as best scores are thought to symbol-
ize more accurate trees. Under this measure, the heuristic
that obtains the best score in the fastest time is desired.
Given that different tree topologies may have identical
tree scores, preference of good-scoring trees found by fast
heuristics may result in overlooking potentially more
accurate evolutionary histories that were found by slower
approaches.

We consider the performance of two well-known Maxi-
mum Parsimony (MP) search heuristics, Parsimony
Ratchet [3] and Recursive-Iterative DCM3 (Rec-I-DCM3)
[4] on four molecular datasets of 60, 174, 500 and 567
taxa. The parsimony ratchet algorithm used in this paper
is called Pauprat since we used a Perl script by Bininda-
Emonds [5] to generate a PAUP* [6] batch file to run the
parsimony ratchet heuristic. Our first observation is that
there are benefits to considering different speed heuristic
implementations of a MP phylogenetic analysis. In gen-
eral, Pauprat is a slower heuristic than Rec-I-DCM3. Since
we were curious of the merits of a heuristic, time con-
straints were removed from consideration in this study.
However, both Pauprat and Rec-I-DCM3 find different
trees with the same best parsimony scores. These diverse
best-scoring trees denote that the heuristics are visiting
different areas of the exponentially-sized tree space. We
note that although TNT [7] has a faster implementation of
parsimony ratchet than PAUP*, TNT does not have the
capability to return to the user the set of trees found dur-
ing each iterative step of the parsimony ratchet algorithm.
The Pauprat implementation of parsimony ratchet pro-
vides this capability. Moreover, the Rec-I-DCM3 imple-
mentation also provides users with the trees found during
each step of the algorithm.

Secondly, although different trees are found with the
same parsimony score, it's interesting to consider whether
maximum parsimony is effectively distinguishing
between the trees, which has significant implications for
understanding evolution. By using a measure called rela-
tive entropy, we show that for a given collection of trees,
parsimony scores have less information content than top-
ological distance measures such as Robinson-Foulds (RF)
distance [8]. In other words, for a collection of trees, par-
simony scores identify fewer unique trees—which
increases the potential of being stuck in a local optimum
and producing less accurate phylogenies—than topologi-
cal distance measures. Thus, more powerful search strate-

Table 1: Frequency of the top-scoring trees from Pauprat and Rec-I-DCM3.

Pauprat Rec-I-DCM3

No. of taxa best score step0 step1 step2 % of total step0 step1 step2 % of total

60 8,698 1,508 0 1,509 60.3% 59 0 343 8.0%
174 7,440 2,626 1,042 635 86.1% 170 491 1,301 39.2%
500 16,218 184 562 955 34.0% 1,231 1,279 983 69.9%
567 44,165 27 263 735 22.5% 1,299 1,671 903 77.5%

The table shows the number of top-scoring trees found by each algorithm. stepi refers to trees that are i steps away from the best score. Hence, 
step0 represents the number best-scoring trees, step1 are trees one step away from the best, and step2 are trees with parsimony scores two steps 
greater than the best score. Each algorithm found 5,000 total trees. For Pauprat (Rec-I-DCM3), the step0, step1, and step2 trees make up 67.6% 
(10.7%) of the 5,000 total trees in the collection for the 60 taxa dataset. For the 567 taxa dataset, the top-scoring trees represent 22.5% and 77.5% 
of the 5,000 trees found by Pauprat and Rec-I-DCM3, respectively.
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gies could be designed by using a combination of score
and topological distance to guide the search into fruitful
areas of the exponentially-sized tree space.

Results and discussion
Frequency of the top-scoring trees
Table 1 shows the number of trees found by the Pauprat
and Rec-I-DCM3 heuristics in terms of the number of
steps they are from the best score, b, we found across the
algorithms. For each dataset, both Pauprat and Rec-I-
DCM3 find trees with the best score, b. Let x represent the
parsimony score of a tree T . Then, tree T is x - b steps away
from the best score. In Table 1, step0, step1, and step2 rep-
resent trees that are 0, 1 and 2 steps away from the best
score, b, respectively. It is clear that the top-scoring trees
from Pauprat comprise a large proportion of the total col-
lection of its 5,000 trees for the smaller datasets (60 and
174 taxa). On the other hand, the top trees for Rec-I-
DCM3 comprise the majority of its collection of trees for
the larger datasets (500 and 567 taxa).

Topological comparisons of top-scoring trees
Figure 1 shows the topological differences (measured by
the RF rate) between the top-scoring trees found by the
two phylogenetic search heuristics. We use a heatmap rep-
resentation of the RF matrix, where each value (cell) in the
two-dimensional t × t RF matrix is represented as a color.
Darker (lighter) colors represent smaller (higher) RF rates.
Since the RF matrix is symmetric, our heatmap is symmet-
ric as well. For each heatmap, the right values are x coor-
dinates and the values on the top are y coordinates.
Consider the heatmap that represents the collection of 60
taxa trees. Cell (1, 1) represents the set of step0 trees from
the Pauprat heuristic. Each of the 1,508 step0 trees is com-
pared to each other. Their resulting RF rates are 0%, which
is denoted by a black coloring of the 1,508 × 1,508 block
of cells. Hence, the best scoring trees found by the Pauprat
heuristic are identical. A similar conclusion can be made
concerning the 59 step0 trees found by Rec-I-DCM3 and
denoted by cell (2, 2) in the heatmap. If we look at the
step0 trees from both Pauprat and Rec-I-DCM3, repre-
sented by cells (x, y), where x, y ≤ 2, the entire block of cells
have a RF rate of 0%. Hence, for the 60 taxa dataset, the

Comparing the RF rates of the top-scoring trees found by Pauprat and Rec-I-DCM3Figure 1
Comparing the RF rates of the top-scoring trees found by Pauprat and Rec-I-DCM3. Each heatmap reflects the RF 
matrix between all step0, step1, and step2 trees found by Pauprat and Rec-I-DCM3. The heatmaps for the 60, 174, 500, and 
567 taxa datasets represent the 3419 × 3419, 6265 × 6265, 5194 × 5194, and 4898 × 4898 RF matrices, respectively. The RF 
rate axis varies across the heatmaps.
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heuristics found identical best-scoring trees. For the step2
trees, reflected in cells (3, 3) and (4, 4), there is more var-
iation among the 60 taxa trees. Neither heuristic found
step1 trees. The heatmap also compares trees with differ-
ent number of steps to the best. For example, cell (1, 4)
compares step0 Pauprat trees with step2 Rec-I-DCM3 trees
and denotes that they have a wider range of topological
differences between them.

Although the best trees are identical in the 60 taxa dataset,
the heatmaps in Figure 1 show that the Pauprat and Rec-
I-DCM3 algorithms find topologically different trees that
have the same parsimony score. Furthermore, as the par-
simony score increases, there is more variety in the topo-
logical structure of the step1 and step2 trees. The top-
scoring trees found by Rec-I-DCM3 algorithm are more
similar to each other than their Pauprat counterparts.
Finally, the heatmaps show that Pauprat finds more topo-
logically dissimilar trees than Rec-I-DCM3. Thus, the Rec-

I-DCM3 stepi trees tend to form clusters that are distinct
from the stepi Pauprat trees.

Next, consider the heatmaps in Figure 2 which reflect strict
consensus resolution rates for a collection of t trees. The
heatmaps in this figure are read similarly to those in Fig-
ure 1. The difference is the interpretation of the cell (i, j).
For example, on the 60 taxa dataset, cell (1, 1) represents
the strict consensus resolution of the 1,508 step0 trees
from Pauprat. Cell (2, 3) is the strict resolution rate of the
step0 Rec-I-DCM3 trees with step2 Pauprat trees. High res-
olution rates reflect high similarity among the trees of
interest. Overall, the consensus resolution rate is the high-
est for the step0 trees. This corroborates the results shown
in Figure 1 that step0 trees are more topologically similar
to each other than higher scoring trees. Furthermore, the
strict resolution rate is greater among Pauprat trees than
its Rec-I-DCM3 counterparts. For both Pauprat and Rec-I-
DCM3, the majority resolution of comparing the top trees
always resulted in a rate greater than 90% (see Figure 3).

Comparing the strict resolution rates of the top-scoring treesFigure 2
Comparing the strict resolution rates of the top-scoring trees. Each 6 × 6 heatmap represents the strict resolution 
rate between the step0, step1, and step2 trees found by the Pauprat and Rec-I-DCM3 heuristics.
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There is little variation among the stepi trees when com-
puting the majority tree. In fact, the results indicate that
all of the top-scoring trees could be used to create the
majority consensus tree with minimal impact on the con-
sensus resolution rate. While it could be argued that the
heatmaps in Figure 1 and Figure 2 essentially agree, Figure
1 gives greater insight into the differences found by indi-
vidual trees. The consensus heatmaps, in contrast, summa-
rize the information, and give a "bird's eye" view of
bipartition sharing between trees found between the two
approaches. By evaluating both types of heatmaps, the
reader can fully appreciate the intricate similarities and
differences of the two heuristics at hand, while still keep-
ing sight of the overall picture.

Comparisons over time
Next, we focus on the performance of Pauprat and Rec-I-
DCM3 in terms of time using all of the trees returned by
each search heuristic. The purpose of this experiment is to
determine the information content of parsimony scores
and RF rates among the set of trees found by the heuristics.
Previous figures have shown that trees with the same par-

simony score are distinct topologically. Now, we broaden
our analysis to incorporate all trees found by a heuristic
over a defined time period. Here, time is measured by the
number of iterations (which is CPU time independent)
and not on wall-clock time (e.g., number of hours
required). Although number of iterations is an architec-
ture-independent measure, it may not be completely ade-
quate as each algorithm may do more work than the other
per iteration. We are comparing heuristics based on their
input/output behavior, which is the collection of trees
returned after 5 runs of a heuristic, where each run con-
sists of 1,000 iterations. Thus, we believe that using itera-
tions as a basis of time is adequate for the purposes of this
paper.

Figures 4 and 5 use relative entropy as a measure for uni-
formly quantifying the information content of parsimony
scores and RF rates. Relative entropy is shown as a percent-
age of the maximum possible entropy. Higher relative
entropy means that there is more diversity (heterogeneity)
among the values of interest, and hence higher informa-
tion content. Lower relative entropy values denote homo-

Comparing the majority resolution rates of the top-scoring treesFigure 3
Comparing the majority resolution rates of the top-scoring trees. Each 6 × 6 heatmap represents the strict resolu-
tion rate between the step0, step1, and step2 trees found by the Pauprat and Rec-I-DCM3 heuristics.
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geneous values and lower information content. One
implication of low entropy values is that the search has
reached a local optimum. Higher entropy values signify
that more diverse trees are found by a phylogenetic heu-
ristic, which lessen its probability of being trapped in local
optima.

In Figure 4, Pauprat has a higher relative entropy than Rec-
I-DCM3 when comparing parsimony scores and RF dis-
tances for the 174 and 500 taxa datasets. That is, Pauprat
trees have a more diverse range of parsimony scores and
RF values than Rec-I-DCM3 trees. For the 60 taxa curves,
Rec-I-DCM3 has a much higher relative entropy than Pau-
prat. Moreover, for Rec-I-DCM3, parsimony score entropy
values are much higher than RF rate values for 60 taxa.
Such a result implies that the parsimony scores of trees are

more diverse than their topologies. In other words, trees
with different scores when compared topologically are
similar. For Pauprat, the relative entropy values vary more
than for Rec-I-DCM3, which has relative entropy values
that are fairly constant across iterations. Essentially, such
behavior denotes that the Rec-I-DCM3 search has con-
verged as there is not much change in the parsimony or RF
rates among the trees found.

Conclusion
In this paper, we used novel methods to assess the quality
of two maximum parsimony heuristics, Pauprat and Rec-
I-DCM3. The goal of this work was to both ascertain the
value of slower heuristics and determine if parsimony
score is effective in distinguishing between different tree
topologies. We designed a new entropy-based measure,

Relative entropy for parsimony scores and RF rates for PaupratFigure 4
Relative entropy for parsimony scores and RF rates for Pauprat. Relative entropy values are computed every 100 
iterations. In the plots, a data point at iteration i represents the average relative entropy of parsimony scores (or RF rates) 
based on the 100 trees produced by the Pauprat between iteration (i - 99) and iteration i.
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Relative entropy for parsimony scores and RF rates for Rec-I-DCM3Figure 5
Relative entropy for parsimony scores and RF rates for Rec-I-DCM3. Relative entropy values are computed every 
100 iterations. In the plots, a data point at iteration i represents the average relative entropy of parsimony scores (or RF rates) 
based on the 100 trees produced by Rec-I-DCM3 between iteration (i - 99) and iteration i.
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which we used in tandem with parsimony scores and Rob-
inson-Foulds (RF) distance, to quantify levels of tree het-
erogeneity across the Pauprat and Rec-I-DCM3 heuristics
over several datasets. In addition, we used heatmaps to
visualize levels of tree diversity found by the heuristics.

Our results show that parsimony score masks tree diver-
sity in large populations of equally parsimonious trees. By
using relative entropy, there is more information content
in topological distance measures (such as the RF distance)
than in parsimony scores. Furthermore, when considering
three groups of top-scoring (step0, step1, and step2) trees,
there is a wide-range of topological differences among
these trees. In some cases, by using our relative entropy
measure, parsimony scores are more diverse than the tree
topologies found. This suggests that our topology-based
methods may be more reliable in quantifying fine-grain
differences between different heuristics, especially in
larger datasets.

Our experiments with the two heuristics, show that Pau-
prat searches through tree space more slowly than Rec-I-
DCM3. However, both Pauprat and Rec-I-DCM3 find
trees with the best score. Pauprat's trees tended to be more
diverse, especially on larger datasets. Pauprat's diverse col-
lection of trees suggests its ability to escape local optima.
Given that both heuristics find different classes of equally
parsimonious trees, they are both useful in reconstructing
phylogenies. Typical performance studies based on con-
vergence speed of phylogenetic heuristics to the best score
would discount heuristics that had a slower convergence
rate. While speed is certainly important, ultimately the
goal of phylogenetics is to obtain an accurate evolutionary
tree for a group of taxa. Given that accuracy is typically
based on a score given to a tree, we would like to be able
to obtain all best-scoring trees. For the datasets studied
here, our results show that both Pauprat and Rec-I-DCM3
are necessary to obtain a diverse collection of best-scoring
trees. Depending on the value of these different hypothe-
ses, our study shows that it may be worthy to improve an
implementation of slower algorithms if they search a dif-
ferent aspect of tree space than their counterparts. In the
future, we plan to create additional metrics for ascertain-
ing levels of diversity in populations of trees. This work
will also be extended to include maximum likelihood
heuristics. Finally, we plan to use our results to develop
new heuristics that improve the accuracy of reconstructing
evolutionary trees.

Methods
Maximum parsimony heuristics
We study heuristics that use the maximum parsimony
(MP) optimization criterion for inferring the evolutionary
history between a collection of taxa. Each of the taxa in the
input is represented by a molecular sequence such as DNA

or RNA. These sequences are put into a multiple align-
ment, so that they all have the same length. Maximum
parsimony then seeks a tree, along with inferred ancestral
sequences, so as to minimize the total number of evolu-
tionary events by counting only point mutations.

Parsimony ratchet
Parsimony ratchet is a particular kind of phylogenetic
search performed with alternating cycles of reweighting
and Tree Bisection Recombination (TBR). The approach
works as follows: starting with an initial tree, a few of the
characters (between 5 – 25%) are sampled, and
reweighted. It suffices to say here that reweighting of char-
acters involves duplicating the characters so that each
shows up twice (or more) in the resulting dataset. Then,
using these reweighted characters, TBR search is per-
formed until a new starting tree is reached using this sub-
set of data. This new starting tree is then used with the
original data set to repeat the phylogenetic search. Parsi-
mony ratchet tries to refine the search by generating a tree
from a small subset of the data and using it as a new start-
ing point. If the new tree is better than the old one, then
the new one is used as the new starting tree. Otherwise,
the old one is kept.

Rec-I-DCM3
Recursive-Iteration DCM3 (Rec-I-DCM3) [4] implements
a disk-covering method (DCM) [9-11] to improve the
score of the trees it finds. A DCM is a divide-and-conquer
technique that consists of four stages: divide, solve, merge,
and refine. At a high level, these stages follow directly
from DCM being a divide-and-conquer technique.

Rec-I-DCM3, involves all of the above DCM stages, but in
addition, is both recursive and iterative. The recursive part
concerns the divide stage of the DCM, where overlapping
subsets of the input tree's leaf nodes may be further
divided into yet smaller subsets (or subproblems). This is
an important enhancement to the DCM approach since
for very large datasets, the subproblems remain too large
for an immediate solution. Thanks to the recursion, the
subproblems are eventually small enough to be solved
directly using some chosen base method. At this point,
Rec-I-DCM3 uses strict consensus merger to do the work
of recombining the overlapping subtrees to form a single
tree solution. The iterative part of Rec-I-DCM3 refers to
the repetition of the entire process just described. That is,
the resulting tree solution becomes the input tree for a
subsequent iteration of Rec-I-DCM3.

Comparing collections of trees
RF distance matrix
Given a collection of t evolutionary trees, we would like to
quantify the topological differences that exist between
them. We compute the t × t Robinson-Foulds (RF) matrix,
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which represents the dissimilarity between each pair of
trees. Cell (i, j) in the t × t RF matrix represents the RF dis-
tance between the two trees labeled Ti and Tj. The Robin-
son-Foulds (RF) distance computes the number of
bipartitions (or evolutionary relationships) that differ
between them. A bipartition is an internal edge e of a phy-
logenetic tree that separates the taxa on one side from the
taxa on the other. The division of the taxa into two subsets
is the bipartition Bi associated with edge ei. Let Σ (T) be the
set of bipartitions defined by all edges in tree T . The RF
distance between trees T1 and T2 is defined as

Our figures plot the RF rate, which is obtained by normal-
izing the RF distance by the number of internal edges and
multiplying by 100. Assuming n is the number of taxa,
there are n - 3 internal edges in a binary tree. Hence the
maximum RF distance between two trees is n - 3, which
results in an RF rate of 100%. The RF rate allows us to
compare topological differences when the number of taxa
is different. Thus, the RF rate varies between 0% and 100%
signify that trees T1 and T2 are identical and maximally dif-
ferent, respectively.

Relative entropy
Entropy represents the amount of chaos in the system. We
use entropy to quantitatively capture the distribution of
parsimony scores and RF rates among the collection of
trees of interest. In our plots, we show relative entropy,
which is a normalization of entropy, to allow the compar-
ison of entropy values across different population sizes.
Relative entropy ranges from 0% to 100%. Higher entropy
values indicated more diversity (heterogeneity) among
the population of trees. Lower entropy values indicate less
diversity (homogeneity) in the population.

Let λ represent the total number of objects (parsimony
scores or RF rates) in the population of trees. For example,
suppose we want to partition a population of 10 trees
based on their parsimony scores. Then, λ = 10. However,
if we are interested in partitioning the 10 trees based on
the upper triangle of the corresponding 10 × 10 RF matrix,

then  or 45 since the RF matrix is symmetric.

Next, we group the λ objects into P total partitions. Each
partition i contains ni individuals with identical values.
For RF, each individual in partition i will have the same RF
value. An individual in the RF matrix refers to a cell loca-
tion (p, q).

We can compute the entropy (ET) of the collection of par-
simony scores as:

where pi = . The highest entropy value (Emax) is log λ .

Relative entropy (Erel) is defined as the quotient between
the entropy ET and the maximum entropy Emax and multi-
plying by 100 to obtain a percentage. Thus,

Resolution rate
For n taxa, a resolved, unrooted binary tree will have n - 3
bipartitions (or internal edges). Trees with less than n - 3
bipartitions are considered to have unresolved relation-
ships among the n taxa. In general, binary (or 100%
resolved) trees are preferred by life scientists. The resolu-
tion rate of a tree is the percentage of bipartitions that are
resolved. One common use of this measure is related to
evaluating consensus trees, which are used to summarize
the information from a set of t trees. The strict consensus
method returns a tree such that the bipartitions of the tree
are only those bipartitions that occur in all of the t trees.
The majority consensus tree incorporates those biparti-
tions that occur in at least 50% of the t trees of interest.
Highly resolved consensus trees denote that a high degree
of similarity was found among the collection of trees.

Experimental methodology
Datasets
We used the following biological datasets as input to
study the behavior of the maximum parsimony heuristics.

1. A 60 taxa dataset (2,000 sites) of ensign wasps com-
posed of three genes (28S ribosomal RNA (rRNA), 16S
rRNA, and cytochrome oxidase I (COI)) [12]. The best-
known parsimony score is 8,698, which was established
by both Pauprat and Rec-I-DCM3.

2. A 174 taxa dataset (1,867 sites) of insects and their close
relatives for the nuclear small subunit ribosomal RNA
(SSU rRNA) gene (18S). The sequences were manually
aligned according to the secondary structure of the mole-
cule [13]. The best-known parsimony score is 7,440,
which was established by both Pauprat and Rec-I-DCM3.

3. A set of 500 aligned rbcL DNA sequences (759 parsi-
mony-informative sites) [14] of seed plants. The best-
known parsimony is 16,218, which both Pauprat and Rec-
I-DCM3 found.

4. A set of 567 "three-gene" (rbcL, atpB, and 18s) aligned
DNA sequences (2,153 sites) of angiosperms [15]. The
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best-known parsimony score is 44,165, which both Pau-
prat and Rec-I-DCM3 found.

Starting trees
All methods used PAUP*'s random sequence addition
module to generate the starting trees. First, the ordering of
the sequences in the dataset is randomized. Afterwards,
the first three taxa are used to create an unrooted binary
tree, T . The fourth taxon is added to the internal edge of
T that results in the best MP score. This process continues
until all taxa are added to the tree. The resulting tree is
then used as the starting tree for a phylogenetic analysis.

Implementation and platform
We set the parameters of the Pauprat and Rec-I-DCM3
algorithms according to the recommended settings in the
literature. We use PAUP* [6] to analyze our four datasets
using the parsimony ratchet heuristic. The implementa-
tion of the parsimony ratchet was implemented using
PAUP* [6]. For our analysis, we randomly selected 25% of
the sites and doubled their weight; initially, all sites are
equally weighted. On each dataset, we ran 5 independent
runs of the parsimony ratchet, each time running the heu-
ristic for 1,000 iterations. For Rec-I-DCM3, it is recom-
mended that the maximum subproblem size is 50% of the
number of sequences for datasets with 1,000 or less
sequences and 25% of then number of sequences for
larger datasets not containing over 10,000 sequences. We
used the recommended settings established by Roshan et.
al [4] for using TNT as a base method within the Rec-I-
DCM3 algorithm.

We used the HashRF algorithm [16,17] to compute the RF
distances between trees. Each heuristic was run five times
on each of the biological datasets. All experiments were
run on a Linux Beowulf cluster, which consists of four, 64-
bit, quad-core processor nodes (16 total CPUs with giga-
bit-switched interconnects). Each node contains four, 2
GHz AMD Opteron processors and they share 4 GB of
memory. We note that both Rec-I-DCM3 and parsimony
ratchet are sequential algorithms. The parallel computing
environment was used as a way to execute multiple, inde-
pendent batch runs concurrently.
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