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Background: Evidence of associations between daily variation in air 
pollution and blood pressure (BP) is varied and few prior longitudi-
nal studies adjusted for calendar time.
Methods: We studied 143,658 postmenopausal women 50 to 79 
years of age from the Women’s Health Initiative (1993–2005). We 
estimated daily atmospheric particulate matter (PM) (in three size 
fractions: PM2.5, PM2.5-10, and PM10) and nitrogen dioxide (NO2) 
concentrations at participants’ residential addresses using validated 
lognormal kriging models. We used linear mixed-effects models to 
estimate the association between air pollution concentrations and 
repeated measures of systolic and diastolic BP (SBP, DBP) adjusting 
for confounders and calendar time.
Results: Short-term PM2.5 and NO2 were each positively associated 
with DBP {0.10 mmHg [95% confidence interval (CI): 0.04, 0.15]; 
0.13 mmHg (95% CI: 0.09, 0.18), respectively} for interquartile range 
changes in lag 3-5 day PM2.5 and NO2. Short-term NO2 was negatively 

associated with SBP [−0.21 mmHg (95%CI: −0.30, −0.13)]. In two-
pollutant models, the NO2–DBP association was slightly stronger, 
but for PM2.5 was attenuated to null, compared with single-pollutant 
models. Associations between short-term NO2 and DBP were more 
pronounced among those with higher body mass index, lower neigh-
borhood socioeconomic position, and diabetes. When long-term 
(annual) and lag 3-5 day PM2.5 were in the same model, associations 
with long-term PM2.5 were stronger than for lag 3-5 day.
Conclusions: We observed that short-term PM2.5 and NO2 levels 
were associated with increased DBP, although two-pollutant model 
results suggest NO2 was more likely responsible for observed asso-
ciations. Long-term PM2.5 effects were larger than short-term.
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Both short-term (from hours to days) and long-term (from 
months to years) variations in particulate matter (PM) and 

traffic-related air pollutants such as nitrogen dioxide (NO2) have 
been associated with cardiovascular health outcomes in previous 
studies.1–3 PM-mediated arterial blood pressure (BP) elevation 
may potentially be an important part of the causal mechanism 
leading to increased risk of acute cardiovascular outcomes.4,5 
Examining long-term levels, one recent study using the Women’s 
Health Initiative (WHI) cohort suggested exposure to PM < 2.5 
μm (PM2.5) and PM < 10 μm (PM10) may be modifiable risk fac-
tors of hypertension in postmenopausal women.6

Exposure to air pollution has been shown to cause acti-
vation of the sympathetic and parasympathetic nervous system 
and to affect arterial tone.7 Thus, we hypothesize that air pollut-
ants would be positively associated with BP. However, we also 
note that nitrogen monoxide (NO; formerly referred to as nitric 
oxide) can cause vasodilation and therefore may cause decreases 
in BP.8 Findings from earlier longitudinal studies of the associa-
tions between short-term air pollutant levels and BP have been 
inconsistent. Some studies have reported results suggestive of 
positive associations for PM2.5.

9–12 Other findings suggest null 
or negative associations for NO2,

13 PM10,
13 and ozone.11 One 

randomized controlled trial in humans showed that short-term 
(2-hour) exposure to traffic-related air pollution (specifically 
diesel exhaust) was associated with increased systolic BP (SBP) 
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but not diastolic BP (DBP).14 Additionally, traffic-related expo-
sure measures were identified as a modifier of the cross-sectional 
association between PM2.5 and BP in a diverse population from 
the Multi-Ethnic Study of Atherosclerosis study, specifically the 
association between PM2.5 and SBP was stronger in the presence 
of high NO2 levels.15 However, which specific component(s) of 
the air pollution mixture, including traffic-related air pollutants 
such as NO2, are responsible for observed effects on BP and 
which are confounded by others remains poorly understood. To 
our knowledge few previous studies have evaluated short-term 
effects on BP of (1) PM in multiple size fractions [including 
PM2.5 (which originates from primary emissions from combus-
tion sources and from secondary formation in the atmosphere), 
PM > 2.5 and <10 μm (PM2.5–10, which is typically generated 
from mechanical grinding or crushing, as well as from wind-
blown dust), and PM10] and (2) NO2 over the same short-term 
exposure period. One recent meta-analysis showed overall posi-
tive though not robust short-term associations between several 
air pollutants (PM2.5, PM10, NO2, and SO2) and increases in SBP 
and DBP; meta-analysis of associations between PM2.5-10 and 
BP was not available due to the limited number of studies.16

Air pollutant levels (in many areas of the United States) and 
population-average BP have both decreased over the past several 
decades.17,18 Griffin et al.19 and Adar et al.20 suggest careful con-
sideration of confounding factors by time-varying age and cal-
endar time in longitudinal studies with time-trending exposures. 
Adar et al.20 found positive associations for both PM2.5 as well 
as NO2 with SBP and DBP for exposure averaging periods of 7 
days and longer in adjusted models that did not control for calen-
dar time (years since the first examination date). However, when 
calendar time was included, those associations were attenuated 
to null.20 A limitation of the exposure assessment approach used 
for short-term exposures in Adar et al.20 was the use of area-wide 
averages of monitoring site concentrations, leading potentially to 
increased exposure measurement error and decreased exposure 
contrasts. Exposure models that reflect variation within a given 
urban area (intraurban gradients) and that are less influenced by 
missing data may offer benefits when evaluating associations 
between short-term air pollutant levels and BP.

In this study, by using data from a large nationally represen-
tative study and with an improved exposure assessment approach 
over previous studies, we aimed to estimate the associations 
between short-term PM (PM2.5, PM2.5-10, and PM10) and NO2 levels 
and SBP and DBP, adjusting for spatial and temporal confounders 
including assessment of calendar time, copollutants, and long-term 
pollutant levels. We investigated confounding by co-pollutant in 
two-pollutant models and associations of long-term (annual) PM2.5 
with SBP and DBP in models that included short-term PM2.5.

METHODS

Study Population
The WHI is a nationwide prospective US cohort across 

40 clinical centers in 24 states.21 Postmenopausal women 50 

to 79 years of age were recruited between 1993 and 1998. Our 
analysis contained data of follow-up from 2005. The WHI con-
sisted of two components, the observational study (N = 93,696 
participants) and the clinical trials (N = 68,132 participants). 
In the clinical trials, repeated measurements were available 
from the screening and annual clinic visits (years 1–11); in the 
observational study, repeated measurements were available 
from the screening and year 3 visits. In this study, we com-
bined observational and clinical trial components together 
to investigate the longitudinal association between repeated 
measures of air pollution exposure and BP. We restricted 
our analysis to those with complete data on antihypertensive 
medication use, BP measurements, and potential confounders 
(listed in the covariates section). Institutional review boards at 
all participating institutions approved the WHI protocols, and 
we obtained informed consent from all participants.

BP Measurements
BP was measured in the right arm with a conventional 

mercury sphygmomanometer after participants had been 
seated and at rest for 5 minutes. SBP and DBP were computed 
by averaging two measurements, obtained at least 30 seconds 
apart22; however, if only one measurement was available, that 
single value was used. To reduce outcome misclassification 
related to antihypertensive medication use, multiple impu-
tation methods were used to impute nontreated BP among 
those using antihypertensive medication following methods 
described in McClelland et al.23 Briefly, we used observed 
(treated) BP levels to estimate nontreated BP levels in a 
multiple linear regression model (with one observation per 
participant) that contained covariates for age, self-reported 
race–ethnicity, body mass index (BMI), self-reported diabe-
tes status, pack–years of smoking, classes of antihyperten-
sive medications, all two-way interactions of (1) each class 
of antihypertensive medication and (2) each category of self-
reported race–ethnicity, as well as all two-way interactions of 
any two classes of antihypertensive medications in a dataset 
of participants who were not using medication at baseline 
but started medication use during follow-up. The model-esti-
mated nontreated BP value and its standard error were used 
to characterize the mean and standard deviation (SD) of a 
normal distribution for each participant-measurement under 
treatment. We obtained 10 random samples from this distri-
bution for each participant-measurement under treatment and 
combined them with measurements from participants who 
were not under treatment, then saved them in 10 datasets sepa-
rately. Next, coefficient estimation of the association between 
air pollution and BP were analyzed by pooling (i.e., using 
inverse variance weighting) the 10 individual effect estimates 
to obtain a single coefficient and its standard error.

Air Pollution Exposure Assessment
Participants’ residential addresses were collected dur-

ing the screening visit and updated each follow-up visit. We 
estimated daily average concentrations of PM2.5, PM10, and 
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NO2 at geocoded residential locations of WHI participants24 
using lognormal ordinal kriging models based on air qual-
ity monitoring data from the US Environmental Protection 
Agency’s Air Quality System in the contiguous US during 
the study period.25 PM2.5 monitoring data were only available 
after 1999; therefore, daily exposure models were unavailable 
before that date for PM2.5. We estimated PM2.5-10 by subtract-
ing model-predicted PM2.5 from model-predicted PM10. We 
validated the kriging models using leave-one-site-out cross-
validation statistics including: (1) prediction error (PE): the 
average of the difference between the predicted and measured 
daily concentrations at each monitoring site; (2) standardized 
PE (SPE): the PE divided by its SE of estimation across all 
sites; and (3) root mean square standardized (RMSS): the SD 
of all SPEs across all sites. Details of the cross-validation sta-
tistics can be found in the literature.25–27

We calculated lagged exposure variables based on the 
index date of the BP measurement throughout the period 
1-week prior, from 0 (day of the measurement; lag 0) to 6 days 
prior (lag 6). We expressed these values as an interquartile 
range (IQR) change in the pollutant concentration to afford 
comparisons among air pollutants. Long-term (annual) PM2.5 
concentrations were obtained by averaging monthly estimates 
from spatiotemporal generalized additive mixed models 
(GAMMs) at geocoded residential locations of WHI partici-
pants.28 These GAMM models were validated using 10-set 
cross-validation and had high predictive accuracy with a 
cross-validation R2 of 0.77 for PM2.5. Long-term PM2.5 levels 
were also calculated by averaging daily estimates from krig-
ing models.

Meteorologic Data
We obtained meteorologic data for the contiguous US 

from the National Climate Data Center.29 We estimated daily 
mean ambient temperature (°C), dew point temperature (°C), 
barometric pressure (kPa), relative humidity (%), and wind 
speed (m s−1) at each participant’s geocoded address by aver-
aging the daily mean measurements across all stations within 
50 km. These meteorologic variables have been used in previ-
ous health studies,27,30 and were calculated over the same time 
periods (i.e., the same lags) as the air pollutants, as described 
above.

Covariates
At the screening and follow-up visits, questionnaires 

were used to collect demographic and residential location 
data. We identified potential confounders based on literature 
review and the following criteria: (1) whether each is hypoth-
esized to be associated with air pollution; (2) whether it is a 
potential independent cause of changes in BP; and (3) that it 
is not likely in the causal pathway from air pollution expo-
sure to BP. Covariates included in this analysis were age at 
visit, self-reported race–ethnicity (White, Hispanic/Latino, 
Black/African-American, Asian/Pacific Islander, American 
Indian/Alaskan Native, and other), educational attainment 

(individual-level rather than neighborhood, categories listed 
in Table 1), neighborhood socioeconomic position [SEP, cal-
culated using six census tract-level variables (median house-
hold income; median value of housing units; the percentage of 
households receiving interest, dividend, or net rental income; 
the percentage of adults 25 years of age or older who had com-
pleted high school; the percentage of adults 25 years of age 
or older who had completed college; and the percentage of 
employed persons 16 years of age or older in executive, mana-
gerial, or professional specialty occupations), expressed as a 
continuous z-score, and then categorized by tertile, increas-
ing values of which correspond to higher SEP],31 BMI (<25; 
25–30; and ≥30 kg/m2), dietary sodium intake (mg/day and 
categorized by tertile), combined fruit and vegetable con-
sumption (medium servings/day and categorized by tertile), 
pack–years of smoking (continuous), self-reported diabetes, 
US Census region (Northeast, South, Midwest, and West), day 
of the week, season (spring, summer, fall, and winter), long-
term average PM2.5 concentration (categorized by tertile), 
meteorologic variables, and calendar time expressed as the 
number of days since the screening visit. In addition, treat-
ment arm (categorical variable with categories for the treat-
ment arm of the clinical trials (separate categories in each 
arm for treatment and placebo) and a separate category for the 
observational studies) was included as a covariate.

Statistical Analyses

Linear Mixed-effects Models
We used linear mixed-effects (LME) models to estimate 

the association of air pollutant exposure and SBP and DBP. 
The following LME regression model was fit to the data:

yij = β0 +
P∑

p=1

βpXi,j,p + biAgeij + eij

In this formula, yij represents either SBP or DBP mea-
surements for subject i and visit j, βp is the fixed-effect coef-
ficients, and Xp is the explanatory variables (including air 
pollutant concentrations, time-varying and time-invariant 
confounders, and calendar time). bi is a random slope for 
age. An auto-regressive model was used to account for serial 
correlations between repeated measures on each participant. 
SAS v9.4 PROC MIXED was used for model fitting (except 
upon nonconvergence due to infinite likelihood, when PROC 
GLIMMIX was used).

From among the potential confounders identified above 
(except for meteorologic variables), we kept only those for 
which the Akaike information criterion (AIC) was lowered 
upon inclusion of each covariate in separate models (not step-
wise; though we note this did not exclude any confounders). 
We included all available meteorologic variables in prelimi-
nary models, and then removed a meteorologic variable if it 
was not statistically significant in any of the four models (one 
for each air pollutant) for SBP and DBP separately. In this 
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way, for a given outcome, we used a stable, fixed set of meteo-
rologic variables in final analyses. We also evaluated whether 
the air pollution–BP associations differed by the following 
variables: BMI, neighborhood SEP, diabetes, dietary sodium 
intake, combined fruit and vegetable consumption, US Census 
region, and long-term average PM2.5 concentration. To do this, 
we fit adjusted models with interaction terms for air pollut-
ant concentration and each modifier separately, then stratified 
analyses were conducted and the results reported. Additionally, 
we used two-pollutant models to examine confounding effects 
among copollutants on BP. Finally, we also included both 
short-term and long-term PM2.5 in the same model to inves-
tigate (partial, because short-term is part of long-term) con-
founding of short-term effects by long-term.

Sensitivity Analyses
We conducted sensitivity analyses to evaluate (1) the 

approach used to reduce outcome misclassification from 
medication use using multiple imputation versus adding a 

TABLE 1. Summary Statistics on WHI Participants’ Char-
acteristics, Air Pollution Exposure Metrics, and BP Measure-
ments in Our Analysis Dataset

Variables Total 

Participants, N 143,658

Observations (with complete data for PM10 

and NO2), n

356,319

Observations (with complete data for PM2.5 

and PM2.5-10), n

157,983

Age at visit, years, mean (SD) 65.4 (7.4)

US Census region, N (%)

 Northeast 34,399 (24.0)

 Midwest 32,107 (22.4)

 South 37,510 (26.1)

 West 39,642 (27.6)

Race–ethnicity, N (%)

 American Indian or Alaskan Native 614 (0.4)

 Asian or Pacific Islander 1,700 (1.2)

 Black or African-American 12,806 (8.9)

 Hispanic/Latino 5,798 (4.0)

 White (not of Hispanic origin) 121,373 (84.5)

 Other 1,367 (1.0)

Neighborhood SEP, N (%)

 Tertile 1 49,169 (34.2)

 Tertile 2 47,067 (32.8)

 Tertile 3 47,422 (33.0)

 Mean (SD) 0.2 (5.3)

Educational attainment, N (%)

 Did not go to school 113 (0.1)

 Grade school (1–4 years) 513 (0.4)

 Grade school (5–8 years) 1,617 (1.1)

 Some high school (9–11 years) 5,177 (3.5)

 High school diploma or GED 24,637 (17.2)

 Vocational or training school 14,439 (10.1)

 Some college or Associate Degree 39,955 (27.8)

 College graduate or Baccalaureate Degree 15,897 (11.1)

 Some post-graduate or professional 16,301 (11.4)

 Master’s degree 21,421 (14.9)

 Doctoral degree 3,588 (2.5)

BMI (kg/m2), n (%)

  BMI < 25 115, 664 (32.5)

  BMI ≥ 25 and <30 125, 413 (35.2)

  BMI ≥ 30 115, 242 (32.3)

  Mean (SD) 28.3 (5.9)

Dietary sodium intake (mg), mean (SD), n (%)

 Tertile 1 1,527 (380), 83,717 (23.5)

 Tertile 2 2,466 (247), 84,043 (23.6)

 Tertile 3 3,896 (1,105), 84,246 

(23.6)

 Missing 104,313 (29.3)

 Mean (SD) 2,632 (1193)

Combined fruit and vegetable consumption (medium servings per day), 

mean (SD), n (%)

 Tertile 1 2.0 (0.6), 83,412 (23.4)

 Tertile 2 3.9 (0.6), 84,599 (23.7)

 Tertile 3 6.7 (1.6), 83,995 (23.6)

(Continued)

 Missing 104,313 (29.3)

 Mean (SD) 4.2 (2.2)

Pack–years of smoking, mean (SD) 9.9 (18.4)

Diabetes present, n (%)

 Yes 25,130 (7.1)

 No 331,189 (92.9)

Any antihypertensive medication use, n (%)

 Yes 123,873 (34.8)

 No 232,446 (65.2)

SBP (mmHg), mean (SD)

 Observed 126.2 (17.3)

 Observed + imputed among those with 

medication use

128.9 (18.4)

DBP (mmHg), mean (SD)  

 Observed 73.7 (9.3)

 Observed + imputed among those with 

medication use

75.8 (9.8)

Air pollutants, lag 0-6 daya, mean (SD)

 PM2.5 (µg/m3) 13.7 (5.6)

 PM2.5-10 (µg/m3) 13.4 (6.6)

 PM10 (µg/m3) 27.4 (8.2)

 NO2 (ppb) 18.7 (7.1)

Air pollutants, lag 3-5 dayb, mean (SD)

 PM2.5 (µg/m3), IQR = 7.7 13.7 (6.8)

 PM2.5-10 (µg/m3), IQR = 8.5 12.8 (7.7)

 PM10 (µg/m3), IQR = 12.3 26.9 (9.8)

 NO2 (ppb), IQR = 9.9 18.3 (7.7)

Long-term PM2.5 (µg/m3), mean (SD); n (%)

 Tertile 1 9.5 (1.6); 127,086 (35.7)

 Tertile 2 13.3 (0.9); 124,550 (35.0)

 Tertile 3 17.8 (3.0); 104,683 (29.4)

 Mean (SD), IQR = 4.8 13.3 (3.9)

aLag 0-6 day: Average of lag day 0, lag day 1… and lag day 6.
bLag 3-5 day: Average of lag day 3, lag day 4, and lag day 5.

TABLE 1. (Continued)

Variables Total 
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constant of 10 mmHg to SBP and DBP, (2) whether control 
for seasonality was adequate, (3) whether the choice of expo-
sure model used for long-term PM2.5 affected our results, and 
(4) whether restricting to complete data on PM2.5 affected our 
results. To do this, we compared our main results using mul-
tiple imputation with those not using multiple imputation but 

instead, to estimate nontreatment BP levels for those reporting 
antihypertensive medication use, adding a fixed constant of 
10 mmHg to observed SBP and DBP.32 Second, we replaced 
the four-category season variable (using three degree of free-
dom) with 12 monthly indicator variables. Third, in models 
using long-term (annual) PM2.5, we compared results using 

FIGURE 1. Associations of an IQR change in lag 3-5 day air pollutant exposure metrics and SBP and DBP in the WHI (data from 
Table 2). The IQR for PM2.5, PM2.5-10, PM10, and NO2 was 7.7, 8.5, 12.3 µg/m3, and 9.9 ppb, respectively.

TABLE 2. Associationsa Between IQR Changes in Short-term (Lag 3-5 Day) and Long-term (Annual) PM2.5 in the Same Model 
and BP in the WHI

Health Outcome Air Pollutantb n βc 95% CI

SBP Short-term PM2.5 123,062 0.04 −0.08 0.16 

 Long-term PM2.5
d 123,062 −0.39 −0.52 −0.26

DBP Short-term PM2.5 123,062 0.10 0.03 0.17

 Long-term PM2.5
d 123,062 0.12 0.05 0.19

The IQR for long-term PM2.5 and short-term PM2.5 is 4.8 µg/m3 and 7.7 µg/m3, respectively.
aModels adjusted for age at visit, self-reported race–ethnicity, education, treatment arms, US Census region, day of the week, season, BMI, neighborhood SEP, pack-year of smok-

ing, diabetes, calendar time, temperature, dew point temperature, relative humidity, wind speed, and a random slope for age. Models for DBP additionally adjusted for barometric 
pressure.

bThe Pearson correlation between short-term and long-term PM2.5 is 0.26.
cβ represents changes in SBP and DBP per IQR change in short-term and long-term PM2.5 concentrations.
dLong-term PM2.5 estimated from spatiotemporal GAMMs.
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long-term PM2.5 estimates from GAMMs obtained by averag-
ing monthly estimates to those obtained by averaging daily 
estimates from kriging models. Fourth, for PM10 and NO2, we 
restricted to complete data on PM2.5 (which effectively limits 
by time period after 1999).

RESULTS
During the study period (1993–2005), we include a 

total of 143,658 participants in the analysis. Participants were 
approximately equally distributed across four regions of the 
United States and most of participants were white (84.5 %). 
On average, participants were overweight (i.e., BMI ≥ 25 kg/
m2). Characteristics of the study participants, air pollutant 
concentrations, and BP levels are presented in Table 1.

Results from adjusted models not controlling for 
calendar time using single-lag days (0–6) are presented in 
eTable 1; http://links.lww.com/EDE/B996. Shorter single-
lag periods (lag 0 through lag 2) showed negative or null 
associations for PM2.5, PM2.5-10, and PM10 with SBP, and for 
PM2.5-10 and PM10 with DBP. Because the BP model coef-
ficient estimates for individual lag periods were generally 
consistent and most positive or negative for lag days 3, 4 
and 5, we calculated a summary measure of the PM and NO2 
exposures that met the model screening criteria by averaging 
lagged values from 3 to 5 days before the BP measurement 
(referred to hereafter as lag 3-5 day). For PM2.5-10 and PM10 
with DBP, lag 6 effects were also elevated. In models with lag 
3-5 day air pollutant concentrations not controlling for cal-
endar time, but adjusted for other confounders, PM2.5, PM10, 
and NO2 were positively associated with both SBP and DBP 

(eTable 2; http://links.lww.com/EDE/B996). Comparisons 
between adjusted models with and without control for cal-
endar time are presented in eFigure 1; http://links.lww.com/
EDE/B996. The Pearson correlation between age at visit 
and calendar time in our analysis was 0.28. However, the 
independent variability in these two variables is largely due 
to differences in age at baseline. Once differences in age at 
baseline are removed, the correlation increases to 0.94, which 
raises concern that models controlling for calendar time suf-
fer from overadjustment. Results from adjusted models (with 
control for calendar time) are shown in Figure 1, eTables 2 
and 3; http://links.lww.com/EDE/B996 (for single-lag days). 
Regression coefficients (listed in the columns headed with 
“β” in eTable 3; http://links.lww.com/EDE/B996) represent 
the change in BP per IQR change in lag 3-5 day air pollut-
ant concentration. NO2 was negatively associated with SBP 
(each IQR increase in lag 3-5 day NO2 concentration (an 
increment of 9.9 ppb) was associated with a −0.21 mmHg 
[95% confidence interval (CI): −0.30, −0.13] change but 
positively associated with DBP [0.13 mmHg (95% CI: 0.09, 
0.18)]. PM2.5 was not associated with SBP, but was positively 
associated with DBP [each IQR increase in lag 3-5 day PM2.5 
concentration (an increment of 7.7 µg m−3) was associated 
with a 0.10 mmHg (95% CI: 0.04, 0.15) change].

When including both short-term (lag 3-5 day) and long-
term (annual) PM2.5 levels in the same model, long-term PM2.5 
was negatively associated with SBP, but short-term showed 
no association (Table 2). For DBP, both long-term and short-
term PM2.5 were positively associated, with the association of 
long-term stronger than that for short-term. In this study, the 

FIGURE 2. Adjusted and strati-
fied associations of an IQR 
change in lag 3-5 day air pol-
lutant exposure metrics and SBP 
and DBP showing effect modi-
fication by BMI, neighborhood 
SEP, diabetes, sodium intake, 
and US Census region. (We did 
not analyze effect modification 
by sodium intake and fruit and 
vegetable consumption for the 
PM2.5–DBP associations due to 
missing PM2.5 data before 1999.) 
The IQR for PM2.5 is 7.7 µg/m3 
and for NO2 is 9.9 ppb. 

http://links.lww.com/EDE/B996
http://links.lww.com/EDE/B996
http://links.lww.com/EDE/B996
http://links.lww.com/EDE/B996
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http://links.lww.com/EDE/B996


Copyright © 2022 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Epidemiology • Volume 34, Number 2, March 2023 Air Pollution and Blood Pressure in the WHI

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc. www.epidem.com | 277

Pearson correlation between short-term and long-term PM2.5 
is 0.26.

Effect Modification
Overall, we found effect modification by BMI, neigh-

borhood SEP, diabetes, dietary sodium intake, and US Census 
region for NO2–SBP and NO2–DBP associations (Figure  2 
and eTable 4; http://links.lww.com/EDE/B996). Because lag 
3-5 day PM2.5 was not associated with SBP (Figure  1), we 
did not assess whether BMI, neighborhood SEP, diabetes, 
or US Census region modified the PM2.5–SBP association. 
Summary statistics on the distributions of lag 3-5 day air 
pollutant concentrations across levels of the effect modifiers 
are presented in eTables 5 and 6; http://links.lww.com/EDE/
B996.

BMI and neighborhood SEP modified associations of 
lag 3-5 day NO2 for SBP and DBP. Stratified results showed 
that NO2–SBP associations were stronger and more negative 
among participants with lower BMI and higher neighborhood 
SEP; while NO2–DBP associations were stronger and more 
positive among participants with higher BMI and lower neigh-
borhood SEP.

We also found effect modification for diabetes; NO2–
DBP associations were more strongly positive among those 
with diabetes. For SBP, stratified results suggested a nega-
tive NO2–SBP association among those without diabetes 
and a null association for those with diabetes, but CIs were 
overlapping. Also, stratified results by dietary sodium intake 
showed NO2–DBP associations were stronger and more posi-
tive among those with lower sodium intake, while NO2–SBP 

associations were stronger and more negative among those 
with higher sodium intake.

Two-pollutant Models
In Table  2, both PM2.5 and NO2 were associated with 

DBP. Resultantly, these pollutants were analyzed in two-pol-
lutant models (Figure  3 and eTable 7; http://links.lww.com/
EDE/B996). PM2.5 and NO2 were correlated in our analysis, 
although the Pearson correlation was not strong at 0.44. In 
two-pollutant models, the NO2 association with DBP became 
slightly stronger, but for PM2.5 became weaker, as compared 
with single-pollutant models. We also found effect modifica-
tion by US Census region in the adjusted two-pollutant mod-
els (which also controlled for calendar time; eTable 8; http://
links.lww.com/EDE/B996). The associations between NO2 
and DBP were stronger in the South and West US Census 
regions, with an IQR change corresponding to increases in 
DBP of 1.12 mmHg (95% CI: 0.89, 1.36) for the South and 
0.64 mmHg (95% CI: 0.50, 0.78) for the West, compared to 
the other regions (Northeast and Midwest).

Sensitivity Analyses
Compared to our main analysis, associations across all 

air pollutants were similar after adding a fixed constant of 10 
mmHg to observed BP levels among those using antihyperten-
sive medication and upon the addition of additional degrees of 
freedom for seasonality (eTables 9 and 10; http://links.lww.
com/EDE/B996). However, results did differ between the two 
exposure models used for long-term PM2.5 levels: In models 
including only long-term PM2.5, for SBP, the association when 
using GAMMs was more strongly negative than that from 
kriging models (eTable 11; http://links.lww.com/EDE/B996). 
For DBP, the association for long-term PM2.5 from kriging 
models was more strongly positive than that from GAMMs. 
In BP models that included both long- and short-term PM2.5, 
we found a positive association between long-term PM2.5 esti-
mated from kriging models and DBP. In contrast, the same 
association was not present when using long-term PM2.5 esti-
mated from GAMMs (eTable 12; http://links.lww.com/EDE/
B996). When restricting the time period to that with complete 
data on PM2.5 and comparing the results with the main analy-
sis in Figure 1, the association for lag 3-5 day NO2 and SBP 
was similar, whereas the association for lag 3-5 day NO2 and 
DBP was larger (eTable 13; http://links.lww.com/EDE/B996). 
Because we observed generally negative associations with 
SBP and positive associations with DBP, we also evaluated 
alternative outcomes of pulse pressure and mean arterial pres-
sure. The results are shown in eTable 14; http://links.lww.com/
EDE/B996.

DISCUSSION
In our study of postmenopausal older US women, short-

term (lag 3-5 day) NO2 concentrations were associated with 
decreased SBP and increased DBP. In addition, lag 3-5 day 
PM2.5 concentrations were associated with increased DBP. 

FIGURE 3. Adjusted associations of an IQR change in lag 3-5 
day air pollutant exposure metrics and DBP in the WHI from 
single-pollutant and two-pollutant models. The IQR for PM2.5 
is 7.7 µg/m3 and for NO2 is 9.9 ppb.
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Results from two-pollutant models suggest NO2 is more likely 
responsible for observed associations than is PM2.5. In models 
with both short- and long-term (annual) averages of PM2.5, 
associations with both SBP and DBP were stronger for long-
term than short-term.

Our results showed that lag 3-5 NO2 had stronger effects 
on both SBP (more negative) and DBP (more positive) than did 
lag 3-5 PM2.5, compared on an IQR basis. Stronger effects of 
NO2 on BP compared to those of PM2.5 have also been shown 
in a study in Canada.33 Another study, conducted among preg-
nant women, found a negative association between NO2 levels 
(lag day 1, lag day 5 and averaged 7-day) and SBP. Also in 
this study, PM10 was associated with increased SBP during the 
first trimester; and with decreased SBP later in pregnancy.13 
With regard to our two-pollutant model results, Zhao et al.12 
reported similar findings: In two-pollutant models includ-
ing both 1-day averaged PM2.5 and NO2, they found that the 
association between PM2.5 exposure and SBP was attenu-
ated to null. Sun et al.27 also found the strongest associations 
for NO2 among several air pollutants considered, including 
PM2.5, when examining risk of hemorrhagic stroke in the WHI 
population.

Evidence from a meta-analysis showed that a small sus-
tained reduction in BP (10 mmHg for SBP and 5 mmHg for 
DBP) has been established as lowering long-term risk of car-
diovascular events.34 At the population level, even 2 mmHg 
lower in SBP could decrease about 10% stroke mortality and 
7% other vascular disease in middle age, for example.34 Also, 
short-term (24 hours) elevations in ambulatory BP have been 
identified as increasing acute risk of cardiovascular disease 
events including stroke and myocardial infarction.35 The effect 
sizes (increase in BP per unit change in short-term air pollu-
tion exposure) in our study are small, and whether they are 
clinically relevant remains uncertain. However, they are rel-
evant from a public health perspective. Across the (admittedly 
skewed) distribution of exposure to NO2, comparing the most 
highly exposed individuals (max = 92.7 ppb) to the least (min 
= 1.9 ppb) which would correspond to a change in exposure 
of approximately nine IQRs (90.9/9.9≈9.2), the correspond-
ing change in DBP would, using the larger coefficient estimate 
from the NO2–DBP association in the West US Census region, 
be: 9 × 0.34 = 3.1 (95% CI: 2.4, 3.9) mmHg.

We found effect modification by BMI, neighborhood 
SEP, and diabetes, consistent with the hypothesis that partici-
pants with high BMI, low neighborhood SEP, and diabetes 
may be particularly susceptible to the effects of short-term air 
pollution on BP. One study also reported effect modification 
by BMI on the association between PM2.5 and BP, and associa-
tion was stronger among obese subjects.9 We also noted effect 
modification by dietary sodium intake, in that associations 
with DBP were more pronounced among those with lower 
sodium intake. We caution this may be attributable to residual 
information bias from medication use, despite our attempt to 
reduce it (we note that our multiple imputation model did not 

include medication dosage as a covariate as data were unavail-
able). The potential effect modification of sodium intake with 
air pollution on BP deserves further attention.

We note effect modification by US Census region, con-
sistent with results in Adar et al.20, with associations of lag 
3-5 day NO2 in two-pollutant models stronger in the South 
and West as compared to other regions. Variation in PM com-
position may partly explain the heterogeneity of the observed 
health effect estimates by the US Census region. One study 
suggested that exposure location reflecting different compo-
nents in air pollutants could be an important determinant of 
health consequences.36 Also, spatial errors could partially 
contribute to heterogeneity in health effect estimates across 
air pollutants. Therefore, including PM composition in future 
analyses may reduce regional heterogeneity in observed health 
effect estimates. Using daily exposure estimates with greater 
spatial resolution, possibly leveraging local geographic and 
meteorologic information, also would likely further reduce 
exposure errors.

We also note that associations of long-term PM2.5 and 
SBP were more strongly negative when using GAMMs than 
kriging models, which is consistent with the hypothesis of a 
vasodilatory effect of exposure to NO from primary traffic-
related emissions,37 because GAMM estimates contain infor-
mation on local road gradients, whereas kriging models do 
not. Thus, we hypothesize that confounding of PM2.5 (and pos-
sibly NO2) effects by NO may be partly responsible for the 
negative associations with SBP observed in our study. Also, 
we cannot dismiss the possibility of overcontrol for exposure 
from having age and calendar time in the same model and note 
that the associations between PM2.5, PM10, and NO2 and SBP 
were positive in adjusted models not controlling for calendar 
time.

In adjusted models, both when controlling for calendar 
time and when not, our results for lag 3-5 day air pollutants are 
broadly consistent with the short-term (7-day average) asso-
ciations in Adar et al.20 except that, in that study, associations 
between 7-day average NO2 and PM2.5 were attenuated to null 
after controlling for calendar time, whereas in the present study 
associations for lag 3-5 day PM2.5 and NO2 remained extant 
for DBP as well as for lag 3-5 day NO2 and SBP. Differences 
between our results and those of Adar et al. may be due to (1) 
smaller exposure errors in our study due to the use of log-
normal kriging models reflecting greater within-urban area 
spatial variability than area-wide averages of monitor values, 
(2) larger sample size, or (3) differences in study population. 
In addition, our results emphasize the importance of control-
ling for calendar time in this setting: In models not controlling 
for calendar time, for SBP, associations with PM2.5 and NO2 
were positive, but after control for calendar time were null or 
negative. While we believe that adjustment for calendar time 
is appropriate in our analysis because it can account for long-
term time trends in BP that are not related to air pollution and 
provides some additional information in controlling for these 
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trends, as mentioned previously, we cannot dismiss the possi-
bility of overcontrol for exposure by having age and calendar 
time in the same model. Whether or not a previously published 
result was adjusted for calendar time may explain, in part, the 
inconsistent findings (sometimes negative, sometimes null, 
sometimes positive) regarding PM2.5 and NO2 in the literature, 
along with other differences in study design. In addition, our 
results for long-term (annual) PM2.5 concentrations showed a 
negative association with SBP but a positive association with 
DBP (in models controlling for calendar time). However, Adar 
et al.20 found no association between long-term (annual) PM2.5 
and both SBP and DBP (also in models controlling for cal-
endar time). Our results using long-term (annual) PM2.5 are 
consistent with a previous analysis of incident hypertension in 
the WHI6 for DBP, though not so for SBP.

Our results for short-term (lag 3-5 day) concentrations 
for PM in the three size fractions and NO2 with DBP were par-
tially consistent with those from previous studies. One panel 
study of 62 cardiac rehabilitation patients showed a positive 
association between moving-average (over the previous 5 
days) PM2.5 exposure and SBP, as well as moving averages of 
the previous 4-, and 5-day PM2.5 exposure levels and DBP.10 
Another panel study of 64 elderly subjects with history of 
coronary heart diseases found that multiday (3, 5, and 7 days) 
averaged air pollution exposures were positively associated 
with increased SBP and DBP.9

Our findings showed that associations between PM in 
the three size fractions evaluated and BP (SBP and DBP) for 
lag days 0, 1, and 2 were attenuated, null, or sometimes nega-
tive (with no clear biologic explanation for observed nega-
tive findings). These results are broadly consistent with other 
studies. One study in Antwerp, Belgium, found no associa-
tions between lag day 1 PM2.5 for either SBP or DBP among 
elders with no antihypertensive medication use.38 Similar 
results were found for PM2.5 exposures immediately and 24 
hours after a 2-hour walk in close proximity to traffic for 
both SBP and DBP among healthy adults.39 In another study 
in children, no associations were found between lag day 0 
(i.e., same day) exposures to PM in three size fractions and 
SBP.40 In another study among young adults, negative asso-
ciations were found between lag 1-3 day exposures to PM2.5 
with SBP and DBP.41 In contrast, a panel study of 74 patients 
undergoing cardiac rehabilitation found a positive association 
between 0 and 5 hours moving-average PM2.5 exposure and 
SBP42; They also found null associations between PM2.5 in 
individual lag periods (evaluating lag days 0, 1, 2, 3, and 4 
separately) and DBP, which is partially inconsistent with our 
findings, though this discrepancy may be due to differences 
in sample size. Furthermore, one meta-analysis reported sub-
stantial heterogeneity in effect estimates of BP for short-term 
levels of PM2.5, PM10, and NO2, and also provided evidence of 
publication bias for the association between NO2 and DBP.16 
In addition, earlier studies have documented evidence of spa-
tial and temporal variability of PM pollution with regard to 

sources and chemical composition,43,44 and as such differences 
in PM composition, as discussed in Giorgini et al.,5 could be 
another reason our findings differ from those in earlier studies 
conducted in different areas.

This study has several strengths. One is the large sample 
size and recruitment from many areas of the United States, 
which allowed us to perform stratified analysis with sufficient 
statistical power; also the longitudinal study design using 
repeated measurements provides increased statistical power 
to detect associations between air pollution levels and BP as 
compared to a cross-sectional design. Second, the estimates of 
air pollution exposure are from daily lognormal kriging mod-
els, which have advantages in terms of spatial resolution and 
reducing error in exposure estimation over traditional area-
average or nearest-neighbor approaches, namely: (1) They 
provide better spatial resolution in reflecting within-urban-
area variation in situations where more than one monitor is 
present in a given urban area and (2) On days when a given 
nearest-neighbor value is missing, interpolating the available 
data using kriging is expected to result in less exposure error 
than using the next nearest monitor’s data, which itself may 
be distant.

This study also has several limitations. The first con-
cerns the lack of PM2.5 monitoring before 1999. Second, PM2.5-

10 was estimated by subtracting model-predicted PM2.5 from 
model-predicted PM10. Although the PM2.5 and PM10 models 
were validated separately, PM2.5-10 was not, and as such expo-
sure errors will be larger for PM2.5-10. The third is spatial error 
arising from the spatial misalignment of monitors and par-
ticipant residences. The fourth is that kriging models did not 
include very local, micro- to neighborhood-scale information 
(or their proxies) on air pollutant levels, as discussed above. 
In addition, the exposure error could be larger for NO2 due to 
limited monitor density across the contiguous US. The fifth 
is related to the lack of personal exposure data and/or out-
door time-activity data, which contributes to exposure error 
in our study. Sixth, we were unable to stratify by those par-
ticipants with underlying cardiovascular diseases (these data 
were not present in our analysis dataset), and these cardiovas-
cular health conditions may modify the associations between 
air pollutant levels and BP. Finally, generalizability is limited. 
In postmenopausal women, changes in hormone levels may 
affect the cardiovascular system and, at least potentially, mod-
ify air pollution effects. Therefore, the findings from this study 
may not be generalizable to males, non-white postmenopausal 
women, or to younger US women.

CONCLUSION
In conclusion, our findings are consistent with short-

term (lag 3-5 day) PM2.5 and NO2 levels being associated with 
increases in DBP among postmenopausal US older women, 
though two-pollutant model results suggest NO2 is more likely 
responsible for the observed associations. Associations for 
long-term (annual) PM2.5 were larger than those for short-term. 
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In models containing both short-term and long-term (annual) 
PM2.5 levels, we found an association with long-term but not 
short-term.
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