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Most existing brain-computer Interfaces (BCIs) are designed to control a single assistive

device, such as a wheelchair, a robotic arm or a prosthetic limb. However, many daily

tasks require combined functions which can only be realized by integrating multiple

robotic devices. Such integration raises the requirement of the control accuracy and

is more challenging to achieve a reliable control compared with the single device

case. In this study, we propose a novel hybrid BCI with high accuracy based on

electroencephalogram (EEG) and electrooculogram (EOG) to control an integrated

wheelchair robotic arm system. The user turns the wheelchair left/right by performing

left/right hand motor imagery (MI), and generates other commands for the wheelchair

and the robotic arm by performing eye blinks and eyebrow raising movements.

Twenty-two subjects participated in a MI training session and five of them completed

a mobile self-drinking experiment, which was designed purposely with high accuracy

requirements. The results demonstrated that the proposed hBCI could provide satisfied

control accuracy for a system that consists of multiple robotic devices, and showed the

potential of BCI-controlled systems to be applied in complex daily tasks.

Keywords: brain-computer interface (BCI), hybrid BCI, electroencephalogram (EEG), electrooculogram (EOG),

wheelchair, robotic arm

1. INTRODUCTION

An Electroencephalogram (EEG)-based brain-computer interface (BCI) records electrical signals
of brain cells from scalp and translates them into various communication or control commands
(Wolpaw et al., 2000). Common modalities used in EEG-based BCIs include steady-state visual
evoked potentials (SSVEP) (Cheng et al., 2015), event-related potentials (ERPs) (Blankertz et al.,
2011; Jin et al., 2017), and mu (8–12 Hz)/beta (18–26 Hz) rhythms related to motor imagery (MI)
(Lafleur et al., 2013).

A main focus of the EEG-based BCIs is to combine them with existing assistive devices, such
as a prosthesis or a wheelchair, to support motor substitution of the user’s limb functions, e.g., the
grasping function and the walking function (Millán et al., 2010). While SSVEP- and ERP-based
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BCIs only provide discrete commands, MI-based ones can
generate nearly continuous outputs in real time, which makes
them a good fit for manipulating assistive devices that require
highly accurate and continuous control. Several purely MI-based
BCIs have been developed to realize basic control of external
devices (Wolpaw andMcFarland, 2004; Lafleur et al., 2013; Meng
et al., 2016). However, MI-based BCIs still suffer from limited
number of distinguishable MI tasks (Yu et al., 2015).

To overcome the limitation of using a single MI paradigm,
many excellent works have been established in recent years
to realize multidimensional control of external devices by
combining the MI with other EEG modalities (Rebsamen et al.,
2010; Long et al., 2012; Li et al., 2013; Bhattacharyya et al.,
2014; Ma et al., 2017) or other bioelectrical signals (Punsawad
et al., 2010; Jun et al., 2014; Witkowski et al., 2014; Ma et al.,
2015; Soekadar et al., 2015; Minati et al., 2016), i.e., using a
hybrid brain-computer interfaces (hBCIs) (Pfurtscheller et al.,
2010; Hong and Khan, 2017). For example, in Long et al. (2012)
and Li et al. (2013) the user continuously controlled the direction
(left/right turn) of a wheelchair using the left- or right- imagery,
and used the P300 potential and SSVEP to generate discrete
commands, such as acceleration/deceleration and stopping; in
Ma et al. (2017), the users generated MI to control the moving
of a robotic arm, and stop it by detecting the P300 potential.

Other than with different EEG modalities, MI can
also be combined with other bioelectrical signals, such as
Electrooculogram (EOG) signals and functional near infrared
spectroscopy (fNIRS) (Khan and Hong, 2017), to build a
hBCI. EOG signals are generated by eye movements and
usually maintain a higher signal-to-noise ratio (SNR) compared
with EEG signals (Maddirala and Shaik, 2016). In Witkowski
et al. (2014), MI-related brain activities were translated into
continuous hand exoskeleton-driven grasping motions which
could be interrupted by EOG signals, aiming to enhancing the
reliability and safety of the overall control. In Soekadar et al.
(2015), Soekadar et al. demonstrated that the inclusion of EOG in
a MI-based hand exoskeleton system could significantly improve
the overall performance across all participants.

Prior studies have well-demonstrated the feasibility of using
an hBCI to control a single assistive device, such as a wheelchair
or a robotic arm. However, it is still unknown whether multiple
devices can be integrated together and controlled by a single
hBCI. Such integration is challenging because it requires higher
control accuracies (i.e., the positional accuracy and the angular
accuracy) and more control degrees than a single BCI-controlled
device system. Also, the time and efforts consumed to control
an integrated system are usually higher than that of any of
its single component, which may reduce the reliability. In this
study, we integrate a wheelchair and a robotic arm into a unified
system, aiming to help the user move from a random place to
approach and grasp a target object which is also randomly placed
far away from the user. A novel hBCI based on EEG (the MI
paradigm) and EOG signals is proposed to control the system.
Specifically, for the wheelchair, users can continuously steer the
wheelchair left/right by imagining left/right hand movements.
Users generate discrete wheelchair commands, such as moving
forward and backward and stopping, by implementing eye blinks

FIGURE 1 | The 10–20 electrode distribution of a 32-channel Quik-cap.

Eleven electrodes (green color) are employed in this study.

and eyebrow movements. For the robotic arm, the eye blinks and
eyebrow movements are utilized along with two cameras in a
shared control mode. There were 22 healthy subjects participated
in a MI training session, after which five of them (with accuracy
over 80%) were asked to complete a tricky self-drinking task
using the proposed system. The experimental results showed that
the proposed hBCI could provide satisfied accuracy to control the
integrated system and had the potential to help users complete
daily tasks.

The remainder of this paper is organized as follows: section
2 is the methodologies, including the signal acquisition, the
system framework and the hBCI; sections 3 and 4 describe
the experiments and present the results; further discussions are
included in section 5; and section 6 concludes the paper.

2. METHODS

2.1. Signal Acquisition
As shown in Figure 1, the EEG signals are recorded from nine
electrodes (“FC3,” “FCz,” “FC4,” “C3,” “Cz,” “C4,” “CP3,” “CPz,”
and “CP4”) attached on a 32-channel Quik-cap and amplified by
a SynAmps2 amplifier [Neuroscan Compumeidcs, USA] with a
sampling rate of 250 Hz. One electrode attached on the forehead
(“FP2”) is used to record the EOG signals which are resulted from
eye movements. The amplifier is grounded on the forehead, and
“A2” is the reference electrode which is placed near the right ear
lobe. The impedances between the scalp and all electrodes are
maintained below 5 k�.

2.2. System Components
The system consists of into two parts: (i) the control unit; and
(ii) the execution unit. The control unit is a novel hBCI that
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processes the recorded EEG and EOG signals and translates
them into various control commands. The execution unit is
an integrated wheelchair robotic arm system which was built
to help paralyzed people in Huang et al. (2019). As shown
in Figure 2B, the hardware components include a laptop to
present the GUI, a wheelchair [0.8 × 0.6 m, UL8W, Pihsiang
Machinery Co. Ltd.], a six-degree intelligent robotic arm [JACO6
DOF-S, Kinova Robotics] and two motion-sensing cameras
[Kinect v2, Microsoft].

2.3. GUI and Control Strategy
The graphical user interface (GUI) of the hBCI consists of two
separate panels: (i) the wheelchair panel (Figure 3A); and (ii) the
robotic arm panel (Figure 3B). When the system is turned on,
the wheelchair panel is presented. As shown in Figure 3A, the
progress bar is used to control the wheelchair direction. The value
of the bar represents the classification result of the user’s left-right
MI imagery. Two green lines are set at somewhere on the left and
right sides of the bar as the left and right threshold, respectively.
Initially, the value of the progress bar is 0 and the bar stops in
the middle. The user can grow the bar to the left/right side by
continuously imagining left/right handmovement. As long as the
value of the bar exceeds the left/right threshold, the wheelchair
is continuously turned to the left/right at an angular velocity of
0.1π/s (18◦/s) (see details in the EEG signals processing section).

In the wheelchair panel, there are nine buttons placed around
the progress bar that flash one by one in a predefined sequence.
The interval between the onset of two continuous button flashes
is 100 ms. Thus, the period of a complete round (i.e., each button
flashes once) is 900 ms. To select a target button, the user first
performs an intended blink in response to a flash of the target
button. The system detects the intended blink and pre-selects a
potential target button according to the timing of blinking. Next,
if the pre-selected button is correct, the user needs to raise his/her
eyebrows once to verify it. Only when a button is pre-selected
and verified can the corresponding command be triggered (see
details in the EOG signals processing section). The “Move” and
“Back” buttons represent moving forward and backward at 0.2
m/s, respectively. The “Stop” button is used to stop the moving
and turning of the wheelchair immediately. Other buttons in the
wheelchair panel are active only when the wheelchair is stopped.
For example, the user can increase/decrease the left and right
threshold values by selecting the “+”/“−” buttons on the left
and right sides, and renew the MI classification parameters (see
details in the EEG signals processing section). The “Switch” button
is used to switch the GUI to the robotic arm panel.

In the robotic arm panel, there are 6 buttons which flash one
by one with an interval of 150 ms, as shown in Figure 3B. Thus,
the round period is also 900 ms. The three object buttons (“Item
1,” “Item 2,” and “Item 3”) represent three target objects that
can be grasped. Once the user selects an object button, the two
cameras (Camera A and B) would return the coordinates of the
object as well as the user’s mouth to the robotic arm, and then
the arm automatically plan the path to grasp the target and bring
it to the user’s mouth. The “Init” button is used to initiate the
arm’s internal parameters andmove it to the home position. After
the target has been brought to the mouth, the user can select the

“Back” button to ask the arm to put the target back automatically.
The “Switch” button is used to switch to the wheelchair panel. The
system flowchart is illustrated in Figure 2A.

2.4. EEG Signals Processing
A supervised machine learning process was implemented to
process the multichannel EEG signals, which included two
parts: (i) the offline model training process; and (ii) the online
classification process. In the offline model training process, each
user was asked to complete several left/right hand MI tasks. The
recorded and labeled (left or right) EEG signals from the nine
electrodes (“FC3,” “FCz,” “FC4,” “C3,” “Cz,” “C4,” “CP3,” “CPz,”
and “CP4”) were first referenced with the signals from “A2.”
Then, the signals were band-pass filtered around 8–30 Hz (α and
β bands). For the feature extraction, the common spatial pattern
(CSP) method was applied. Specifically, a covariance matrix was
achieved by the following formula:

Ri =
Xi × Xi

T

trace(Xi × Xi
T)

(1)

where Xi ∈ RM×N denotes the filtered EEG data matrix of the
ith trial, M is the number of channels (9 in this case), N is the
number of samples in each trial.

Then, the covariance matrixes that belong to the same class
(left or right) were added up as SUMl or SUMr . The goal of CSP
was to find a spatial filter W ∈ Rm×N (m is the order of the
spatial filter) that maximized the band power difference between
SUMl and SUMr , and this W could be constructed using the
eigenvectors of SUMl and SUMr (Li and Guan, 2008). The MI
feature used in this study was defined in MATLAB as below:

Fi = log
diag(W × Ri ×WT)

sum(diag(W × Ri ×WT))
(2)

where Fi ∈ Rm×m denotes the MI feature of the EEG data of
the ith trial. Further, the features of all trials and their labels were
used to learn a MI classifier based on the support vector machine
(SVM) algorithm.

In the online classification process, the MI classifier evaluated
a 2-s real-time EEG data epoch every 0.2 s, and generated a score
c, which represents the comparative similarity between the input
data epoch and the two classes. The mean score for the idle state
(i.e., when the user did not imagine) was termed as the idle score
Cidle. Each newly generated score c was compared to Cidle, and
the result was used to steer the wheelchair as below:

Turn left:

{

c < Cidle

|c− Cidle| > THl
(3)

Turn right:

{

c > Cidle

|c− Cidle| > THr
(4)

where THl and THr denote the left and right threshold,
respectively. As mentioned in the GUI and control strategy
section, once the “Renew” button was selected when the
wheelchair was stopped, the system updated Cidle by averaging
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FIGURE 2 | The system flowchart (A) and the basic components (B) which include the hBCI, a wheelchair, a six-degree intelligent robotic arm and two

motion-sensing cameras.

FIGURE 3 | The GUI of the proposed hBCI consists of two separate panels: the wheelchair panel (A) and the robotic arm panel (B).

the scores of the next 3 s, during which the user was supposed to
be in the idle state. If Cidle was renewed, the threshold values THl

and THr also needed to be adjusted, which could be realized by
selecting the “+”/“−” buttons on the wheelchair panel, as shown
in Figure 3A.

2.5. EOG Signals Processing
To select a button on the GUI, users were asked to perform
two kinds of eye movements: one intended blink and one
eyebrow raising movement. Specifically, after each button flash,
the algorithm evaluated a 600-ms EOG data epoch (i.e., 150
samples) which started from the onset of that flash to examine
whether it contains an intended blink. A blink was detected and
recognized as intended if two conditions were satisfied: (i) The
600-ms data epoch passed a multi-threshold waveform check (as
described in Huang et al., 2018), which implied that there was
a blink waveform (either intended or unintended) contained in

this epoch; (ii) The detected blink waveform was regarded as
intended if it was occurred within a certain delay window after
the flash onset, and also the peak of the waveform should passe an
intended amplitude threshold, as shown in Figure 4. The second
condition was based on experimental observations: although the
response time to a flash varied among individuals, it was relatively
stable for a particular user (e.g., 280–320 ms after the flash), and
intended blinks usually had a higher amplitude than unintended
ones due to the more strong eye movement. For example, if a

blink waveform with enough amplitude was detected about 280
ms after the flash onset of “MOVE,” it would be recognized as an
intended blink in response to “MOVE.” For other buttons, the
delay should be extended or shortened by at least 100 ms due to

the button flash interval.
However, there was still a possibility that an unintended blink

was mistakenly detected to be intended. Thus, a verification
process was implemented to further exclude the unintended
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FIGURE 4 | Typical EOG waveform of an intended blink (A) and unintended blinks (B). The peak of the intended waveform should be located within a predefined

timing window and pass an amplitude threshold THa.

inference. Specifically, when an intended blink was detected in
the EOG epoch after a button flash, the system just preselected
the button and highlighted it in blue as feedback without any
command activated. The user was asked to judge the feedback
and raise eyebrows to verify if it was what he/she wanted.
Only when a button was preselected and verified, was the
corresponding command triggered. The detection algorithm for
the eyebrow raising movement was similar with the multi-
threshold waveform check used in the blink detection, which
aimed to recognize different eye movements by checking
particular waveform parameters, such as the amplitude, the speed
(i.e., the differential value) and the duration of the movement
(Huang et al., 2019).

3. EXPERIMENTS

Twenty-two healthy subjects (6 female and 16 males, aged
between 22 and 37 years) participated in a MI-based training
session and an EOG-based training session without actual control
of the wheelchair and the robotic arm. The MI-based training
session was designed to help subjects learn and improve the
ability of voluntarily modulating the sensorimotor EEG in the
motor cortex by performing left-right hand MI task; The EOG-
based training session was supposed to help subjects learn how
to select a flashing button using the proposed EOG paradigm.
Next, five of the 22 subjects with satisfied performance were
asked to complete a mobile self-drinking experiment. The
experiments were approved by the Ethics Committee of Sichuan
Provincial Rehabilitation Hospital. Written informed consent for
experiments and the publication of individual information was
obtained from all subjects.

3.1. MI-Based Training Session
All of the 22 subjects participated in aMI-training section on each
of three different days in 2 weeks, each section consists of three
sessions (i.e., nine sessions for each subject). Each MI-training
session consisted of an offline run without feedback and an online

run with feedback. In an offline run, the subjects performed 40
random left-/right-hand MI trials according to the cue presented
on screen. A trial began with a 5-s rest period, in which subjects
relaxed and remained in an idle state. Then, a fixation cross
was presented at the center of the screen for 2 s, prompting
subjects to concentrate on the upcoming task cue. After the cross
disappeared, an arrow randomly pointed to either the left or the
right was appeared for 5 s. Subjects were asked to imagine the
movement of the left or right hand, as indicated by the cue arrow.
The recorded EEG data were then used to build a classifier and
calculate the offline MI classification accuracy based on a 10-fold
cross validation process.

It has been reported that feedback paradigm can enhance MI
training (Yu et al., 2015). Thus, after each offline run, subjects
completed an online run with visual feedback. Specifically,
the subject was asked to change the state of the progress
bar by performing left-/right-hand MI task. The left/right MI
thresholds were set properly in this session to separate the
bar into left, middle (idle), and right parts, ensuring that the
subject could effectively control the bar to switch between the
three parts. Any out-of-control situation implied the need of
adjustment in the rest MI-training sessions, such as adjustment
of the imagined hand movement. Subjects with an offline MI
classification accuracy over 80% and showed a good control
effect of the progress bar were selected to participate in the
following experiments.

3.2. EOG-Based Training Session
In this session, five of the 22 subjects with satisfied MI
performance were selected to complete 3 EOG-based training
sessions, each of which consisted of 30 trials. In a trial, a random
target button on the wheelchair panel was first highlighted in
blue for 2 s. Then, all buttons started flashing as described in the
GUI section. Subjects were asked to perform blinks and eyebrow
movements to select the target button as soon as possible. The
break between two continuous trials was 2 s. After the three
sessions, each subject was asked to keep in the idle state for 10min

Frontiers in Neuroscience | www.frontiersin.org 5 November 2019 | Volume 13 | Article 1243

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Huang et al. hBCI for Integrated System Control

during which he/she just relaxed. Indicators, such as the selection
accuracy, the selection delay and the false positive rate (FPR),
were calculated to evaluate the EOG performance of the system.

3.3. Mobile Self-Drinking Experiment
Five of the 22 subjects that completed both the MI- and EOG-
based training sessions participated in this experiment. As shown
in Figures 5A,B, in an indoor experimental field (8 × 5 m),
several obstacles were placed between the starting point and a
randomly placed table, on which there were two different bottles
with a straw and some water in each of them. To complete an
experimental run, subjects were asked to control the system to
complete three concatenated tasks: (i) Driving the system from
the starting point to reach the table through the obstacles; (ii)
Manipulating the robotic arm to grasp a target bottle, drink water
with the straw and then put the bottle back; (iii) Driving the
system to go through obstacles and a door (width: 1.15 m). Each
subject completed three runs with the proposed hBCI.

4. RESULTS

4.1. MI Training Results
In this study, each of the 22 subjects completed 9 MI training
sessions. According to the binominal test theory, a significant
statistical difference is supported if the p-value is smaller than
0.0056 (0.05/9). We use the following formula in MATLAB to
calculate the p-value:

p = 1− cdf (′bino′, a, num, 0.5) (5)

where num is the number of trials in a session (40 in this case),
and a is the number of the correctly predicted trials in a session.
By this formula, we can achieve that a should be larger than 27
to ensure that p-value is smaller than 0.0056. Thus, the smallest
required number of correct trials in a session is 28, which means
the accuracy is around 70% (28/40). Considering the high control
precisions required in this study, we set 80% as a minimum
passing accuracy to invite potential subjects to participate in
more MI training sessions.

According to the experimental results, five of the 22 subjects
achieved a highest accuracy above 80% in an optimal session, as
shown inTable 1. The average accuracies and standard deviations
of these five subjects are presented in Figure 6. Among them,
two subjects (S1 and S2) had prior experience with the MI
paradigm, and the other three (S3, S4, and S5) were the first
time to perform MI tasks. The highest MI accuracies for these
five selected subjects in an optimal session were higher than
80%, and the average accuracies for each of them were higher
than 70%. For the two subjects with prior MI experience,
the highest accuracies were 95 and 100%, respectively. Except
for the five selected subjects, six of the 22 subjects did not
generate accuracy higher than random level (70% in this case,
determined by the binominal test) in any session, which implied
that no significant modulations of the sensorimotor rhythms
were observed among them. The rest eleven subjects achieved
a highest accuracy between 70 and 80% in an optimal session,
which was higher than random level but might not be satisfied to
realize a reliable control.

4.2. EOG Training Results
As shown in Table 1, all of the five subjects participated in
this session could achieve an EOG accuracy (the highest value
of all sessions) above 95% for the button selection task. The
average EOG accuracy for these subjects was 96.2 ± 1.3%, which
demonstrated that the individual variance of the proposed EOG
paradigm was much smaller than that of the MI paradigm.
According to the results, it took 1.3 ± 0.3 s in average to
generate a command through the EOG paradigm, which was
faster than that proposed in some EOG-based state-of-the-art
works (typically 2–3 s) (Ma et al., 2015; Huang et al., 2018). In
this study, the FPRwas evaluated without the verification process,
aiming to verify the effectiveness of the proposed method based
on the peak amplitude and timing (see details in the EOG signals
processing section to distinguish intended and unintended blinks.
For these five subjects, the average FPR was 1.5± 1.2 events/min.
Since a healthy person with normal eye movements usually
performed 10–20 unintended blinks per minute, the probability
that an unintended blink was mistakenly regarded as an intended
one in this work was∼7.5–15%. This probability was considered
to be acceptable since there was a verification process (i.e., raising
eyebrows) after the blink recognition, which could ensure that
the error recognition of unintended blinks would not result in
any output command.

4.3. Mobile Self-Drinking Experiment
Results
The average number of collisions for each subject in the three
concatenated tasks (Task 1: reaching the table; Task 2: grasping
the bottle to drink and put it back; Task 3: passing the door)
in this experiment were illustrated in Table 2. For Task 2, a
failed grasp was counted as a collision. According to the results,
S1 successfully completed the three runs without any collision.
S2 completed the first two tasks in all three runs but failed to
pass through the door in one run. Thus, the average number of
collisions for S2 to complete a run of Task 3 was around 0.3.
S4 completed Task 1 without any collision, and generated 1/0.3
collisions averagely in Task 2/Task 3. For S3 and S5, the average
numbers of collisions in Task 1 were 1.3 and 1.7, respectively,
which might be resulted from the relatively unstable direction
control of the wheelchair.

5. DISCUSSION

Previous wheelchair systems controlled by BCIs were generally
tested by asking the subject to drive the wheelchair from one
place to another without accurate requirements of the distance
and direction control accuracy. In this study, the subjects need to
accurately control and stop the wheelchair in front of a table with
a certain distance range and direction. Otherwise the grasping
task will fail. Thus, a main purpose of this work is to prove that
a hybrid BCI can provide satisfied control precisions (both the
distance and direction) for the wheelchair and the robotic arm to
handle tricky daily tasks.

In this study, the moving task was concatenated with the
grasping task. To ensure a successful grasp, the target bottle has
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FIGURE 5 | (A) The actual view of the experimental field. (B) A typical route that a subject (S1) drove through during the experiment.

TABLE 1 | Results of the five subjects in the MI-/EOG-Based sessions.

Subjects Gender Age MI accuracy (%) EOG accuracy (%) EOG RT (s) EOG FPR (events/min)

S1 Male 25 95 95 1.4 1.5

S2 Male 33 100 95.3 1.3 3.5

S3 Male 27 82.5 97.7 1.8 1.5

S4 Male 25 80 97.5 1.1 0.2

S5 Male 26 82.5 95.5 1.1 1

Mean ± SD / / 88±8.9 96.2±1.3 1.3±0.3 1.5±1.2

FIGURE 6 | The average accuracies and standard deviations of the five

selected subjects in the 9 MI training sessions.

to be located within a limited rectangular space 0.4 m ahead
of Camera A (length: 0.8 m; width: 0.4 m; height: 0.6 m).
Thus, the required positional accuracy of this task is 0.4 m.
There are no reports of any BCI-controlled wheelchair systems
achieving such accuracy. In this study, considering that the

TABLE 2 | Results of the mobile self-drinking experiment.

Subjects Task 1 Task 2 Task 3

S1 0 0 0

S2 0 0 0.3

S3 1.3 0.3 0.7

S4 0 1 0.3

S5 1.7 1 0

Mean 0.6 0.5 0.7

wheelchair speed is 0.2 m/s and the stop RT is ∼1.15 s, the
proposed system achieves a positional accuracy of 0.23 m, which
is satisfied compared with the required accuracy. Moreover, since
the proposed system generates nearly continuous directional
control outputs, the user can accurately adjust the wheelchair
to ensure it is facing almost directly to the target. According to
the experimental results, three of the five subjects successfully
completed the Task 1 of the mobile self-drinking experiment,
and all of the five subjects completed Task 2 and Task 3 with
no more than 1 collision in average, which demonstrated the
proposed hBCI provided sufficient accuracies to control the
integrated system.

In the proposed hybrid BCI, we attempt to use the EOG signals
to handle the out-of-control problem ofMI-based systems, which
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is caused by the time-varying characteristic of the EEG signals
and is more serious in an integrated system task, since it usually
consumed more time and efforts than a single device task does.
Specifically, users could select the corresponding buttons through
the EOG paradigm to renew the MI parameter Cidle using real-
time EEG signals and adjust the left/right turning threshold THl

and THr . To renew Cidle, the user first stopped the wheelchair
and then perform eye movements to select the “Renew” button.
After the button was selected, the user kept in idle state for at
least 10 s. The algorithm averaged the scores during this period
and used it as an offset compensation for Cidle. Moreover, if some
unreliable issues caused an offset in the left/right classification,
the user could increase/decrease the left/right threshold with a
step of 0.2 by selecting the “+”/“−” buttons on the wheelchair
panel. According to the observations during the experiments,
the three subjects without prior MI experience (S3, S4, and S5)
could extend the time of effective control through this strategy,
which supported that this strategy might be a feasible solution to
utilize the reliability of EOG signals to overcome the time-varying
characteristic of the EEG signals.

For subjects maintaining normal eye movements, EOG may
be a better choice for developing HMIs since it usually has
a higher signal-to-noise ratio. However, EOG-based HMIs can
only provide discrete commands, which hurts the control
precision in scenarios that require continuous control, such as
the direction control of the wheelchair. Compared with EOG,
the motor imagery (MI) paradigm used in BCI has a better
real-time response performance (usually a few hundreds of
millisecond). In this work, the timing window length of an EEG
signal epoch for the MI classification was 2 s, and the interval
between the starting points of two temporal adjacent epochs
was 0.2 s (i.e., the algorithm generated a MI classification result
for every 0.2 s). Moreover, the left/tigh threshold conditions
were applied to further smooth the outputs. Other wheelchair
commands and all of the robotic arm commands were generated
by EOG.

Other functions of the wheelchair, such as moving
forward/backward and stopping, can be realized in a discrete
control mode. Thus, we used an EOG-based button selection
paradigm similar with the one proposed in Huang et al.
(2018). In Huang et al. (2018), users performed 3-4 blinks to
select a button and resulted in a RT of 3.7 s. In this study,
users performed one blink and one eyebrow movement for
button selection, and the average RT was reduced to ∼1.4 s.
For the robotic arm, since the required positional accuracy
of a grasping task usually reaches centimeter-level, it is
challenging to use a single BCI to realize the full control
of the arm. Therefore, we implemented a shared control
mode to combine the intelligence of the robotic arm with
the EOG paradigm. Once the user selects a button which
represents a target bottle, the robotic arm automatically
plans the path between the target object and the user’s
mouth according to the accurate coordinates obtained by
the two cameras.

6. CONCLUSION

In this paper, a novel hBCI based on EEG and EOG was
presented for the control of an integrated assistive system,
which consisted of a wheelchair and a robotic arm, aiming
to help users move from a random place and grasp a target
object that is placed far away. Users steered the wheelchair
left/right by performing motor imagery of the left/right hand,
and generated other wheelchair or robotic arm commands
by implementing two kinds of eye movements (blinking and
raising eyebrows). Five subjects were asked to use the system
to complete a mobile self-drinking experiment, which included
several tricky tasks, such as avoiding obstacles, grasping a target
bottle and passing through a door. The experimental results
demonstrated that the proposed hBCI could provide satisfied
control accuracy for controlling an integrated assistive system to
complete complex daily tasks. In a future work, we will improve
the hBCI paralyzed patients and expand its application range in
the medical rehabilitation process.
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