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Abstract

Background

Liquid biopsies enable the detection of circulating tumor DNA (ctDNA). However, the clinical

significance of KRAS-mutated ctDNA for pancreatic cancer has been inconsistent with

respect to its prognostic and predictive potential.

Methods and findings

A total of 422 blood samples were collected from 78 patients undergoing treatments for

localized and metastatic pancreatic ductal adenocarcinoma. KRAS mutation in tissues and

KRAS ctDNA levels in plasma were determined by RASKET and droplet digital polymerase

chain reaction. Longitudinal monitoring of KRAS ctDNA was performed to assess its signifi-

cance for predicting recurrence and prognosis and for evaluating therapeutic responses to

chemotherapy compared with carbohydrate antigen 19–9 (CA19-9). In 67 tumor tissues,

discrepancies in point mutations of KRAS were rarely observed among individual patients,

implying that one targeted point mutation of KRAS can be determined in tumor tissues prior

to longitudinal blood monitoring. One-time blood assessment of KRAS-mutated ctDNA

before surgery or chemotherapy was not clearly associated with recurrence and prognosis.

Sequential blood monitoring was performed in 39 patients who underwent surgery for poten-

tially resectable tumors. Increased CA19-9 levels were significantly associated with recur-

rence, but not prognosis (P<0.001, P = 1.0, respectively), whereas emergence of KRAS

ctDNA was significantly associated with prognosis (P<0.001) regardless of recurrence. Fur-

thermore, in 39 patients who did not undergo surgery, detection of KRAS ctDNA was a pre-

dictive factor for prognosis (P = 0.005). Multivariate analysis revealed that detection of

KRAS ctDNA was the only independent prognostic factor regardless of tumor resection

(hazard ratios = 54.5 for patients who underwent surgery and 10.1 for patients who did not

undergo surgery; P<0.001 for both). Patients without emergence of KRAS ctDNA within 1
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year after surgery showed significantly better prognosis irrespective of recurrence

(P<0.001). No detection or disappearance of KRAS ctDNA within 6 months of treatment

was significantly correlated with therapeutic responses to first-line chemotherapy

(P<0.001). Changes in KRAS status provided critical information for the prediction of thera-

peutic responses.

Conclusions

Our study showed for the first time that detection of KRAS ctDNA levels within a short period

enables the prediction of prognosis and therapeutic responses in patients with pancreatic

cancer.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) ranks as the fourth leading cause of cancer-related

mortality in the United States and Japan [1, 2]. Surgical resection is considered the only cura-

tive treatment for PDAC. As PDAC is usually diagnosed at advanced stage, up to 20% of

patients are suitable for initial resection [3]. Even after curative resection, most patients will

experience recurrence within a year. The 5-year survival rate for patients undergoing complete

resection is only approximately 25% [4]. Neoadjuvant chemotherapy to improve the treatment

efficacy of surgery for patients with resectable tumors is under trial. The probability of com-

plete resection may be lost even with a short period of neoadjuvant chemotherapy. Treatment

without surgery results in unsatisfactory outcomes and poor prognosis with a median survival

of 5–9 months [4], as observed in patients with unresectable tumors; nevertheless, unnecessary

surgical treatment should be avoided.

Recent improvements in chemotherapy for patients with unresectable tumors have shown

to prolong survival. The most effective treatment should be determined according to survival

benefit for each patient; hence, an ideal predictive biomarker is required. For this purpose, car-

bohydrate antigen 19–9 (CA19-9) has been commonly used to establish diagnosis, assess

resectability, monitor progression, and determine prognosis [5]. Despite the acceptance of the

utility of CA19-9 as a valuable predictor for prognosis of PDAC, controversy remains as to the

sensitivity and cutoff value of CA19-9.

As an alternative to CA19-9, detection of circulating cell-free DNA in the bloodstream,

known as liquid biopsy, has been considered a predictive biomarker for invasive cancers [6–

10]. Cell-free DNA originates from somatic DNA that is discharged into the systemic circula-

tion following cellular necrosis and apoptosis [11]. Droplet digital polymerase chain reaction

(ddPCR) and BEAMing technology are two widely used platforms for liquid biopsy, which can

discover mutant alleles in the bloodstream with a high sensitivity of 0.001–0.01% [12, 13]. The

detection of mutated circulating tumor DNA (ctDNA) provides prognostic and predictive

information on various cancers [14, 15]. Liquid biopsy is an ideal noninvasive tool that allows

multiple tests over time and provides real-time data on changes in tumors. Furthermore, liquid

biopsy enables longitudinal monitoring of mutated ctDNA. Monitoring real-time changes

within the tumor reflects tumor dynamics [16]. Our previous study showed that longitudinal

monitoring of mutated ctDNA indicated tumor dynamics in connection with various treat-

ments for patients with colorectal cancer, which in-turn provided useful information for treat-

ment determination [17]. KRAS mutations have been detected in 50% of colorectal cancers

and 90% of PDAC [4, 18, 19] and the heterogeneity of KRAS mutations between primary
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tumor and metastasis in individual patients with PDAC is rare [20, 21], suggesting that, with

respect to prognosis, circulating mutant KRAS ctDNA in the blood is a good biomarker for

detecting the presence of cancer cells. In 1999, Castells et al. reported the association between

poor survival and presence of KRAS mutations in plasma from patients with PDAC [22].

Later, several studies reported the feasibility of detecting circulating mutant KRAS genes in the

blood of patients with PDAC, as well as the prognostic relevance of these genes [23, 24]. How-

ever, the clinical significance of KRAS-mutated ctDNA in PDAC has been inconsistent with

respect to its prognostic and predictive potential [25, 26]. This inconsistency could be induced

by limited points of detection of circulating mutant KRAS genes in the blood. In the past,

assessments were performed at a few time points, for instance, just before and after surgery.

However, longitudinal monitoring has not been attempted.

In this study, we evaluated the significance of sequentially assessing KRAS ctDNA levels

through longitudinal monitoring. Here, we demonstrated for the first time that detection of

KRAS ctDNA levels within a short period enables the prediction of prognosis and therapeutic

responses in patients with PDAC.

Methods

Patients and study design

We prospectively recruited 78 patients clinically diagnosed with localized, metastatic, and

recurrent PDAC and collected 422 blood samples between June 2014 and December 2017 at

Saitama Medical Center, Jichi Medical University, Japan. Schematic of patient recruitment

and our study endpoints are shown in S1 Fig. Characteristics of the 39 patients who underwent

surgery and 39 patients who did not are shown in S1 Table, respectively. This study is con-

ducted as an exploratory study without calculation of sample size for primary endpoints. After

surgery, signs of recurrence were confirmed based on imaging findings. At least three serial

liquid biopsy samples were obtained postoperatively from patients who underwent surgery.

Therapeutic response of tumors was assessed based on the Response Evaluation Criteria in

Solid Tumors (RECIST) version 1.1 [27] for routine clinical evaluation. At least two serial liq-

uid biopsy samples were obtained from patients who did not undergo surgery. However, four

patients provided only one sample each because of their death. The median follow-up time for

all patients was 16.2 months. All patients provided written informed consent for the examina-

tion of their tissue and plasma and the use of their clinical data. The study protocol was

approved by the research ethics committee of Jichi Medical University and conformed to the

ethical guidelines of the World Medical Association Declaration of Helsinki.

Analysis of KRAS status in PDAC tissues

KRAS status in PDAC tissues was evaluated by RASKET with a sensitivity of 1–5% and ddPCR

with a sensitivity of 0.01–0.1%, using formalin-fixed paraffin-embedded (FFPE) tumor tissues,

including endoscopic ultrasound-guided fine-needle aspiration samples. KRAS status in 67

tumor tissues was analyzed using RASKET by a clinical testing company (Special Reference

Laboratories, Tokyo, Japan). Subsequently, tissue DNA was extracted from 73 FFPE tissues

using QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany) according to the manufac-

turer’s instructions. Early reports have shown that point mutations at codon 12 of KRAS onco-

gene mostly include G12V, G12D, and G12R, whereas other types of point mutations of KRAS
are rarely detected in patients with PDAC [19, 28, 29]. Therefore, these three types of KRAS
mutations were predominantly identified by ddPCR. In addition, Q61H, another type of

KRAS mutation that emerged prior to drug resistance was verified in four patients by ddPCR
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after initial determination by RASKET. KRAS status in five patients could not be assessed

because of insufficient DNA samples.

Analysis of heterogeneity of KRAS mutations in PDAC by ddPCR

Slices with a thickness of 10 μm were obtained for each FFPE tissue specimen from patients

who underwent surgery. Deparaffinization, rehydration, and hematoxylin and eosin staining

were performed under enzyme-free conditions. The slides were subsequently placed on poly-

ethylene naphthalate membrane slides (Leica Microsystems, Wetzlar, Germany) for laser

microdissection using LMD 7000 (Leica Microsystems, Wetzlar, Germany), and the tumor

center and invasion front were then isolated from each slide (S2 Fig). After laser microdissec-

tion, DNA was extracted using the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany)

according to the manufacturer’s instructions. KRAS mutations were assessed using ddPCR;

available metastatic or recurrent tumors (N = 13) were also examined.

Plasma sample collection and processing

A total of 422 blood samples were collected from patients with localized, metastatic, and recur-

rent PDAC at Saitama Medical Center, Jichi Medical University. From each patient, 7 mL of

whole blood was drawn into EDTA-containing tubes, and plasma was collected by centrifuga-

tion at 3000 × g for 20 min at 4˚C, followed by centrifugation at 16000 × g for 10 min at 4˚C in

a fresh tube. Plasma samples were separated from peripheral blood cells and stored at -80˚C

until DNA extraction.

Extraction of circulating cell-free DNA

Circulating cell-free DNA was extracted from 2 mL of plasma using QIAamp Circulating

Nucleic Acid Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.

ddPCR analyses

KRAS status in tumor tissues and plasma was analyzed using the Bio-Rad QX200 ddPCR sys-

tem (Bio-Rad Laboratories, Hercules, CA, USA). We used a commercially available PrimePCR

KRAS kit for ddPCR. KRAS mutations in each blood sample were verified according to the

corresponding mutation (C12V, G12D, G12R, and Q61H) in matched tumor tissues deter-

mined by ddPCR (S3 Fig). The reaction mixture comprised of 10 μL of 2× ddPCR Supermix,

1 μL of each reference and variant 20× Bio-Rad PrimePCR KRAS for ddPCR, and 10 μL of

sample eluted from plasma in a final volume of 22 μL. The mixture was loaded onto a DG8 car-

tridge (Bio-Rad Laboratories, Hercules, CA, USA) with 70 μL of droplet generation oil, and

the cartridge was placed into the droplet generator. The generated droplets (approximately

15000 generated droplets per well) were transferred to a 96-well reaction plate, heat-sealed

with a foil lid, and subjected to thermocycling in a Veriti thermal cycler (Thermo Fisher Scien-

tific, Waltham, MA, USA) under the following cycling conditions: 95˚C for 10 min and 40

cycles at 95˚C for 30 s and subsequently at 55˚C for 90 s. Amplified droplets were analyzed

using a QX200 droplet reader (Bio-Rad Laboratories, Hercules, CA, USA) for the fluorescent

measurement of FAM and HEX probes for wild-type and mutant genes, respectively. Quanta-

Soft software (Bio-Rad Laboratories, Hercules, CA, USA) was used to measure the number of

positive and negative droplets, and their ratio (mutated allele frequency) was fitted to a Poisson

distribution to determine the target copy number/mL in the input reaction. Samples with two

or more positive droplets were considered positive according to threshold values, which we
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previously reported [17]. For data reproducibility, analysis of KRAS status in tumor tissues and

plasma was performed in duplicate or triplicate.

Statistical analysis

To assess prognosis, we measured recurrence-free survival (RFS), progression-free survival

(PFS), and overall survival (OS) as our endpoints. RFS was defined as the time from surgery to

confirmation of recurrence based on radiological findings. PFS was defined as the time from

pathological diagnosis to disease progression according to RECIST 1.1 or cancer-related mor-

tality in treatment-naïve patients receiving chemotherapy. OS in patients who underwent sur-

gery was defined by the time from surgery to occurrence of the event, whereas OS in patients

who did not undergo surgery was defined by the time from pathological diagnosis to the

occurrence of event. A Cox proportional hazards regression model was used to evaluate the

association between overall mortality and other factors in univariate and multivariate analyses.

The following variables were analyzed in patients who underwent surgery: sex; age at surgery

(�70 years versus >70 years); neoadjuvant chemotherapy (yes versus no); surgical methods

(subtotal stomach-preserving pancreaticoduodenectomy and total pancreatectomy versus dis-

tal pancreatectomy); tumor size (�2 cm versus>2 cm); pathological differentiation (well ver-

sus moderate and others); American Joint Committee on Cancer (AJCC) T factor (T1+T2

versus T3+T4); lymph node metastasis (negative versus positive); AJCC stage (IA/IB/IIA ver-

sus IIB/III/IV); preoperative CA19-9 level (�37 U/mL versus <37 U/mL); presence of KRAS-
mutated ctDNA before surgery (negative versus positive); and emergence of KRAS-mutated

ctDNA and CA19-9 levels upon longitudinal monitoring. Additionally, the following variables

were analyzed in patients who did not undergo surgery: sex; age (�70 years versus >70 years);

AJCC stage (III versus IV); CA19-9 level (�37 U/mL versus<37 U/mL); presence of KRAS-
mutated ctDNA (negative versus positive). RFS, PFS and OS curves were constructed using

the Kaplan-Meier method. The emergence of KRAS-mutated ctDNA and CA19-9 levels were

regarded as time-dependent covariates in longitudinal monitoring. To graphically illustrate

the effects of KRAS-mutated ctDNA and CA19-9 on OS, Simon–Makuch plots were generated

with a landmark placed at the median point of detection of KRAS-mutated ctDNA and CA19-

9>37 U/mL in patients who did and did not undergo surgery. Several factors with a P-value

of<0.15 in univariate analysis were subjected to multivariate analysis. A P-value of 0.05 was

considered statistically significant. Fisher’s exact test was used for categorical variables such as

the presence of KRAS-mutated ctDNA, CA19-9 level (�37 U/mL versus <37 U/mL), and out-

come (dead or alive). All statistical analyses were performed using EZR version 1.31 (Saitama

Medical Center, Jichi Medical University, Saitama, Japan). We also used R version 3.1.1 (The

R Foundation for Statistical Computing, Vienna, Austria) for graphical interface.

Results

KRAS assessment in tumor tissue samples and investigation of

heterogeneity

In advance of the investigation of KRAS-mutated ctDNA in plasma, KRAS assessment was per-

formed in tumor tissues of 67 patients with PDAC using RASKET with a sensitivity of 1–5%

and ddPCR with a sensitivity of 0.01–0.1%. With respect to frequency, G12V, G12D, D12R,

Q61H, G12V+G12R, and G12D+G12R and wild-type KRAS alleles were detected in 24

(35.8%), 22 (32.8%), 6 (9.0%), 4 (6.0%), 2 (3.0%), 1 (1.5%), and 8 (11.9%) out of 67 samples,

respectively. Of 67 patients, 59 (88.1%) with KRAS mutation (assigned from No. 1 to No. 59)

and 8 (11.9%) patients without (assigned from No. 60 to No. 67) were identified by KRAS
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assessment using RASKET (S3 Fig). These 8 patients without KRAS mutation detected by

RASKET showed the presence of KRAS mutations by ddPCR. KRAS mutations in these 8

patients were present at less than 1%, but ddPCR identified these rare mutations because of its

high sensitivity. When the KRAS-mutated allele frequency was�1% based on ddPCR, the

KRAS mutations detected by RASKET were identical to those by ddPCR; as observed in the 59

patients whose mutations identified by RASKET corresponded to those determined by ddPCR

(S3 Fig).

Moreover, we investigated the heterogeneity of KRAS mutations between tumor center and

invasion front, as well as between primary tumor and metastasis, which revealed that discrep-

ancies in KRAS status among individual patients were rarely observed. For KRAS mutations

with frequency�1%, the concordance between tumor center and invasion front and between

primary tumor and metastasis was 94.7% and 90.9%, respectively, implying the absence of het-

erogeneity in KRAS mutations (S4 Fig). Thus, point mutations identified in tissues should be

monitored and detected in blood with no additional exploration required.

One-point assessment of KRAS ctDNA and CA19-9 levels before surgery

was not associated with RFS, but KRAS ctDNA before chemotherapy was a

potential predictive prognostic factor, whereas CA19-9 prior to

chemotherapy was not

We evaluated the significance of one-point assessment in KRAS ctDNA and CA19-9 levels

before treatments, surgery and chemotherapy, to predict treatment outcome. Among 39

patients who underwent surgery, KRAS-mutated ctDNA was detected in 7 patients, and 28

patients had CA19-9 >37 U/mL. There was no significant difference in RFS by neither KRAS-

mutated ctDNA status nor CA19-9 level (P = 0.38, P = 0.7, respectively; Fig 1A). No effect of

the presence of KRAS-mutated ctDNA or CA19-9 level before surgery on RFS (median: 16.9

versus 32.4 months and 16.9 versus 17.1 months, respectively; Fig 1A) was observed. With

respect to one-point assessment before chemotherapy, 26 chemotherapy-naïve patients were

assessed before first-line chemotherapy among 39 patients who did not undergo surgery.

KRAS-mutated ctDNA was detected in 12 patients, and 20 patients had CA19-9 >37 U/mL.

Although there was no significant difference in prognosis by neither KRAS-mutated ctDNA

status nor CA19-9 level (P = 0.07, P = 0.86, respectively; Fig 1B), the presence of KRAS-
mutated ctDNA before chemotherapy was a potential predictive prognostic factor. The median

OS of patients with and without detection of KRAS-mutated ctDNA was 15.8 and 33.7 months,

respectively, whereas the median OS of patients with CA19-9 level�37 U/mL and<37 U/mL

was 16.6 and 19.8 months, respectively (Fig 1B).

Sequential assessments of ctDNA and CA19-9 in longitudinal monitoring

to assess treatment outcome

Fig 2 shows sequential assessments of ctDNA and CA19-9 in longitudinal tests with respect to

recurrence and prognosis. Fig 2A presents a comparison of KRAS-mutated ctDNA and CA19-

9 in longitudinal tests for 39 patients who underwent surgery. Twenty-two patients showed

recurrence and Fisher’s exact test indicated that increased CA19-9 levels were significantly

associated with recurrence (P<0.001). However, increased CA19-9 levels were not linked to

prognosis (P = 1.0). On the other hand, emergence of KRAS ctDNA in longitudinal tests was

associated with prognosis (P<0.001) regardless of recurrence, which emphasized its signifi-

cance as a prognostic factor. Fig 2B presents a comparison of KRAS-mutated ctDNA and

CA19-9 in longitudinal evaluation of 39 patients who did not undergo surgery. Fisher’s exact

test indicated that detection of KRAS-mutated ctDNA in longitudinal tests was associated with
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prognosis (P = 0.005), whereas CA19-9 was not (P = 0.692). Details on the clinical course of 39

patients who underwent surgery and 39 patients who did not are shown in S2 and S3 Tables,

Fig 1. One-point assessment of ctDNA and carbohydrate antigen 19–9 (CA19-9) before treatment to assess recurrence and prognosis. (A) Recurrence-free survival

(RFS) curves according to the presence of KRAS-mutated ctDNA and CA19-9 level before surgery in 39 patients who underwent surgery (P = 0.38 and 0.7 by log-rank

test). (B) Overall survival (OS) curves according to the presence of KRAS-mutated ctDNA and CA19-9 level before first-line chemotherapy in 26 chemotherapy-naïve

patients who did not undergo surgery (P = 0.07 and 0.86 by log-rank test). X-axes indicate the months from surgery, whereas Y-axes indicate the probability of RFS or

OS.

https://doi.org/10.1371/journal.pone.0227366.g001
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respectively. To demonstrate the significance of KRAS-mutated ctDNA monitoring, we pres-

ent two cases of patients (one who underwent surgery and one who did not) exhibiting tumor

dynamics in S5 Fig.

Univariate and multivariate analyses of OS

Table 1 presents the 13 independent demographic and clinicopathological variables used in

univariate analysis for OS of patients who underwent surgery. Four variables—namely,

Fig 2. Sequential assessments of KRAS-mutated ctDNA and carbohydrate antigen 19–9 (CA19-9) level in

longitudinal tests. (A) CA19-9 levels and the emergence of KRAS-mutated ctDNA are shown under “CA19-9” and

“KRAS-mutated ctDNA,” respectively, and are ordered as per the timing of blood examination after surgery (1!12).

CA19-9�37 U/mL and no detection of KRAS-mutated ctDNA are represented in blue, whereas CA19-9>37 U/mL

and the emergence of KRAS-mutated ctDNA are represented in red. Recurrence is shown under “Rec,” with “no” and

“yes” indicated in white and gray, respectively. Prognosis is shown under “Outcome,” with “alive” and “death”

indicated in white and gray, respectively. Examination results for every 3 months are shown in one cell; thus, four cells

correspond to approximately 1 year. ND, not determined. (B) Sequential assessments of KRAS-mutated ctDNA and

CA19-9 levels in longitudinal tests for patients who did not undergo surgery. CA19-9 levels and the emergence of

KRAS-mutated ctDNA are ordered as per the timing of blood examination (1!15). Number of patients corresponds

to those described in S2 and S3 Tables.

https://doi.org/10.1371/journal.pone.0227366.g002
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neoadjuvant chemotherapy, pathological differentiation, CA19-9 levels, and emergence of

KRAS-mutated ctDNA were identified as prognostic factors. Multivariate Cox proportional

hazards regression model indicated that the emergence of KRAS-mutated ctDNA (hazard

ratio = 54.5, confidence interval: 6.64–447.6, P<0.001) was a significant factor for survival in

patients who underwent surgery (Table 1). Considering the small number in this analysis, mul-

tivariate analysis for two time-dependent factors was not feasible; hence, CA19-9 was excluded

from the analysis. To graphically illustrate the effects of KRAS-mutated ctDNA and CA19-9 in

Table 1. Univariate and multivariate analyses of overall survival in patients who underwent surgery.

Univariate analysis Multivariate analysis

Prognostic factors Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

Sex

Male 1 Reference

Female 0.76 (0.26–2.21) 0.61

Age at surgery (median, 69.5 years)

<70 years 1 Reference

�70 years 1.31 (0.45–3.80) 0.62

Neoadjuvant chemotherapy

No 1 Reference 1 Reference

Yes 3.10 (0.82–11.7) 0.09 0.62 (0.13–2.85) 0.53

Operation methods

SSPPD and total pancreatectomy 1 Reference

Distal pancreatectomy 0.72 (0.24–2.21) 0.57

Tumor size

�2 cm 1 Reference

>2 cm 2.98 (0.66–13.5) 0.16

Pathological differentiation

Well 1 Reference 1 Reference

Moderate and othersa 4.12 (1.38–12.3) 0.01 1.93 (0.57–6.49) 0.29

AJCC T factor

T1/T2 1 Reference

T3/T4 3.05 (0.397–23.37) 0.28

Lymph node metastasis

Negative 1 Reference

Positive 0.81 (0.28–2.33) 0.69

AJCC stage

IA/IB/IIA 1 Reference

IIB/III/IV 0.81 (0.27–2.33) 0.69

Preoperative CA19-9 level

�37 U/mL 1 Reference

>37 U/mL 0.99 (0.31–3.16) 0.98

Presence of ctDNA before surgery

Negative 1 Reference

Positive 0.66 (0.14–3.0) 0.58

CA19-9 status in monitoring 9.4 (1.23–72.2) 0.03

Emergence of ctDNA in monitoring 57.2 (7.4–442.4) <0.001 54.5 (6.64–447.6) <0.001

aOthers include poorly, scirrhous, and adenosquamous; CI, confidence interval; SSPPD, subtotal stomach-preserving pancreaticoduodenectomy; AJCC, American Joint

Committee on Cancer; CA19-9, carbohydrate antigen 19–9; ctDNA, circulating tumor DNA.

https://doi.org/10.1371/journal.pone.0227366.t001
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longitudinal analyses on OS, Simon–Makuch plots were constructed with a landmark placed

at the median time point (approximately 8 months and approximately 4 months, respectively)

of the emergence of KRAS-mutated ctDNA and CA19-9 >37 U/mL (Fig 3A and 3B). Table 2

presents 6 independent demographic and clinicopathological variables used in univariate anal-

ysis for OS of patients who did not undergo surgery. In univariate analysis, the emergence of

KRAS-mutated ctDNA was identified as one of the prognostic factors. Multivariate Cox pro-

portional hazards regression model indicated that the emergence of KRAS-mutated ctDNA

(hazard ratio = 10.4, confidence interval: 2.95–37.0, P<0.001) was the only significant factor

for survival in patients who did not undergo surgery (Table 2). To graphically illustrate the

effects of KRAS-mutated ctDNA and CA19-9 on OS, Simon–Makuch plots were generated

with a landmark placed at the median time point (approximately 2 months) of the detection of

KRAS-mutated ctDNA in patients who did not undergo surgery (Fig 3C). CA19-9 was not

used to construct a survival curve with a time-dependent covariate, because most initial values

of CA19-9 were over 37 U/mL.

Sequential assessments of ctDNA within 1 year to assess prognosis in

patients who underwent surgery

As presented in Fig 2A, patients demonstrating emergence of ctDNA within 1 year after sur-

gery showed poor prognosis regardless of recurrence after surgery; hence, we re-evaluated the

outcome by comparing patients with emergence of ctDNA within 1 year to patients without

emergence. A statistically significant difference in OS according to KRAS status in blood was

observed (P<0.001; Fig 4A). The emergence of KRAS-mutated ctDNA within 1 year after sur-

gery was significantly associated with worse OS (median: not applicable versus 13.4 months).

Sequential assessments of ctDNA within 6 months to assess therapeutic

responses of chemotherapy-naïve patients

To evaluate therapeutic responses, we recruited 26 chemotherapy-naïve patients. Drug

response was assessed using RECIST within 6 months of chemotherapy. A statistically signifi-

cant difference in PFS was observed between patients in whom KRAS-mutated ctDNA was

detected and those in whom KRAS-mutated ctDNA was not detected or disappeared within 6

months of chemotherapy (P<0.001; Fig 4B). The emergence of KRAS-mutated ctDNA within

6 months of chemotherapy was significantly associated with worse PFS (median: 14.9 versus

4.8 months). Changes in KRAS status provided critical information for the prediction of thera-

peutic responses. However, an analysis of patients according to CA19-9 levels to construct a

survival curve for assessing therapeutic responses was not performed because CA19-9 did not

show any change during treatments.

Discussion

Our study showed the significance of sequential KRAS ctDNA assessments for predicting

prognosis and therapeutic responses in patients with PDAC via longitudinal monitoring. In

contrast, one-time assessment of KRAS-mutated ctDNA before surgery or chemotherapy was

not clearly associated with recurrence and prognosis. Longitudinal monitoring of KRAS-

mutated ctDNA enabled us to inform predictive significance within a short period after initial

monitoring. Patients without emergence of KRAS ctDNA within 1 year after surgery showed

significantly better prognosis irrespective of recurrence (P<0.001). No detection or disappear-

ance of KRAS ctDNA within 6 months of treatment was significantly correlated with therapeu-

tic responses to first-line chemotherapy (P<0.001). Changes in KRAS status provided critical
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information towards prediction of therapeutic responses. Our study showed for the first time

that assessment of KRAS-mutated ctDNA within a short period enables the prediction of prog-

nosis and therapeutic responses in patients with PDAC.

Fig 3. Outcome according to KRAS-mutated ctDNA and CA19-9 in longitudinal evaluations. (A) Simon–Makuch

plot for the effect of emergence of KRAS-mutated ctDNA on overall survival (OS) in patients who underwent surgery,

illustrated by a landmark at 8 months, the median time point for the detection of KRAS-mutated ctDNA (P<0.001).

(B) Simon–Makuch plot for the effect of CA19-9 level on OS in patients who underwent surgery, illustrated by a

landmark at 4 months, the median time point for CA19-9 level increasing to>37 U/mL (P = 0.03). (C) Simon–

Makuch plot for the effect of emergence of KRAS-mutated ctDNA on OS in patients who did not undergo surgery,

illustrated by a landmark at 2 months, the median time point for the detection of KRAS-mutated ctDNA (P<0.001). X-

axes in Fig 3A and 3B indicate the months from surgery, X-axis in Fig 3C indicates the months from the initial

evaluation in this study, whereas Y-axes indicate the probability of survival.

https://doi.org/10.1371/journal.pone.0227366.g003
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With respect to heterogeneity, molecular heterogeneity within the primary tumor (intratu-

moral heterogeneity) and between the primary tumor and metastatic lesions has been

described previously [30–33] and is associated with resistance to various treatments [34].

Some studies have reported discrepancies between the primary tumor and KRAS-mutated

ctDNA [6, 35, 36]. Hashimoto et al. [20] reported that intratumoral heterogeneity was

Table 2. Univariate and multivariate analyses of overall survival in patients who did not undergo surgery.

Univariate analysis Multivariate analysis

Prognostic factors Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

Sex

Male 1 Reference

Female 0.82 (0.38–1.78) 0.61

Age (median, 69.5 years)

<70 years 1 Reference

�70 years 1.73 (0.80–3.71) 0.16

AJCC stage

Stage III 1 Reference

Stage IV 1.27 (0.55–2.92) 0.58

CA19-9 levela

�37 U/mL 1 Reference

>37 U/mL 1.02 (0.45–2.28) 0.97

Presence of ctDNAa

Negative 1 Reference

Positive 2.12 (0.99–4.57) 0.05 0.55 (0.22–1.39) 0.21

Emergence of ctDNA in monitoring 6.75 (2.23–19.9) <0.001 10.4 (2.95–37.0) <0.001

aInitial evaluation in monitoring; CI, confidence interval; AJCC, American Joint Committee on Cancer; CA19-9, carbohydrate antigen 19–9; ctDNA, circulating tumor

DNA.

https://doi.org/10.1371/journal.pone.0227366.t002

Fig 4. Sequential assessments of KRAS-mutated ctDNA within a short period to assess outcome. (A) Overall survival (OS) curves

according to the emergence of KRAS-mutated ctDNA within 1 year after surgery (P<0.001 by log-rank test). (B) Progression-free survival

(PFS) curves according to the emergence of KRAS-mutated ctDNA within 6 months of chemotherapy (P<0.001 by log-rank test). X-axes

indicate the months from surgery and diagnosis, whereas Y-axes indicate the probability of OS and PFS.

https://doi.org/10.1371/journal.pone.0227366.g004
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observed in KRAS mutations between tumor centers and invasion fronts in 4.1% patients with

pancreatic cancer. Makohon-Moore et al. [21] detected identical mutations in driver genes

such as KRAS and SMAD4 and reported no discrepancy in driver genes between primary

tumors and distant metastases. In context of this controversy, we investigated the heterogene-

ity of KRAS mutations in PDAC in advance. The concordance between tumor center and inva-

sion front and between primary tumor and metastasis was more than 90.0%; thus, the types of

mutations detected in tissues were investigated by ddPCR in the blood. Discrepancies in point

mutations of KRAS were rarely observed among individual patients, implying that a targeted

point mutation of KRAS can be determined in tumor tissues prior to longitudinal monitoring

of blood.

In our study, the presence of KRAS-mutated ctDNA before surgery was not clearly associ-

ated with recurrence. No report has addressed the significant effect of KRAS-mutated ctDNA

on RFS, suggesting that one-point assessment of KRAS-mutated ctDNA before surgery was

not useful for predicting recurrence. Nonetheless, with respect to prognosis prediction,

Hadano et al. reported that one-point assessment of ctDNA before surgery was associated with

patient outcome [37]. In patients who did not undergo surgery, KRAS-mutated ctDNA was

likely associated with prognosis. Two studies supported our data [25, 26], but they could not

demonstrate the significance of KRAS-mutated ctDNA for prognosis prediction. In contrast,

preoperative CA19-9 levels showed no association with RFS, and CA19-9 levels in patients

who did not undergo surgery were not associated with OS. Different CA19-9 thresholds were

reported to predict RFS or OS [38, 39]; therefore, the optimal cut-off value of CA19-9 needs

further investigation.

Longitudinal monitoring of KRAS-mutated ctDNA is a great advantage of liquid biopsy. In

our study, multiple testing over time enabled the evaluation of association between the pres-

ence of KRAS-mutated ctDNA and prognosis of PDAC irrespective of tumor resection. A liter-

ature search for relevant studies using the search terms “circulating DNA” and “pancreatic

cancer” was conducted in PubMed, and 18 studies investigating KRAS-mutated ctDNA in

patients with PDAC were identified. In their review, Gall et al. [40] reported a similar number

of studies describing KRAS-mutated ctDNA in patients with PDAC. Thus far, studies on this

subject remain few. Furthermore, except for our study and those of Bernard et al. [41] and Sau-

sen et al. [42], few have addressed the importance of longitudinal monitoring for predicting

the outcome of PDAC. Bernard et al. reported the usefulness of patients’ exosome DNA in

addition to KRAS-mutated ctDNA in PDAC. Considering the advantages of monitoring, they

concluded that serial exosome DNA was significantly associated with eventual disease progres-

sion; in contrast, serial KRAS-mutated ctDNA was not significantly correlated with the pres-

ence or absence of progression. In our study, emergence of KRAS-mutated ctDNA was

considered a time-dependent covariate in longitudinal monitoring, and its effect with respect

to prognosis was shown for the first time. In addition, CA19-9 level was identified as a prog-

nostic factor in patients who underwent surgery in univariate analysis; nonetheless, CA19-9

was not regarded as a time-dependent covariate because most baseline CA19-9 values were

>37 U/mL.

We observed a change in KRAS status in blood of a patient who exhibited complete radio-

logical response to chemotherapy. KRAS-mutated ctDNA disappeared in response to drug

treatment. We evaluated therapeutic responses to chemotherapy by comparing patients in

whom KRAS-mutated ctDNA was detected to patients in whom KRAS-mutated ctDNA was

not detected or disappeared within 6 months of chemotherapy. The change in KRAS status in

blood enabled us to demonstrate that KRAS status was associated with PFS. These results are

congruent with those reported by Del Re et al. [25] and Kruger et al. [43] who showed that

early changes in KRAS-mutated ctDNA levels were useful for monitoring treatment responses
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in patients with PDAC. Moreover, longitudinal monitoring revealed the significance of KRAS
mutation assessment within 1 year after surgery, which was strongly associated with outcome

irrespective of recurrence. Patients in whom KRAS-mutated ctDNA was not detected within 1

year after surgery showed better prognosis and responded significantly better to chemotherapy

even after recurrence. These findings suggest the significance of sequential assessment of

KRAS-mutated ctDNA within a short period.

In conclusion, our study demonstrated for the first time that assessment of KRAS-mutated

ctDNA using longitudinal evaluation enables the prediction of prognosis and therapeutic

responses in patients with PDAC. Although our study results should be interpreted within the

study limitations and further examinations are required to draw a definitive conclusion, we

believe that our study casts greater light on the selection of patients with PDAC.

Supporting information

S1 Fig. Schematic of patient recruitment and our study endpoints.

(TIF)

S2 Fig. Representative tumor centers (TC) and invasion fronts (IF).

(TIF)

S3 Fig. Comparison of KRAS status in tumor tissues using RASKET and droplet digital

polymerase chain reaction (ddPCR). KRAS mutations by RASKET and ddPCR are indicated

in red, KRAS mutations with frequencies <1% by ddPCR are displayed in pink, and wild types

are presented in aqua. Blank indicates no detection of KRAS mutation. ND, not determined.

(TIF)

S4 Fig. Comparison of KRAS mutations within the primary tumor (intratumoral heteroge-

neity) and between the primary tumor and metastatic lesions. (A) Assessment of KRAS
mutations between tumor center and invasion front using droplet digital polymerase chain

reaction (ddPCR). KRAS mutations with frequencies�1% are indicated in red, whereas those

with frequencies <1% are displayed in pink. Blank indicates no detection of KRAS mutation.

ND, not determined. As for KRAS mutations with frequencies�1%, 36 tumors showed con-

cordance between the tumor center and invasion front, accounting for 94.7%. Two tumors

(no. 24 and no. 63) did not show concordance; the number of tumors corresponded to that

presented in S3 Fig (B) KRAS mutations with frequencies�1% are indicated in red, whereas

those with frequencies<1% are displayed in pink. Blank indicates no detection of KRAS muta-

tion. ND, not determined; LN, lymph node; Local, local recurrence in residual pancreas. As for

KRAS mutations with frequencies�1%, 10 tumors showed concordance between the primary

tumor and metastasis, accounting for 90.9%. One tumor (no. 27) did not show concordance;

the number of tumors corresponded to that presented in S3 Fig.

(TIF)

S5 Fig. Clinical course of representative patients in longitudinal assessments. (A) A patient

underwent subtotal stomach-preserving pancreaticoduodenectomy for pancreatic head cancer

and was treated with S1 as adjuvant chemotherapy. CT image is shown (a). KRAS-mutated

ctDNA increased in advance of CA19-9, and potential lymph node recurrence was subse-

quently detected using CT imaging. Following identification of recurrence by CT imaging (b,

white arrowhead), first-line treatment with nab-paclitaxel temporarily led to tumor shrinkage

(c) but eventually resulted in death. X-axes indicate the days from surgery, whereas Y-axes

indicate the CA19-9 value and mutated allele level. (B) A patient with pancreatic body cancer

and para-aortic lymph node metastasis (d, yellow arrow and arrowhead), the pathological
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diagnosis of which was established by fine-needle aspiration biopsy, was treated with FOLFIR-

INOX as first-line chemotherapy. KRAS-mutated ctDNA decreased and disappeared after che-

motherapy. However, 17 cycles of FOLFIRINOX led to peripheral neuropathy; thus, the

regimen was discontinued and FOLFIRI was used for this patient. Positron emission tomogra-

phy (PET) revealed an absence of accumulation in the pancreatic body and para-aortic lymph

node (e, yellow arrow and arrowhead), suggesting complete response. X-axes indicate the days

from surgery, whereas Y-axes indicate the CA19-9 value and mutated allele level. FOLFIRI-

NOX, folinic acid, fluorouracil, irinotecan, and oxaliplatin; FOLFIRI, folinic acid, fluorouracil,

and irinotecan.

(TIF)

S1 Table. A) Characteristics of patients who underwent surgery. B) Characteristics of patients

who did not undergo surgery.

(DOC)

S2 Table. Clinical information of patients who underwent surgery.

(DOC)

S3 Table. Clinical information of patients who did not undergo surgery.

(DOC)
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