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Abstract

Most variants implicated in common human disease by Genome-Wide Association Studies 

(GWAS) lie in non-coding sequence intervals. Despite the suggestion that regulatory element 

disruption represents a common theme, identifying causal risk variants within indicted genomic 

regions remains a significant challenge. Here we present a novel sequence-based computational 

method to predict the effect of regulatory variation, using a classifier (gkm-SVM) which encodes 

cell-specific regulatory sequence vocabularies. The induced change in the gkm-SVM score, 

deltaSVM, quantifies the effect of variants. We show that deltaSVM accurately predicts the 

impact of SNPs on DNase I sensitivity in their native genomic context, and accurately predicts the 

results of dense mutagenesis of several enhancers in reporter assays. Previously validated GWAS 

SNPs yield large deltaSVM scores, and we predict novel risk SNPs for several autoimmune 

diseases. Thus, deltaSVM provides a powerful computational approach for systematically 

identifying functional regulatory variants.

Sequence variation in DNA regulatory elements is hypothesized to contribute substantially 

to risk for common diseases. Variants associated with human disease by GWAS 

predominantly lie in non-coding genomic regions1 and occur within putative regulatory 
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elements far more often than expected by chance2,3, suggesting that disruption of regulatory 

function is a common mechanism by which non-coding sequence variants contribute to 

human disease. Linkage disequilibrium (LD), and the absence of regulatory vocabularies, 

complicates the discrimination of regulatory risk variants from other variation within 

disease-associated intervals. Therefore there is a pressing need for methods to predict the 

impact of regulatory sequence variation, expediting targeted functional validation and the 

exploration of disease-implicated pathways. However, few formal computational methods 

have been developed to predict the impact of Single Nucleotide Polymorphisms (SNPs) on 

regulatory element activity4,5.

Regulatory elements modulate the expression of their target genes through direct binding of 

sequence-specific transcription factors (TFs)6. While consensus on the mechanisms of 

regulatory element activity is emerging, we lack a predictive model capable of (1) 

specifying the cell types and environmental conditions under which an element would 

modulate the expression of its target gene(s), and (2) describing how specific mutations to 

that sequence would influence its activity. Here, we develop a computational model that 

addresses the latter: given a regulatory element active in a specific cell type, compute the 

effect of a given DNA sequence variation within the element. When trained on a set of 

putative regulatory sequences, our established gapped k-mer Support Vector Machine (gkm-

SVM)7 identifies sequence features within these regulatory regions which determine their 

cell-type dependent activity. We then use this gkm-SVM to quantify the effect of sequence 

changes within regulatory elements via a metric we term deltaSVM (See overview in Fig. 

1). In this systematic, quantitative approach we leverage high quality catalogs of human 

regulatory elements, generated using DNase I Hypersensitivity, distinctive histone 

modifications, and TF binding8,9. For example, if the gkm-SVM is trained on DNaseI 

Hypersensitive Sites (DHSs), it identifies the sequence features that determine chromatin 

accessibility in the corresponding cellular context. Our method is, however, blind to extant 

databases or binding motif data, and consequently can uncover novel motifs, combinatorial 

constraints, and key accessory factors, and quantify the significance of their individual 

contributions to regulatory element activity.

Results

Model training and validation

We previously demonstrated that a properly trained SVM can predict cell-type specific 

regulatory elements from primary genome sequence alone7,10–12. To test whether this SVM-

based approach could be adapted to predict the functional consequence of sequence 

variation within regulatory elements, we first took advantage of a large set of dsQTLs 

(DNase I Sensitivity Quantitative Trait Loci) identified in a collection of human 

Lymphoblastoid Cell Lines (LCLs)13–15. These are SNPs within putative regulatory regions 

(marked by DNase I Hypersensitivity) and are associated with altered DNase I sensitivity 

therein. We first trained a gkm-SVM on the top DHSs in the LCL GM128788. The gkm-

SVM produces a scoring function characterized by a set of weights quantifying the 

contribution of each possible 10-mer to a region’s DNase I sensitivity in GM12878 cells. 

We then can calculate deltaSVM, the predicted impact of any Single Nucleotide Variant 
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(SNV) on chromatin accessibility in LCLs, by summing the change in weight between 

alleles for each of the ten 10-mers encompassing the SNV, as shown in Fig. 2a for the 

dsQTL rs495322313. Here, the indicted SNP allele disrupts a NF-κB binding site, which in 

our model reduces the strong positive contribution of several 10-mers. Two neighboring 

SNPs do not make significant changes to the weights, as shown graphically in Fig. 2b, and 

the score of each allele is the sum of the weights across this region. Similarly, we can extend 

this method to INDELs and multiple substitutions by summing weights across all affected 

bases.

To systematically assess the ability of deltaSVM to predict the impact of SNPs on DNase I 

sensitivity, we compared deltaSVM to the set of dsQTLs13, quantified by the effect-size, 

beta. The correlation between deltaSVM and effect-size for the 579 SNPs within 100 bp of a 

DHS is highly significant, with a Pearson correlation coefficient C = 0.721 (t-distribution P 

= 7.68e-94) (Fig. 2c). This correlation falls off rapidly with distance (Supplementary Figure 

1), thus our analysis is consistent with local action of dsQTLs. However, if our predictions 

are accurate, deltaSVM analyses on non-dsQTL SNPs should also yield low scores in order 

to limit false positive predictions. We chose a 50x larger negative set of non-dsQTL SNPs 

with comparable levels of DNase I sensitivity as a negative set, since there are typically 50–

100 SNPs within a single LD block15. In Fig. 2d we show the Receiver Operating 

Characteristic (ROC) curve, plotting True Positive rate (TP/P) vs. False Positive rate (FP/P), 

and in Fig. 2e we show the Precision-Recall (PR) curve, plotting precision (true positives 

over predicted positives, TP/PP = TP/(TP+FP)) vs. recall (TP/P), for our method (gkm-SVM 

deltaSVM) compared to four other methods4,5,10,16.

Here, as is typically the case for genomic predictions where the search space is large, the 

lower left corner of the ROC curve, where the FP rate is low, has the most dramatic effect 

on the accuracy (precision) of the predictions17. At a recall of 10%, the gkm-SVM 

predictions are 55.9% accurate, ~5x more accurate than deltaSVM based on smaller 6-mers 

(kmer-SVM)10 as shown in Fig. 2e, because while the kmer-SVM can predict full regions 

very accurately by averaging many weights, the kmer weights needed to evaluate SNPs are 

determined from a small set of support vectors and are noisy. By contrast the gkm-SVM 

reduces the false positive rate significantly by using much more statistically robust gapped-

kmer weights18. Additionally, in comparison to conservation (GERP score16), and to two 

recently published methods integrating functional genomic datasets to predict the 

deleteriousness of noncoding variants (CADD4 and GWAVA5) the gkm-SVM is ≥ 10x more 

accurate than any of these existing methods at 10% recall (Fig. 2e).

Three key features contribute to our dramatically improved accuracy. First, we train gkm-

SVM on set of regulatory elements whose activity is specific to the relevant cell type. 

Second, this large training set (thousands) includes both positive and negative elements to 

statistically determine the DNA sequence elements required for activity, rather than relying 

on the precise state of any specific regulatory element in a specific assay. Thirdly, we 

identify a complete catalog of both positive and negative sequence features, as many SNPs 

result in a significant deltaSVM based on what the variant changes to, rather than what it 

was in the reference/assayed genome. In our discriminative approach, gkm-SVM identifies 

these negative sequence elements by their presence in the negative set and their absence in 
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the positive set. This is critical for accurately assessing the effect of variants, as many of our 

predicted functional SNPs modulate intermediate strength binding sites.

Ultimately we are interested in how a variant modulates the expression of its target genes. 

125 of 579 dsQTLs are also eQTLs19 (variants associated with differential gene expression), 

but some dsQTLs are anti-correlated with eQTLs13. Both classes of dsQTLs are strongly 

positively correlated with deltaSVM (Fig. 3a–c). Thus surprisingly, but consistent with 

earlier analysis13, we find that as 22% of the dsQTLs become more accessible, they repress 

target gene expression. We also analyzed the relationship between deltaSVM and 

evolutionary sequence conservation. Interestingly, although bases predicted to either reduce 

or increase DNase I sensitivity when mutated are more conserved than bases predicted to be 

neutral, we found that negative deltaSVM bases are much more conserved than positive 

deltaSVM bases (Fig. 3d and Supplementary Figure 2).

gkm-SVM predicts functional impact of enhancer variants

To directly test the ability of our SVM-based approach to predict the functional consequence 

of sequence variation on enhancer activity, we first turned to well-characterized enhancers 

of the pigmentation genes Tyr and Tyrp120,21 (Fig. 4a,b). We trained a melanocyte-specific 

gkm-SVM on a large set of putative melanocyte enhancers marked by EP300 and 

H3K4me112, and scored all possible SNVs in the Tyr and Tyrp1 enhancers, selecting and 

synthesizing more than 40 SNVs, across a range of deltaSVM scores, and tested each variant 

independently in luciferase reporter assays. For both enhancers, deltaSVM is strongly 

correlated with the observed difference in luciferase reporter activity between mutant and 

wild-type enhancer constructs (Pearson C = 0.778, P < 2e-5 for Tyr, and C = 0.529, P < .

0095 for Tyrp1; Fig. 4c,d).

Despite their depth, our analyses of the Tyr and Tyrp1 enhancers tested only a subset of all 

possible variants therein, and relied on in vitro reporter assays. Therefore, we turned to a 

dataset in which all possible variants within a 259 bp liver-specific enhancer of the ALDOB 

gene were tested using a massively parallel reporter assay in vivo in mouse liver22. We 

trained a gkm-SVM on large set of putative liver enhancers marked by DNase I 

hypersensitivity and H3K4me1 signal in adult mouse liver23. We then compared deltaSVM 

for each of the tested mutant regions to the observed functional output. Again we see a very 

high correlation (C = 0.630, P < 3.24e-81) between the predicted impact of the mutation 

using our sequence-based model and the observed change in enhancer activity relative to 

wild-type sequence (Fig. 5a). If we further use the “aggregate score” model22 averaging 

deltaSVM for each of the 3 possible base substitutions, this correlation reaches C = 0.691 

(Supplementary Figure 3).

We next asked how deltaSVM performed predicting functional variants in diverse sets of 

enhancers. We analyzed data from another massively parallel reporter assay using targeted 

mutation of enhancers predicted to be active in K562 and HepG2 cells24. For each wild-type 

construct that was expressed significantly in either cell line, we separately scored all 1 bp 

and motif scrambling mutations using a gkm-SVM trained on K562 and HepG2 DHS 

regions8, and compared the measured expression change to the predicted deltaSVM score in 

each cell line (Fig. 5b,c). For both datasets again we find high correlation (C = 0.626, P < 
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1.34e-31 for K562 and C = 0.646, P < 3.84e-34 for HepG2). Since all elements were tested 

and scored in both cell types, this high correlation underscores the accuracy of deltaSVM’s 

cell-type specific predictions and is further supported by the low correlation of deltaSVMs 

scores from gkm-SVMs trained on non-relevant cell-types (Table 1).

Causal SNP predictions for human disease

In a final test of its potential, we asked whether deltaSVM could predict the functional 

consequences of studied disease-associated sequence variants. We compared deltaSVM 

values for three experimentally validated SNPs, each of which has been shown to alter 

expression leading to increased disease risk or pertinent traits: Rfx6 (rs339331, prostate 

cancer)25, Bcl11a (rs1427407, fetal hemoglobin levels)26, and Sort1 (rs12740374, LDL 

cholesterol levels)27. We trained three separate gkm-SVMs with DHSs from cell lines 

appropriate to each phenotype (LNCaP, mouse MEL, and HepG2 hepatocytes). We then 

scored all loci with deltaSVM trained on all three cell-types. In each case, we found that the 

validated SNPs are only scored higher than flanking SNPs when deltaSVM was trained on 

the appropriate cell type (Fig. 6a). Specifically, the SORT1 variant only has high deltaSVM 

when trained on HepG2 cells, relevant for liver, as shown in the 3rd column of Figure 6a.

Since the set of these validated regulatory SNPs is limited, we next examined 413 SNPs 

associated with 11 autoimmune diseases enriched in T helper cell type 1 (Th1) H3K27Ac 

regions28. We similarly trained a gkm-SVM on Th1 DHSs8, and for each disease associated 

locus, scored the lead SNPs and an additional 2700 SNPs in tight LD (as defined in 

methods), and random SNPs including equivalent size flanking sets as a control. An 

example locus in BACH2, associated with several autoimmune diseases, is shown in Fig. 6b. 

We identified high scoring deltaSVM SNPs for 17 independent disease associations (Table 

2), which we predict to be expression perturbing SNPs with high confidence (P < .02), while 

at this threshold random sampling produced 8 SNPs (Fig. 6c, Supplementary Figure 4). 

Most of these high scoring SNPs are not the lead SNP, and thus represent novel predictions 

for the causal SNP.

Discussion

One of the most significant challenges facing contemporary genetics and precision medicine 

is the interpretation of noncoding sequence variation. This challenge remains in the face of 

significant advances in genome sequence technologies that now make possible the 

generation of huge quantities of noncoding sequence data. Despite the wealth of evidence 

linking noncoding sequence variation to disease risk, we have been left wanting in our 

ability to directly interpret primary noncoding sequence data and hence to infer the 

biological consequences of disease-associated variation. Our efforts in this study take 

significant strides in creating a framework within which we can computationally develop 

and utilize regulatory lexicons, making robust predictions of the consequences of variation 

in functional noncoding sequence modules.

To ensure very high confidence predictions, we have limited our initial analyses to the 

highest deltaSVM scores in Table 2. However, comparison with validated SNPs (Fig. 6a) 

shows that many more moderate deltaSVM scoring SNPs will also perturb regulatory 
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activity, but likely with relatively diminished effect. In this sense our random control 

sampling is highly conservative, as the positive loci are all known to be associated with 

disease. The high accuracy and low false positive rate of deltaSVM (Fig. 2e) is crucial to 

identify these causal SNPs with high accuracy. Together with our observations at 

lymphoblastoid dsQTLs, the Tyr and Tyrp1 enhancers, the ALDOB enhancer analyses and 

those performed in K562, and HepG2, these results clearly demonstrate that deltaSVM can 

broadly predict the empirically measured, cell-type specific functional consequences of 

enhancer sequence variants, given an appropriate training substrate.

Our results strongly support the hypothesis that non-coding disease associated SNPs that 

disrupt DNase HS/enhancer function do so directly through modulation of local TF-DNA 

interactions, leading to concomitant changes in chromatin state and gene expression. Many 

of these sequence determinants are recognizable as TF binding sites. Additionally gkm-

SVM is also in principle capable of capturing sequence determinants of structural properties 

of TF-DNA interactions e.g. constrained sequence flanking TFBS that may contribute to the 

activity or stability of the enhancer/promoter regulatory complex. Precise variant evaluation 

requires an accurate assessment of the relative contribution of moderate and weak binding 

sites or other variants which affect chromatin accessibility, which we estimate requires at 

least ~1000 training elements and a robust classifier. We have shown that these sequence 

features are robust predictors of chromatin accessibility, and are also predictive of gene 

expression changes when enhancer/promoter connections are established. But chromatin 

accessibility is sometimes negatively correlated with gene expression changes, and our 

results suggest that enhancer/enhancer and enhancer promoter interactions at a larger scale 

will ultimately determine a sequence variant’s impact on gene expression.

In its application, both gkm-SVM and deltaSVM reinforce the recognized importance of cell 

type, developmental time, and biological state when connecting disease mechanisms to 

molecular events. Here, the biological state defines a set of active nuclear TFs in the cell, 

which in turn map sequence features to their target regulatory elements through 

combinatorial binding. It’s understandable therefore that the predictive power of deltaSVM 

for a given variant indicted in any given disease process is heavily dependent on the 

availability a biologically appropriate substrate on which to train the gkm-SVM. Consistent 

with this expectation, we have demonstrated that deltaSVM predictions are highly cell type 

dependent, i.e. deltaSVM from weights trained on one cell type are weak predictors of 

expression changes in other cell types (Table 1). Further, deltaSVM only identifies the 

validated disease associated SNPs shown in Fig. 6a if trained on an appropriate cell type. 

While the ENCODE8,23 and Roadmap9 projects have provided a wealth of such training 

data, our results indicate that future progress in common disease etiology will be greatly 

facilitated by coupling sequence based computational analysis with the generation of 

functional genomics data targeting disease relevant developmental stages and cell types. 

What we provide here is evidence that such integration of computational and disease-

informed biological and strategies can be used to illuminate the roles played by noncoding 

regulatory variation in disease.
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Materials and Methods

gkm-SVM and deltaSVM

We trained a gkm-SVM by following previously reported methods with minor 

modifications7,10–12. Briefly, we first defined a positive training set by using publically 

available DnaseI-seq and ChIP-seq datasets, as discussed in greater detail below. We then 

generated a negative training set by randomly sampling from the genome equal number of 

regions that match length, GC and repeat fractions of the positive set. To remove false 

negative regions as much as possible, we excluded any regions with P < 1e-5 (MACS43) 

from sampling. We then trained a gkm-SVM with default parameters (l = 10, k = 6, and d = 

3 with truncated filter), and measured the classification performance using ROC curves with 

five-fold cross validation. Scaling of performance with gkm-SVM feature length is shown in 

Supplementary Figure 5. To calculate deltaSVM, 10-mer SVM scores were used as a proxy 

for weights. We generated the final weights by averaging gkm-SVMs trained on five 

independently generated 1x negative sets. When we compare deltaSVM between different 

training sets we normalize weights by the standard deviation of the weight distribution, but 

we have reported raw weights here for simplicity. This correction is typically a small effect 

(< 50%).

Training set for DNaseI Hypersensitive regions in lymphoblastoid cell lines

GM12878 DNaseI-seq peaks were first defined by MACS43 (P < 1e-9) for each replicate 

independently. We then chose peaks that were consistently found in both replicates. These 

peaks were further trimmed and 300 bp central DHSs that maximize the DNase I 

hypersensitive signals were determined. We also excluded any regions with repeats > 70% 

and regions overlapping with dsQTLs, to avoid possible overfitting when scoring dsQTLs. 

We ultimately obtained 22,384 300 bp DHSs as the positive training set.

Training set for mouse melanocyte enhancers

To train gkm-SVM appropriate for Tyr and Tyrp1 enhancers in mouse melanocytes, we 

determined 4,337 EP300 bound regions in the mouse melanocyte cell line melan-Ink4a-

Arf 12 as the positive training set by following the above protocol with some adjustments 

(MACS P < 0.002). Promoter proximal regions and repeats were excluded from the training 

set. Since this positive set is much smaller than the others, we generated 10x larger negative 

sets in order to obtain more robust weights for deltaSVM analysis.

Training set for mouse liver enhancers

Similar to the training set for DHSs in LCLs, we defined a positive training set (n = 19,590) 

relevant to the ALDOB enhancer by integrating DNaseI-seq and H3K4me1 ChIP-seq on 

adult mouse liver tissue23. To specify liver enhancers, we additionally excluded all promoter 

proximal DHSs (defined as regions with distances to the nearest known transcription start 

sites (TSS) < 2 kbp) from the training set, after determining the 300 bp core DHSs as 

described above. We further selected DHSs that overlap with H3K4me1 ChIP-seq peaks, 

which are well-known markers for enhancer activity44,45, and defined these as the positive 

training set.
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DeltaSVM analysis of dsQTL SNPs

We used the dsQTL tables and the raw data files downloaded from the GEO database 

(accession number GSE31388) to define the positive and control sets of dsQTL SNPs. 

Because association alone does not necessarily imply the causation due in part to LD 

problem, we further applied more stringent rules to determine the most likely causal dsQTL 

SNPs. We first restricted to 1,296 SNPs within their associated 100 bp DHSs to ensure that 

the changes in DNase I sensitivities are physically linked to the changes in their DNA 

sequences. We also applied a more strict association P-value threshold (P < 1e-5) to reduce 

false positive associations, finally resulting in 579 SNPs. As a control SNP set, we generated 

a 50x larger set of common random SNPs (N = 28,950; minor allele frequency > 5%) 

sampled only from the top 5% DHS regions that had been used to identify dsQTLs in the 

previous study13. To reduce false negative SNPs, we excluded from sampling any DHSs that 

had been found to be significantly associated with any of the dsQTL SNPs. Weights from 

gkm-SVM and kmer-SVM trained on the GM12878 DHSs were then used to calculate 

deltaSVM scores. We confirmed that training a gkm-SVM on negative sequences 

constrained to match the positive sequences distance to TSS distribution did not affect 

overall performance (Supplementary Figure 6). We further confirmed that using negative 

dsQTL control SNPs constrained to match the positive dsQTL distance to TSS and LD 

distribution did not affect overall performance (Supplementary Figure 7). As a comparison, 

we considered three different scoring metrics; Combined-Annotation-Dependent Depletion 

(CADD4), Genome-Wide Annotation of Variants (GWAVA5), and conservation scores 

(Genomic Evolutionary Rate Profiling: GERP16). We downloaded pre-computed CADD 

scores for all 1000 Genome variants, from which the scores for the dsQTLs and control 

SNPs were extracted. We also extracted the corresponding GWAVA scores from the pre-

calculated table downloaded from the GWAVA website. We analyzed all three different 

GWAVA models (region, tss, and unmatched) and chose the best one (region), as 

determined by AUC, for the main analysis. The GERP scores were also extracted from the 

same GWAVA result files. To do a fair comparison, we only considered SNPs for which all 

the five scores are available, resulting in 574 positive SNPs and 27,735 control SNPs. The 

entire prediction results are available in Supplementary Table 1. eQTL beta was calculated 

using quantile-normalized gene expression from the eQTL website.

Melanocyte Luciferase Assay and deltaSVM analysis

We selected 22 and 23 SNVs for functional testing in the Tyr (mm10 coordinates chr7: 

87508164–87508388; 226 bp) and Tyrp1 (mm10 coordinates chr4:80819561–80819851; 

291 bp), respectively. These SNVs were randomly selected as follows: 10 SNVs in each 

enhancer predicted to reduce the enhancer’s activity (negative deltaSVM), 4 SNVs in each 

enhancer predicted to increase the enhancer’s activity (positive deltaSVM), 4 in each 

enhancer SNVs predicted to have a neutral impact on the enhancer’s activity (deltaSVM 

near 0), and 4 (Tyr) or 5 (Tyr) additional SNVs that overlap with key motifs identified in 

previous reports20,21. Reference and SNV enhancer sequences were synthesized (Genewiz; 

South Plainfield, NJ), verified by sanger sequencing, and cloned into a luciferase reporter 

plasmid containing a minimal promoter and a luciferase reporter gene. For each SNV, we 

performed 4 biological replicates (each with an independent plasmid DNA clone) in order to 
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control for differences that might arise from random mutations in the plasmid backbone or 

from variation in the quality of plasmid preps. We transfected each reporter plasmid into the 

mouse melanocyte cell line melan-Ink4a-Arf, and measured luciferase activity 24 hours later 

using the Dual-Luciferase Reporter Assay System (Promega; Madison, WI). We compared 

the activity of each variant enhancer sequence to the activity of the reference sequence 

(normalized to 1), and were thus able to quantitate the impact of each SNV on the 

enhancer’s activity. The entire deltaSVM predictions and the luciferase assay results are 

provided as Supplementary Table 2 and 3, respectively.

deltaSVM Analysis of Massively Parallel Reporter Assays

To compare with exhaustive single nucleotide mutagenesis of the ALDOB enhancer22, we 

trained a gkm-SVM on adult mouse liver DHS as described above and scored each single 

nucleotide variant with deltaSVM and compared them with its measured in vivo expression 

changes (Supplementary Table 4)22. To compare with the directed mutagenesis of putative 

K562 and HepG2 enhancers24, we trained K562 an HepG2 specific gkm-SVMs on the top 

10000 500 bp DHS regions in K562 and HepG2 cells8, after excluding regions that were 

DHS in more than 30% of human ENCODE cell lines, or near promoters (< 2 kb from TSS), 

against an equal size GC and repeat matched training set. We compared deltaSVM and the 

expression change for pair of mutant wild-type constructs for each wild-type construct 

significantly expressed in either cell line (mean normalized expression>3.5) which yielded 

175 wild-type constructs and 277 mutant constructs: 102 of these are single base pair 

mutations and 175 are motif scrambling (8–17 bp changed) (Supplementary Table 5). For 

the motif scrambling mutations we summed all 10-mer scores spanning the mutated motif.

Training set for validated enhancers

For each appropriate cell line, we trained on the top 10,000 500 bp DHS regions, after 

excluding regions that were DHS in more than 30% of human/mouse ENCODE cell lines/

tissues, or near promoters (< 2 kb from TSS), against an equal size GC and repeat matched 

training set. The cell lines chosen were human LNCaP8 for Rfx6, mouse erythroleukemia 

(MEL)23 cells for Bcl11a, and HepG28 cells for Sort1.

Scoring of Autoimmune variants

We selected 11 autoimmune traits enriched in Th1 H3K27Ac as shown in Fig 3 of Ref. 28. 

We made predictions for 413 lead SNPs associated with 11 autoimmune diseases enriched in 

Th1 H3K27Ac regions (T1D: Type 1 Diabetes, CRO: Crohn’s Disease, MS: Multiple 

Sclerosis, CEL: Celiac Disease, PBC: Primary Biliary Cirrhosis, RA: Rheumatoid Arthritis, 

Allergy, ATD: Autoimmune Thyroid Disease, UC: Ulcerative Colitis, VIT: Vitiligo, SLE: 

Systemic Lupus Erythematosus)28. We trained a gkm-SVM on the top 10,000 500 bp Th1 

DHS regions, after excluding regions that were DHS in more than 30% of human ENCODE 

cell lines, or near promoters (< 2 kb from TSS), against an equal size GC and repeat 

matched training set. We scored the lead SNP and all flanking off-lead candidates in LD as 

defined by (R2 > .5 and PICS28 probability > .0275), yielding 3113 total SNPs. Since the 

significance of the maximum deltaSVM score in a locus will depend on the number of SNPs 

in that locus, as a random control we scored random SNPs and equal size flanking sets. To 
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determine the cutoff, we first determined 2nd percentile deltaSVM score from 10,000 

random permutations for each number of flanking SNPs (1~30), and then calculated mean 

and standard deviation of the 100 repeated experiments as the final cutoff. We identified 17 

high scoring deltaSVM SNPs which we predict to be expression perturbing SNPs with high 

confidence (P < .02), while at this threshold random sampling produced 8 SNPs (binomial 

test P < 0.004, Supplementary Figure 4). deltaSVM scores for all 3113 SNPs are provided as 

Supplementary Table 6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of our deltaSVM method
[left] The first step in calculating deltaSVM is to train a gkm-SVM classifier using a positive 

training set of putative regulatory sequences (identified by DNase I hypersensitivity, for 

example) and a negative training set of matched negative control sequences. The gkm-SVM 

generates a regulatory sequence vocabulary – a weighted list of all possible 10-mers, where 

each 10-mer receives an SVM weight that quantifies its contribution to the prediction of 

regulatory function. [right] After training, this regulatory sequence vocabulary can be used 

to score the predicted impact of any sequence variant on regulatory activity, as shown here 

for a single nucleotide substitution in a melanocyte enhancer of the Tyrp1 enhancer.
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Figure 2. deltaSVM can accurately predict SNPs associated with DNaseI Hypersensitivity
(a) An example of a deltaSVM calculation using a known dsQTL SNP (rs4953223). (b) 10-

mer gkm-SVM scores across the dsQTL locus containing rs4953223 are shown. Only the 

functional SNP produces dramatic changes in gkm-SVM scores. (c) Effect sizes of dsQTL 

SNPs from Ref. 13 are well correlated with their deltaSVM scores. (d–e) deltaSVM predicts 

dsQTLs with far greater accuracy than existing methods. Discriminative powers are 

compared between various methods using 50x larger control SNP set. (d) ROC curve. (e) 

Precision-Recall curve.
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Figure 3. deltaSVM is strongly positively correlated with dsQTL effect size, and positively or 
negatively correlated with eQTL effect size depending on the sign of the correlation of dsQTL 
and eQTL
Degner et al reported that 16% of the dsQTLs were also eQTLs, but that 30% of the eQTL 

dsQTLs were anti-correlated with the expression change. Our predictions are consistent with 

this observation: (a) deltaSVM is always positively correlated with dsQTL effect size (beta), 

(b) but because eQTL beta and dsQTL beta are anti-correlated 30% of the time, (c) 

deltaSVM and eQTL beta are only correlated (positively and negatively) if we treat the 

activating dsQTLs (red) and repressive dsQTLs (blue) separately. (d) Bases predicted to 

reduce the activity of functional regions are evolutionarily constrained.
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Figure 4. deltaSVM accurately predicts change in luciferase expression in targeted mutagenesis 
of Tyr and Tyrp1 melanocyte enhancers
(a,b) Base by base evaluation of all possible substitutions as scored by deltaSVM. Black 

circles mark substitutions that were tested in luciferase assays. Orange bars show positions 

of the previously characterized binding sites. (c,d) Correlation of deltaSVM prediction and 

observed normalized luciferase expression. Blue circles indicate previously tested binding 

site20,21. Error bar is one standard deviation of the changes in luciferase expression (4 

biological replicates per variant).

Lee et al. Page 16

Nat Genet. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. deltaSVM accurately predicts change of expression in massively parallel reporter 
assays
(a) Correlations of deltaSVM predictions and observed in vivo mutation effect size in the 

ALDOB enhancer in mice22. (b) Correlation of deltaSVM and mutated enhancers in K562 

cells24. (c) Correlation of deltaSVM and mutated enhancers in HepG2 cells24.
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Figure 6. deltaSVM only identifies validated causal SNPs when trained on the appropriate cell 
type
(a) Three validated GWAS SNPs from Rfx6 (1st column), Bcl11a (2nd column), and Sort1 

(3rd column) and flanking negative SNPs were each scored with deltaSVM trained on all 

three relevant cell-types. The validated SNPs are properly identified from among flanking 

SNPs when trained on the appropriate cell type (red) but not other cell types (blue). (b,c) 

Scoring autoimmune GWAS loci with deltaSVM trained on Th1 yields high confidence 
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causal SNPs listed in Table 2. BACH2 locus is shown in (b) as an example. Error bar in (c) 

is one standard deviation of the expected binomial distribution.
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