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Autoimmune glomerulonephritis occurs as a consequence of autoantibodies and T-cell

effector functions that target autoantigens. Co-signaling through cell surface receptors

profoundly influences the optimal activation of T cells. The scope of this review is signaling

mechanisms and the functional roles of representative T-cell co-inhibitory receptors in the

regulation of autoimmune glomerulonephritis, along with current therapeutic challenges

mainly on preclinical trials. Co-inhibitory receptors utilize both shared and unique

signaling pathway, suggesting specialized functions that provide the rationale behind

therapies for autoimmune glomerulonephritis by targeting these inhibitory receptors.

These receptors largely suppress Th1 immunity, modify Th17 and Th2 immune response,

and enhance Treg function. Anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4)

immunoglobulin (Ig), which is able to block both activating CD28 and inhibitory CTLA4

signaling, has been shown in preclinical and clinical investigations to have effects on

glomerular disease. Other inhibitory receptors for treating glomerulonephritis have not

been clinically tested, and efficacy of manipulating these pathways requires further

preclinical investigation. While immune checkpoint inhibition using anti-CTLA4 antibodies

and anti-programmed cell death 1 (PD-1)/PD-L1 antibodies has been approved for

the treatment of several cancers, blockade of CTLA4 and PD-1/PD-L1 is associated

with adverse effects that resemble autoimmune disorders, including systemic vasculitis.

A renal autoimmune vasculitis model features an initial Th17 dominancy followed

later by a Th1-dominant outcome and Treg cells that attenuate autoreactive T-cell

function. Toward the development of effective therapies for T-cell-mediated autoimmune

glomerulonephritis, it would be preferable to pay attention to the impact of the inhibitory

pathways in immunological renal disease settings.
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INTRODUCTION

T cells are key effectors of the adaptive immune response, playing important roles in the elimination
of pathogens and in the development of autoimmune disease. Autoimmune glomerulonephritis
occurs as a consequence of autoantibodies and T-cell effector functions that target either antigens
intrinsic to the glomeruli [for example, as occurs in anti-glomerular basement membrane (GBM)
nephropathy] or non-specific antibodies that become trapped and accumulate in the glomeruli
[for example, as occurs in immunoglobulin (Ig) A nephropathy and anti-neutrophil cytoplasmic
autoantibody (ANCA)-associated glomerulonephritis] (1, 2). In this regard, peripheral regulation
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of T-cell responses is crucial to preventing inappropriate
responses to self-antigens leading to autoimmune
glomerulonephritis (1).

The optimal activation of T cells is profoundly influenced
by co-signaling through cell surface receptors (3). The common
feature that identifies receptors as members of the inhibitory
class is their ability to attenuate activation signals initiated by
other receptors that are often members of the immunoreceptor
tyrosine-based activation motif (ITAM) class (4). Loss of
inhibitory signaling is often associated with autoreactivity and
unchecked inflammatory responses, illustrating the essential
role that this system plays in immune regulation (4, 5).
Though the human genome is estimated to encode over
300 immunoreceptor tyrosine-based inhibitory motif (ITIM)-
containing molecules, of which only a minority has been
characterized (6), most reviews discussing the co-receptor
signaling pathway as a potential target in autoimmunity have
focused on blockade of co-stimulatory receptor signaling (7,
8). The scope of this review is signaling mechanisms and
the functional roles of some representative T-cell co-inhibitory
receptors in the regulation of autoimmune glomerulonephritis,
along with current therapeutic challenges.

CLASSICAL AND NON-CLASSICAL
INHIBITORY SIGNALING IN T-CELL
RECEPTOR PATHWAY

TCR Signaling Pathway and Co-signaling
The primary signal for conventional T cells is mediated
through T-cell receptor (TCR) engagement. TCRs recognize
small antigenic peptides presented in the groove of the self-
major histocompatibility complex (MHC) (9). As a result
of this recognition, TCR complexes aggregate on T-cell
surfaces to form stable contacts, resulting in the formation of
immunological synapses on antigen-presenting cells (APCs)
(9). This aggregation evokes intracellular signaling that
involves the activation of Src protein tyrosine kinase, leading
to the phosphorylation of CD3- and ζ chain-localized ITAM.
Subsequently, the ζ-associated protein of 70 kD (ZAP-70) is
recruited, resulting in a series of downstream phosphorylation
events (10) (Figure 1). Another kinase pathway in T cells
involves the activation of phosphatidylinositol-3 kinase
(PI3K), which phosphorylates a specific membrane-associated
inositol lipid. This enzyme is recruited to the TCR complex
and generates phosphatidylinositol triphosphate (PIP3) and
diacylglycerol (DAG) from membrane phosphatidylinositol
biphosphate (PIP2). PIP3 activates signaling enzymes such
as PLCγ (phospholipase Cγ) and PKCθ (protein kinase Cθ).
However, the primary signal itself does not decide the fate
of the immune response (11). Instead, co-stimulatory and
co-inhibitory receptors on T cells direct the function and
fate. These co-signaling receptors often co-localize with TCR
molecules, such that the co-signaling receptors synergize with
TCR signaling to promote or inhibit T-cell activation and
function (11, 12).

ITIM, ITSM, ITT, and Other Mechanisms
Intracellular protein–protein interaction during cell signaling
and activities of cellular enzymes are often regulated by
phosphorylation of tyrosine residues. For countering action
of phosphorylation by tyrosine kinase, protein tyrosine
phosphatases are enzymes that remove phosphate moieties
from tyrosine residues to limit and terminate cellular responses
that are no longer required (4, 13). One family of immune
inhibitory receptors is defined by the presence of a consensus
amino acid sequence, the ITIM motif, in the cytoplasmic
domain of the proteins (13). The six-amino acid ITIM motif
consists of the sequence (Ile/Val/Leu/Ser)-X-Tyr-X-X-(Leu/Val),
where X denotes any amino acid (4). Ligand binding induces
clustering of the inhibitory receptors and results in tyrosine
phosphorylation that provides a docking site for the recruitment
of cytoplasmic phosphatases that have Src-homology-2 (SH2)
domains, including SHP-1 (SH2 domain-containing protein
tyrosine phosphatase 1) and SHP-2. These phosphatases remove
phosphate from tyrosine residues in the activated receptor and
adaptors, such as SH2-binding leukocyte phosphoprotein of 76
kD (SLP-76), linker for activation of T cells (LAT), and CD3ζ
(14) (Figure 1).

CTLA4 carries an ITIM-like YVKM motif, which associates
with SHP-2 and reduces proximal TCR signaling through
dephosphorylation of targets such as the TCR–CD3ζ complex,
LAT, and ZAP-70 (15, 16), thereby inhibiting cell cycle
progression and cytokine production. PD-1 has an ITIM
motif as well as an immunoreceptor tyrosine-based switch
motif (ITSM) (17). Both motifs appear to be phosphorylated
following interaction with ligands, resulting in the recruitment
of SHP-2 and possibly SHP-1; the co-localization of PD-1
with TCR microclusters induces dephosphorylation of CD3ζ,
ZAP70, and PKC (17, 18). The TIGIT (T-cell immunoglobulin
and ITIM domain) protein contains an ITIM motif and an
immunoglobulin tail tyrosine (ITT)-like motif; phosphorylation
of the tyrosine residue in either of these motifs is sufficient
for signal transduction and inhibitory activity (19, 20). T-cell
immunoglobulin-3 (TIM-3) does not have a classical signaling
motif in its cytoplasmic tail (21). To simplify the descriptions
in the present review, I am avoiding mention of several other
remarkable signaling pathways that employ other phosphatases
and intracellular motifs of the CTLA4, PD-1, TIM-3, and TIGIT
co-inhibitory receptors; those topics have been covered in a
number of excellent detailed reviews (3, 4, 11, 22).

Collectively, co-inhibitory receptors regulate T-cell immunity
by using both shared and unique signaling pathways (3),
suggesting the specialized functions and providing the rationale
for therapies that treat autoimmune glomerulonephritis by
targeting these inhibitory receptors. The following subsection
addresses the expression on T cells, function in vivo, and potential
role for regulating autoimmune glomerular diseases of CTLA4,
PD-1, TIM-3, and TIGIT, summarized in Figure 2 and Table 1.

CTLA-4
Expression, Ligands, and General Function
CTLA4 is a potent negative regulator of T-cell response
and was identified as a member of the CD28 family (40).
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FIGURE 1 | Concise outline of the intracellular signaling events during T-cell activation and roles of co-inhibitory receptors. Binding of the TCR and co-receptors to

peptide–MHC (major histocompatibility complex) complexes on the antigen-presenting cells (APCs) initiates proximal signaling events, which result in phosphorylation

of the ζ chain, binding and activation of ZAP-70, phosphorylation of LAT and adaptor proteins, production of biochemical intermediates, and activation of distal

signaling cascades. MAPK, PKC, and calcineurin are enzymes that activate transcription factors, thereby stimulating the expression of various genes involved in T-cell

response. Most inhibitory receptors have an inhibitory motif, represented by ITIM, in their cytoplasmic tails. Ligand binding to these receptors results in the recruitment

of phosphatases (SHP-1, SHP-2, or SHIP1), which alter proximal and distal TCR signals. These consequently transmit activating signal (black solid line arrow) and

inhibitory signal (red broken line and arrow) in T cells. In the case of TIM-3, which does not have a classical signaling motif, Bat-3 (HLA-B associated transcript 3) binds

to the TIM-3 tail and blocks binding of another adaptor molecule under steady state. Ligand binding triggers the dissociation of Bat-3 from the cytoplasmic tail of

TIM-3, thus allowing another adaptor molecule to bind and promote the inhibitory function of TIM-3. CTLA4, cytotoxic T-lymphocyte-associated protein 4; PD-1,

programmed cell death 1; TIM-3, T-cell immunoglobulin 3; TIGIT, T-cell immunoglobulin and ITIM domain; LAT, linker for activation of T cells; TCR, T-cell receptor;

ZAP-70, ζ-associated protein of 70 kD; SLP-76, SH2-binding leukocyte phosphoprotein of 76 kD; ITIM, immunoreceptor tyrosine-based inhibitory motif; ITSM,

immunoreceptor tyrosine-based switch motif; ITT, immunoglobulin tail tyrosine; SHP-1,-2, Src-homology-2 domain-containing protein tyrosine phosphatase 1, 2;

SHIP1, SH2 domain-containing inositol-5-phosphatase 1; PIP2, phosphatidylinositol biphosphate; PI3K, phosphatidylinositol-3 kinase; DAG, diacylglycerol; IP3,

phosphatidylinositol triphosphate; GDP/GTP, guanosine diphosphate/triphosphate; MAPK, mitogen-activated protein kinase; PLC, phospholipase C; PKC, protein

kinase C; AP-1, activation protein 1; NF-κB, nuclear factor-κB; NFAT, nuclear factor of activated T cells.

Although CD28 is constitutively expressed on all naive CD4+

and CD8+ T cells and Treg cells, CTLA4 is transiently
expressed on the surface of activated T cells (41, 42). The
B7 family of proteins, B7-1 and B7-2, provides the major
co-stimulatory signal for augmenting and sustaining T-cell

responses through interaction with CD28 (42). B7-1 and B7-2
are shared ligands of CTLA4; the interaction of CTLA4 with
these ligands leads to co-inhibitory signaling (43). In other
words, the inhibitory mechanisms of CTLA4 include CD28 out-
competition and blockade of intracellular signaling pathways,
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FIGURE 2 | Co-inhibitory receptors on T cells and ligands, phosphatase, and modulation of T-cell function. Co-inhibitory receptors have a variety of physiological and

pathological ligands, and the binding is occasionally competed by other immune receptors on T cells. TIM-3 does not have a classical signaling motif in its cytoplasmic

tail. However, the cytoplasmic domain of TIM-3 contains tyrosine residues to be targets for phosphorylation and promoting TIM-3-mediated T-cell inhibition by allowing

binding of SH2 domain-containing Src kinases. Based on animal studies, CTLA4 and PD-1 are predicted to be associated with more susceptibility to autoimmune

disease, while neither TIM-3-deficient nor TIGIT-deficient mice present any spontaneous autoimmune disease phenotype. Co-inhibitory receptors on T cells commonly

suppress effector T-cell functions by down-modulating Th1 cells and Th17 cells and by enhancing Treg cells. In addition, TIM-3 and TIGIT shift the cytokine balance to

Th2 immunity. PS, phosphatidyl serine; HMGB1, high-mobility group protein B1; Ceacam-1, carcinoembryonic antigen-related cell adhesion molecule 1; PP2A,

protein phosphatase 2A; EAE, experimental autoimmune encephalomyelitis; CIA, collagen-induced arthritis. Other abbreviations are shown in Figure 1 caption.

as CTLA4 has a 10-fold higher affinity than CD28 for B7-1
binding (43).

CTLA4-Ig (“abatacept”) is a biological that binds to B7-1
and B7-2, blocking both activating CD28-mediated signaling and
inhibitory CTLA4-mediated signaling (44, 45) and effectively
inhibiting naive antigen-specific CD4+ T-cell responses (46, 47).
While the total CD4+ memory T-cell response was effectively
attenuated by administration of CTLA4-Ig (48, 49), examinations

of subsets of CD4+ helper T cells revealed that interleukin (IL)-
17-secreting CCR6+ memory Th17 cells were resistant to CD28
and CTLA4 blockade (50).

Involvement in Autoimmunity and Glomerular

Diseases and Therapeutic Model
CTLA4-deficient mice exhibit severe lymphoproliferative
disease, with infiltration of activated T cells into various organs
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TABLE 1 | Experimental treatment models targeting T-cell co-inhibitory signaling in autoimmune diseases.

Target

receptor

Treatment Animal model Effect References

CTLA-4 CTLA4-Ig fusion Spontaneous lupus Suppress autoantibody production and prolong survival (23)

Spontaneous lupus GN (NZB/W F1) When used in combination with cyclophosphamide, reduce

renal inflammation and injury

(24)

Spontaneous immune complex GN

(Lyn−/−)

Not effective (25)

Anti-GBM

(mouse/rat)

Controversial; depend on experimental conditions (26–29)

PD-1 PD-L1-Ig fusion Autoimmune GN Reduce number of glomerular T cells and severity of glomerular

damage

(30)

T-cell-induced colitis Suppress Th1 and Th17 response and ameliorate colitis (31)

CIA Suppress T-cell response and ameliorate arthritis (32, 33)

TIM-3 Galectin-9

(TIM-3 ligand)

Anti-GBM GN Suppress T-cell response and ameliorate GN (34)

CIA Suppress Th17 response and ameliorate arthritis (35)

EAE Suppress Th1 response and ameliorate encephalomyelitis (36)

TIGIT TIGIT-Ig Lupus GN Reduced proteinuria and autoantibody, improve survival (37)

TIGIT-Ig and TIGIT

tetramer

CIA Suppress Th1 and Th17 response and ameliorate arthritis (38)

Agonistic antibody EAE Suppress Th1 and Th17 response and ameliorate

encephalomyelitis

(39)

CTLA4, cytotoxic T-lymphocyte-associated protein 4; Ig, immunoglobulin; NZB/W, New Zealand black/white; GN, glomerulonephritis; GBM, glomerular basement membrane; PD-1,

programmed cell death 1; PD-L1, programmed cell death ligand 1; CIA, collagen-induced arthritis; TIM-3, T-cell immunoglobulin 3; EAE, experimental autoimmune encephalomyelitis;

TIGIT, T-cell immunoglobulin and ITIM domain.

and death within a few weeks of birth (51–53). Given the
promising results of CD28 and CTLA4 blockade in small animal
models (23), strategies to target this pathway were developed
in several clinical trials for the treatment of autoimmunity.
CTLA4-Ig has been used clinically for the effective treatment of
rheumatoid arthritis (RA) and juvenile idiopathic arthritis, as
reviewed in (54), and has been tested against allergen-induced
airway inflammation (55), ulcerative colitis (56), systemic lupus
erythematosus (SLE) (57, 58), and other autoimmune diseases,
as reviewed in (59). The results of those trials indicated that
abatacept did not alter the inflammatory response to allergen
challenge or show any efficacy in ameliorating colitis symptoms
(59). Collectively, abatacept might be efficacious in the treatment
of Th1-mediated autoimmune disease, such as RA, but remain
less effective in the treatment of Th2- or Th17-mediated
autoimmune disease such as asthma and inflammatory bowel
disease (7). However, several studies have indicated that CTLA4-
Ig protein attenuates glomerular injury in experimental models
of crescentic glomerulonephritis (26–29). As a result, abatacept
has been tested clinically in patients with granulomatosis with
polyangiitis; the drug was well-tolerated in this population,
providing a high frequency of disease remission and steroid
discontinuation (60). A further clinical trial of abatacept in
ANCA-associated vasculitis (AAV) has been progressed (https://
clinicaltrials.gov/).

PD-1
Expression, Ligands, and General Function
PD-1 originally was identified as an inducible surface receptor
during programed cell death (61) and was shown to be expressed
on stimulated T, B, and myeloid cells (62). PD-L1 and PD-L2 are

two independent ligands for PD-1. PD-L2 expression is largely
confined to dendritic cells (DCs) and monocytes/macrophages,
but PD-L1 is more widely distributed on leukocytes and non-
hematopoietic cells (63, 64). Expression of PD-L in peripheral
tissue may regulate the behavior of infiltrating leukocytes (65).
The PD-1/PD-L1 pathway exerts important inhibitory function
in primary T-cell proliferation, cytokine production, cytotoxic
activity, and cell survival (66, 67). This pathway also promotes
development and function of Treg cells (68) and negatively
regulates effector T-cell reactivation and function (69).

Involvement in Autoimmunity and Glomerular

Diseases and Therapeutic Model
PD-1-deficient mice develop autoantibody-induced disease in
a strain-dependent fashion; this autoimmune disease includes
lupus-like glomerulonephritis leading to late death (70–72),
although the phenotype in these mice is much milder than
that of CTLA4-deficient mice. Consistent with human evidence
of polymorphisms associated with SLE, T1D (Type 1 diabetes
mellitus), and RA, experimental animal models of T1D-prone
mice (73) and collagen-induced arthritis (CIA) (32) indicate that
PD-1 activation attenuates autoimmune disease.

In the kidney, renal DCs have been shown to express PD-L1
and can be involved in suppressing CD4+ T-cell proliferation
(74). Studies in experimental autoimmune glomerulonephritis
have shown that blockade of PD-1/PD-1L interaction aggravates
glomerular injury and cellular infiltration (64) and that activation
of PD-1 using a PD-L1 fusion protein leads to a reduction in
disease severity (30). Moreover, recent work with PD-L1−/−

mice showed that dosing with PD-L1 provided protection
in a crescentic glomerulonephritis model via Treg-mediated
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suppression of the Th1 immune response (75). However, studies
on immune-complex-mediated glomerulonephritis (induced by
immunization with a foreign antigen) showed that blockade of
the PD-1/PD-L axis (by antibody administration) did not reveal
any significant pathological changes (76). This result suggests
the need for careful interpretation of the roles of PD-1/PD-L in
experimental autoimmune glomerulonephritis. Indeed, clinical
trials testing the treatment of glomerulonephritis with PD-1 have
not been reported. Thus, the clinical efficacy of modifying this
pathway still requires further preclinical investigation.

TIM-3
Expression, Ligands, and General Function
TIM-3 was identified as molecule expressed specifically in
interferon (IFN)-γ-producing Th1 and CD8+ cytotoxic T cells,
but not in naive T cells (77). Galectin-9 is a soluble S-type lectin
that is widely expressed on immune and non-immune cells and
has been shown to bind to the IgV domain of TIM-3, resulting
in negative regulation of Th1 immunity (36). In addition to
galectin-9, phosphatidyl serine, high-mobility group protein B1
(HMGB1), and carcinoembryonic antigen-related cell adhesion
molecule 1 (Ceacam-1) have been identified as TIM-3 ligands
(78–80). It remains to be determined whether the triggering of
TIM-3 by individual ligands or by combinations thereof has
distinct impacts on TIM-3 function.

Involvement in Autoimmunity and Glomerular

Diseases and Therapeutic Model
TIM-3 can be protective in autoimmunity but often is sparsely
expressed; in contrast, the protein is highly expressed in
cancer and chronic viral infection, resulting in the dampening
of protective immunity (22). Even so, multiple reports have
shown that TIM-3 blockade results in abrogation of peripheral
tolerance of Th1-cell-mediated responses. Anti-TIM-3 blocking
murine model develops hyper-acute experimental autoimmune
encephalomyelitis (EAE) (77); treatment with soluble TIM-3-Ig
results in T-cell hyper-activation and IFN-γ production (81). In
addition to its role in regulating effector T-cell responses, TIM-
3 also may have a role in regulating the function of Foxp3+ Treg
cells (82). Several studies have shown that TIM-3+ Treg cells have
superior suppressive function when compared to TIM-3− Treg
cells (82, 83).

Galectin-9 is a rare example of agonistic treatment based
on a natural ligand. Administration of galectin-9 as a soluble
protein in mouse ameliorates EAE and CIA (35, 36). The
indiscriminate nature of galectin avidity, such that the molecule
binds to sugars on multiple different glycoproteins, makes
it difficult to definitively attribute these effects to TIM-3
signaling rather than to the manipulation of another galectin-9
binding partner (84). Nevertheless, administration of galectin-
9 ameliorates experimental anti-GBM glomerulonephritis; this
protective role is associated with inhibition of Th1 and Th17-cell-
mediated immune responses and enhanced Th2 immunity in the
kidney (34).

Human studies suggest that renal TIM-3 and galectin-9
expression levels are higher in immune-complex-mediated
glomerulonephritis, such as IgA nephropathy (85) and

lupus nephritis (86) compared to the control group. Some
investigations have examined the expression of TIM-3 on
peripheral blood cells and in the serum of patients with
glomerular diseases (87, 88), but there is little evidence of a role
for TIM-3 in other types of autoimmune glomerulonephritis.
Clinical trials evaluating the treatment of autoimmune
glomerulonephritis using an agent targeting TIM-3 have
not been reported. Although the targeting of TIM-3
signaling holds potential for the treatment of T-cell-mediated
glomerulonephritis, further preclinical investigation will be
required to elucidate effects both on different immune cells and
on ligand binding partners other than galectin-9.

TIGIT
Expression, Ligands, and General Function
TIGIT was discovered as a novel member of the CD28 protein
family (89, 90). TIGIT is expressed on activated T cells, memory
T cells, a subset of Treg cells, and follicular helper T (Tfh) cells,
and binds to two ligands, CD155 and CD112, that are expressed
on APCs (19, 89, 90). CD226 and CD96 bind to the same ligands,
and the CD226–CD155 interaction mediates a co-stimulatory
response in cytotoxic T cells (89). TIGIT competes with CD226
by binding with greater affinity to CD155–CD112 to disrupt that
co-stimulatory effect, thereby resulting in a dominant inhibitory
effect (22). In this regard, the pathway formed by CD226, TIGIT,
and their ligands resembles the B7-CD28/CTLA4 pathway: in
both cases, a pair of receptors—one positive, one negative–share
ligands expressed on APCs (22).

Involvement in Autoimmunity and Glomerular

Diseases and Therapeutic Model
In human, genomic analyses showed that a polymorphism
in CD226 (Gly307Ser) is linked to multiple autoimmune
diseases, including T1D, multiple sclerosis, and RA (91, 92).
Although TIGIT-deficient mice do not develop spontaneous
autoimmunity, these animals display augmented T-cell responses
upon immunization (93). The function of TIGIT was examined
in EAE and CIA models, with results suggesting that TIGIT
is protective for the pro-inflammatory Th1 and Th17 cellular
response and contributes to peripheral tolerance (38, 93). In
addition to its direct inhibitory role in effector T cells, TIGIT also
inhibits immune responses by promoting Treg function and IL-
10 production (22). Curiously, several lines of evidence indicates
that TIGIT signaling can shift the cytokine balance away from
a Th1- and Th17-cell-dominated response and toward a Th2-
cell-like response, concurrently with TIGIT-binding-mediated
CD155 signaling on APCs (89, 94).

Given the similarity between the B7-CD28/CTLA4 and
CD155/CD112-TIGIT/CD226 signaling pathways with regard
to their co-signaling frameworks, TIGIT-Ig theoretically should
block both activating CD226 signaling and inhibitory TIGIT
signaling in a manner similar to that of CTLA-4-Ig. In addition,
TIGIT-Ig induces CD155 signaling in cultured DCs in vitro
and decreases IL-10 production by Th1 cells in vivo (89).
The specific difference between these two pathways is that B7
is expressed primarily in professional APCs, while CD155 is
expressed by a variety of non-professional APCs such as the
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vascular endothelium, fibroblasts, and tumor cells (95). When
autoimmune disease occurs, the tissue that is infiltrated by T cells
contains mainly non-professional APCs, and the CD155/CD112-
TIGIT/CD226 pathway might be involved in tissue damage. Still,
in both human and animal models, few studies have examined
the role of TIGIT signaling in renal-specific disease. Although
the treatment of a murine lupus model (NZB/NZW F1 mice)
using TIGIT-Ig significantly improved survival, inflammatory
responses, and glomerular damage (37), preclinical studies on
other glomerular diseases will be needed to permit clinical use
of TIGIT-Ig.

THE DEVELOPMENT OF AUTOIMMUNE
GLOMERULONEPHRITIS CAUSED BY
IMMUNE CHECKPOINT INHIBITORS

In the past decade, cancer therapy has been revolutionized
by the development of drugs that promote immune-mediated
tumor destruction (96). CTLA-4 and PD-1/PD-L1 are the two
best-studied co-inhibitory pathways (97); the use of antibodies
as immune checkpoint inhibitors, anti-CTLA4 antibodies, and
anti-PD-1/PD-L1 antibodies has been approved for the treatment
of several cancers (98–100). While these immunotherapies have
shown striking success, blockade of CTLA-4 and PD-1/PD-L1
are associated with adverse effects that resemble autoimmune
disorders, including SLE, RA, thyroiditis, and T1D (59, 101).
Additionally, renal vasculitis, immune-complex-mediated
glomerulonephritis, and pauci-immune glomerulonephritis
recently have been reported (102–108). Most systemic vasculitis
cases resolved with either holding the immune checkpoint
inhibitors and/or administering glucocorticoids (109). These
evidences imply relationship between interventional blocking co-
inhibitory receptor signaling and development of renal vasculitis,
suggesting that this pathway may be a therapeutic target.

RATIONALE FOR TARGETING TH1/17
EFFECTOR AND REGULATORY T CELLS IN
AUTOIMMUNE VASCULITIS

As mentioned before, blockade of inhibitory receptors
occasionally has resulted in renal vasculitis as well as lupus-like
autoimmunity. While autoantibodies play a role in a number
of forms of glomerulonephritis, renal vasculitis in humans
features the infiltration of T cells and macrophages (110, 111),
suggesting a delayed hypersensitivity reaction in kidney. Given
that autoreactive CD4+ and CD8+ cells are present in vasculitis
patients (112–115), experimental passive transfer studies have
defined a role for CD4+ and CD8+ cells in AAV (116, 117).
CD4+ effector T cells, particularly upon differentiation to Th17
cells, mediate production of neutrophil chemoattractants by
tissue cells via release of IL-17A and renal injury (118, 119).
Studies using mice deficient in Th1- and Th17-defining
cytokines have shown an initial Th17-dominant lesion followed
later by a Th1-dominant outcome (120). Moreover, as human
studies implicate abnormal CD4+ Foxp3+ Treg number and

function in AAV patients (121–124), depletion of Treg cells
led to more anti-neutrophil cytoplasmic protein-specific T
cells and more severe glomerulonephritis (125). Approaches
for targeting inhibitory receptors might (in theory) include
inhibitory receptor-Ig fusion proteins, ligand-Ig fusion proteins,
artificial ligands, and agonistic antibodies, as well as the use
of bi-specific antibodies to co-ligate inhibitory and activating
receptors (59). Among these approaches, as shown in Table 1,
TIGIT-Ig protein, agonistic anti-TIGIT antibodies, and TIM-3
ligands (e.g., galectin-9), along with PD-L1-Ig and CTLA4-Ig
proteins, should be considered candidates for development as
bench-to-bedside therapeutics for treatment of T-cell-mediated
autoimmune glomerulonephritis through regulation of the
function of Th1/Th17 and Treg cells.

CONCLUSION

The studies in knockout mice and clinical experiences of
vasculitis caused by immune checkpoint inhibitors treatment
give numerous indications that the loss of a functional co-
inhibitory receptor leads to sensitivity for autoimmune disease.
Clinical utilization of co-inhibitory axes has not progressed in
autoimmune disease as it has in cancer. Except for CTLA4-Ig, no
clinical trial on co-inhibitory targeted therapy for autoimmune
vasculitis and lupus nephritis has been progressed until the
middle of 2020. Nevertheless, some recent studies have shown
preclinical evidence for the utility of targeting co-inhibitory
receptors in lupus and glomerulonephritis. As effector T cells
and Treg function have a pivotal role in the development of
autoimmune vasculitis, currently available CTLA4-Ig has been
tested to evaluate the efficacy of achieving glucocorticoid-free
remission in patients with relapsing vasculitis. Clinical efficacy
of therapy targeting at PD-1, TIM-3, and TIGIT is expected
to be not always consistent because their ligands are different
from each other and each co-inhibitory receptor utilizes unique
cell signaling as well as shared pathway. Therefore, clinical
trials on modulating co-inhibitory signaling by Ig-fusion protein,
agonistic antibody, and natural ligands should be carefully
designed after sufficient preclinical investigations with clinically
relevant animal models show that effector T cells are precisely
involved in antigen-specific disease development. Toward
the development of effective therapies for T-cell-mediated
autoimmune glomerulonephritis, it would be preferable to pay
attention to the impact and features of these inhibitory pathways
in immunological renal disease settings.
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