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Abstract

Background: Machine learning methods and conventions are increasingly employed
for the analysis of large, complex biomedical data sets, including genome-wide
association studies (GWAS). Reproducibility of machine learning analyses of GWAS can
be hampered by biological and statistical factors, particularly so for the investigation of
non-additive genetic interactions. Application of traditional cross validation to a GWAS
data set may result in poor consistency between the training and testing data set splits
due to an imbalance of the interaction genotypes relative to the data as a whole. We
propose a new cross validation method, proportional instance cross validation (PICV),
that preserves the original distribution of an independent variable when splitting the
data set into training and testing partitions.

Results: We apply PICV to simulated GWAS data with epistatic interactions of varying
minor allele frequencies and prevalences and compare performance to that of a
traditional cross validation procedure in which individuals are randomly allocated to
training and testing partitions. Sensitivity and positive predictive value are significantly
improved across all tested scenarios for PICV compared to traditional cross validation.
We also apply PICV to GWAS data from a study of primary open-angle glaucoma to
investigate a previously-reported interaction, which fails to significantly replicate; PICV
however improves the consistency of testing and training results.

Conclusions: Application of traditional machine learning procedures to biomedical data
may require modifications to better suit intrinsic characteristics of the data, such as the
potential for highly imbalanced genotype distributions in the case of epistasis detection.
The reproducibility of genetic interaction findings can be improved by considering this
variable imbalance in cross validation implementation, such as with PICV. This approach
may be extended to problems in other domains in which imbalanced variable
distributions are a concern.
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Background
Genome-wide association studies (GWAS) have been frequently critiqued for failing to

explain the “missing heritability” of complex disease in terms of single-locus main

effects [1, 2]. In addition to interrogating the contributions of rare variants, non-coding

regions, structural variation, etc., a logical reactionary paradigm to embrace involves

revisiting heritability estimates to consider the effect of interactions and developing ap-

proaches that acknowledge that loci do not exist in isolation but rather act in complex

networks of interacting partners in the dynamic, three-dimensional genome and in

tissue-specific and environmental context [3–6]. Utilizing pre-existing GWAS data to

test a curated set of potentially biologically-relevant interactions, such as those identi-

fied as being plausible via expert knowledge, integrating data from gene set enrichment

analyses, chromatin capture experiments, co-expression data sets, etc. provides a way

to overcome the multiple testing burden of naively testing every possible interaction

and motivates future bench science experimentation [7, 8]. Accordingly, machine learn-

ing methods are appealing for the analysis of this big, complex data, and have been ap-

plied to diverse problems and data types across the biological sciences [9, 10]. However,

machine learning should not be viewed as a panacea that can be readily applied to all

genomics problems. Beyond concerns regarding model choice and interpretability,

there are numerous reasons why valid biological interactions may fail to appear statisti-

cally significant and vice versa [11–13]. Therefore, typical machine learning tools, tech-

niques, and standards from other fields may need tweaking to be appropriate for use in

genomics considering the unique biases in generating genomic data sets, the structure

of the genome, the validity of model assumptions, etc.

Improving the reproducibility of machine learning analyses of genomic data will re-

quire methodological and analytic advances from not only both the computational and

wet laboratory sides, but also their consideration in conjunction with each other as a

greater whole. Sharing data publicly for secondary analyses, writing open-source code

in executable notebook format, and using container and cloud services all contribute to

a culture of reproducibility that enhances the capacity for integrative and innovative

computational analyses [14–17]. Likewise, thoughtfully interrogating methodological,

environmental, and other determinants of inconsistencies in bench experimentation re-

sults lends robustness to findings, and this greater understanding of sources of vari-

ation can in itself lead to worthwhile new hypotheses [18]. Ideally, technological

supports such as mobile applications for data collection will increasingly allow for re-

cording more complete and consistent data in a format that can be seamlessly analyzed

with software tools developed or modified to consider the unique intricacies of the data

at hand [19].

Epistasis, or the non-additive interaction between genotypes to produce phenotype, is

difficult to detect statistically but is of biological interest in light of a multifactorial view

of disease [20–22]. This study is motivated by poor cross-validation performance ob-

served for epistasis data sets with an interaction between two single nucleotide poly-

morphisms (SNPs). A given SNP may be represented as a categorical variable with

possible values of 0, 1, or 2 corresponding to doses of the minor allele, and by exten-

sion the interaction of two SNPs may be represented in terms of 9 categories reflecting

the identities of SNP1 and SNP2. Internal cross validation is a widely-used standard for

evaluating the performance of a machine learning analysis in which the data is split into
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two mutually exclusive partitions, a model is fit using the ‘training’ set, and its perform-

ance is evaluated on predicting the classes of the held out set of observations (the ‘test-

ing’ or ‘validation’ set; not to be confused with an external independent replication data

set which may also be referred to as ‘testing’ or ‘validation’) [23]. Typically the overall

data set is split such that the resultant training and testing partitions are random, inde-

pendent draws from the same probability distribution, although there are also methods

that consider the data structure, generally in terms of maintaining outcome class pro-

portions between the training and testing data sets [24–26]. In this study, we propose a

new cross validation method, proportional instance cross validation (PICV), that pre-

serves the relative distribution of an independent variable (in our example application,

SNP-SNP interaction genotypes) when dividing the overall data set into train and test

partitions. We demonstrate significantly improved sensitivity and positive predictive

value across all tested scenarios with application of PICV relative to a traditional cross

validation implementation. We additionally apply PICV to primary open-angle glau-

coma GWAS data to investigate an interaction previously reported to be significant in

two independent data sets. Although this interaction is not observed to be significant

in our analysis, PICV produced more consistent estimates than a traditional cross valid-

ation implementation. This approach is not only appropriate for epistasis data but may

be readily applied to comparable imbalanced variable problems.

Methods
Data set generation

All data sets were generated using GAMETES, a tool that produces epistatic models

between SNPs and creates data sets based off these models [27]. Penetrance functions

were generated for SNP-SNP interaction scenarios for all 15 combinations of minor

allele frequencies (MAFs) of {0.5, 0.4, 0.3, 0.2, and 0.1}, with SNP heritability kept

constant at 0.005 and population prevalences of 0.5, 0.1, and 0.02 (Table 1,

Additional file 1: Tables S1 and S2). Although a prevalence of 0.5 may seem high for a

given disease, numerous risk factors for chronic and complex diseases in the United

States population that may be phenotypes of interest are as or more prevalent, includ-

ing being overweight or obese, lack of physical activity, excessive sodium consumption,

lack of fruit and vegetable consumption, etc. [28]. The simulated data with prevalence

of 0.1 is intended to reflect the US prevalence of common complex diseases such as

diabetes or cardiovascular disease [29]. The simulated data sets of 0.02 prevalence ap-

proximately reflect the US prevalence of primary open-angle glaucoma, which is inves-

tigated in the real data application [30]. Balanced case-control ratio data sets of size

2000 and 10,000 were generated for the 0.5 prevalence scenario and of size 10,000 for

the 0.1 and 0.02 prevalence scenarios.

Minor allele frequencies and penetrance tables used to generate balanced case-

control ratio data sets of size 2000 and 10,000. Heritability = 0.005 and prevalence = 0.5

constant across all simulations.

Implementation and evaluation of traditional cross validation

For each of the 15 scenarios for each investigated prevalence and sample size combin-

ation, we perform 1000 replicates of a standard cross validation procedure in which
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two-thirds of observations are randomly allocated to be used for training and the

remaining third is used for testing. The training data is then used to fit the following

logistic regression models with and without the SNP-SNP interaction:

P caseð Þ ¼ 1

1þ e− β0þβ1SNP1þβ2SNP2ð Þ ð1Þ

P caseð Þ ¼ 1

1þ e− β0þβ1SNP1þβ2SNP2þβ3SNP1�SNP2ð Þ ð2Þ

Where P(case) is a binary indicator of case-control status, SNP1 and SNP2 are

categorical variables in which 0 corresponds to the homozygous dominant genotype, 1

to the heterozygous, and 2 to the homozygous recessive, and SNP1*SNP2 corresponds

to the Cartesian product of the two {00, 01, 02, 10, 11, 12, 20, 21, 22}.

Table 1 Data set simulation parameters, prevalence = 0.5

Scenario 1 Scenario 2 Scenario 3

SNP1 MAF: 0.1 0.2 0.2

SNP2 MAF: 0.1 0.1 0.2

Penetrance: 0.493 0.531 0.522 0.507 0.480 0.556 0.514 0.481 0.425

0.526 0.387 0.410 0.471 0.590 0.249 0.467 0.544 0.674

0.611 0.008 0.358 0.485 0.532 0.482 0.539 0.447 0.304

Scenario 4 Scenario 5 Scenario 6

SNP1 MAF: 0.3 0.3 0.3

SNP2 MAF: 0.1 0.2 0.3

Penetrance: 0.513 0.494 0.456 0.488 0.525 0.450 0.481 0.533 0.446

0.438 0.530 0.696 0.527 0.455 0.562 0.525 0.468 0.513

0.520 0.475 0.506 0.478 0.458 0.814 0.483 0.470 0.734

Scenario 7 Scenario 8 Scenario 9

SNP1 MAF: 0.4 0.4 0.4

SNP2 MAF: 0.1 0.2 0.3

Penetrance: 0.484 0.501 0.535 0.490 0.523 0.455 0.502 0.523 0.425

0.570 0.494 0.359 0.512 0.468 0.568 0.499 0.472 0.588

0.545 0.551 0.245 0.565 0.395 0.668 0.495 0.503 0.501

Scenario 10 Scenario 11 Scenario 12

SNP1 MAF: 0.4 0.5 0.5

SNP2 MAF: 0.4 0.1 0.2

Penetrance: 0.476 0.535 0.449 0.306 0.333 0.341 0.476 0.521 0.482

0.506 0.473 0.568 0.428 0.314 0.256 0.521 0.472 0.536

0.536 0.503 0.410 0.322 0.198 0.595 0.715 0.392 0.502

Scenario 13 Scenario 14 Scenario 15

SNP1 MAF: 0.5 0.5 0.5

SNP2 MAF: 0.3 0.4 0.5

Penetrance: 0.500 0.520 0.459 0.422 0.515 0.547 0.440 0.560 0.440

0.477 0.480 0.563 0.548 0.491 0.470 0.522 0.484 0.509

0.608 0.482 0.429 0.531 0.492 0.485 0.515 0.472 0.542
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These models fit to the training data are then used to predict case-control status for

the held-out testing data, using a cutoff of 0.5 for case versus control prediction assign-

ment from the fitted values. These predictions are then used to calculate the sensitivity,

specificity, positive predictive value, and negative predictive value for the testing data.

Implementation and evaluation of proportional instance cross validation (PICV)

For the proportional instance cross validation procedure, rather than randomly allocat-

ing each observation to be included in the training or testing set, observations are allo-

cated in a genotype-specific fashion (Fig. 1). Two-thirds of the observations of each

SNP-SNP genotype are randomly allocated to be used for training and the remaining

third is used for testing. Therefore the same total proportion of individuals used for

training versus testing is maintained as in the traditional cross validation procedure,

and additionally, the relative proportions of each genotype are preserved between the

overall data set and the training and testing partitions. Model fitting with the training

data, testing data predictions, and performance measure calculations are conducted as

for the traditional cross validation.

Comparison of traditional cross validation and proportional instance cross validation (PICV)

For both traditional cross validation and PICV, we calculate the absolute value of the

difference between training and testing for each of four performance measures

(sensitivity, specificity, positive predictive value, and negative predictive value) over

1000 trials for each of the 15 scenarios. We calculate p-values for the two-sample

Kolmogorov-Smirnov test with the null hypothesis that there is no difference between

the traditional cross validation implementation and PICV distributions of the difference

between training and testing for each performance measure, with the one-sided

alternative that the PICV distribution is smaller, with a significance threshold of

α = 0.05.

Fig. 1 Comparing traditional cross validation and proportional instance cross validation (PICV). a The overall
distribution of 9 SNP-SNP interaction genotypes (the 9 categories that result from the interaction of two
SNPs in a hypothetical population of individuals. Note: only one possible allocation is depicted. b Traditional
cross validation in which 2/3 of observations are randomly allocated to the training set and the remaining
1/3 are allocated to the testing set can result in draws with imbalanced genotype proportions. c PICV
randomly allocates 2/3 of observations of each genotype to the training set and the remaining 1/3 to the
testing set, ensuring that the relative proportions of genotypes are maintained
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Results
Implementing PICV for our simulated epistasis examples (that is, performing cross

validation data set splitting such that observations are allocated to maintain the same

relative proportions of each SNP-SNP genotype in the training and testing sets as in

the data set overall) significantly improved the consistency between training and testing

sensitivities and positive predictive values. Consistency between the training and testing

data set performance measures is of interest as the PICV method addresses the dis-

cordance between training and testing partitions that can occur in traditional cross val-

idation. Fig. 2 illustrates comparisons of training/testing consistencies for PICV versus

a traditional cross validation procedure in which observations are allocated to the train-

ing and testing sets without regard to genotype (see Additional file 1: Figures S1-S60

for all minor allele frequency, prevalence, and cohort size combinations). P-values listed

are for the two-sample Kolmogorov-Smirnov test of the distributions of the absolute

values of the differences between the training and testing performance measure (e.g.

sensitivity) over 1000 trials per scenario for these two cross validation approaches, with

a one-sided alternative hypothesis that the split-by-genotype distribution is smaller.

Table 2 summarizes these performance measures across all 15 SNP-SNP genotype

MAF combination scenarios for the 0.5 prevalence simulations of size 2000 (see

Additional file 1: Table S3 for prevalence = 0.5 and n = 10,000, Additional file 1: Table

S4 for prevalence = 0.1, Additional file 1: Table S5 for prevalence = 0.02). Sensitivity and

positive predictive value were significantly more consistent between test and train for

PICV than for traditional cross validation across all 15 scenarios tested for both

Fig. 2 Consistency of training and testing performance measures for models with and without the
interaction term, comparing a traditional cross validation procedure to PICV. Experimental scenario in
which both SNPs have a MAF of 0.5, n = 2000. PPV: positive predictive value, NPV: negative predictive
value, N.S.: not significant
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n = 2000 and n = 10,000. Although the specificity and negative predictive value

comparisons mostly did not meet statistical significance, smaller medians and max-

imum values for the differences in these performance measures between training

and testing were observed for the PICV approach for the majority of scenarios

(Table 3). These results demonstrate that PICV is comparable to traditional cross

validation in terms of specificity and negative predictive value while providing

advantages in sensitivity and positive predictive value.

Primary open-angle glaucoma interaction analysis

Prior interaction analyses of primary open-angle glaucoma identified several pairs of

replicating interactions using the eMERGE and NEIGHBOR data [31]. We attempted

to replicate the most significant interaction (between ALX4 and RBFOX1) in the

Table 2 Summary of performance measures across minor allele frequency combinations, n = 2000

Measure, Model
Scenario

Sensitivity,
without
interaction

Sensitivity,
with
interaction

Specificity,
without
interaction

Specificity,
with
interaction

PPV,
without
interaction

PPV, with
interaction

NPV,
without
interaction

NPV,
with
interaction

SNP1 MAF: 0.1 3.06e-17 9.89e-08 N.S. N.S. 1.90e-18 7.67e-08 N.S. N.S.

SNP2 MAF: 0.1

SNP1 MAF: 0.2 7.04e-20 4.54e-05 3.88e-02 N.S. 3.68e-11 5.56e-06 4.35e-02 1.89e-02

SNP2 MAF: 0.1

SNP1 MAF: 0.2 1.69e-10 1.69e-10 N.S. 6.87e-03 4.06e-09 4.06e-09 N.S. N.S.

SNP2 MAF: 0.2

SNP1 MAF: 0.3 1.59e-08 2.47e-05 4.35e-02 N.S. 9.27e-09 2.47e-05 3.46e-02 N.S.

SNP2 MAF: 0.1

SNP1 MAF: 0.3 6.14e-04 5.02e-11 N.S. N.S. 3.07e-16 1.22e-14 N.S. N.S.

SNP2 MAF: 0.2

SNP1 MAF: 0.3 5.16e-04 4.33e-04 N.S. N.S. 1.75e-04 1.75e-04 N.S. N.S.

SNP2 MAF: 0.3

SNP1 MAF: 0.4 9.94e-05 7.67e-08 N.S. N.S. 3.52e-08 5.53e-10 N.S. N.S.

SNP2 MAF: 0.1

SNP1 MAF: 0.4 6.65e-17 1.45e-04 N.S. N.S. 5.36e-09 2.42e-02 N.S. N.S.

SNP2 MAF: 0.2

SNP1 MAF: 0.4 2.71e-08 4.54e-05 N.S. N.S. 8.97e-07 4.46e-06 N.S. N.S.

SNP2 MAF: 0.3

SNP1 MAF: 0.4 1.63e-05 1.41e-03 N.S. N.S. 2.66e-03 8.62e-04 N.S. N.S.

SNP2 MAF: 0.4

SNP1 MAF: 0.5 8.97e-07 7.06e-09 N.S. N.S. 2.27e-06 1.27e-07 4.85e-03 N.S.

SNP2 MAF: 0.1

SNP1 MAF: 0.5 9.42e-18 6.75e-05 1.28e-02 N.S. 4.00e-12 8.60e-06 N.S. N.S.

SNP2 MAF: 0.2

SNP1 MAF: 0.5 4.38e-07 2.47e-05 N.S. N.S. 7.67e-08 4.12e-10 N.S. 1.46e-02

SNP2 MAF: 0.3

SNP1 MAF: 0.5 2.69e-07 5.54e-05 N.S. N.S. 7.06e-09 8.62e-04 N.S. N.S.

SNP2 MAF: 0.4

SNP1 MAF: 0.5 1.27e-07 6.92e-06 N.S. 1.54e-02 2.89e-12 9.27e-09 N.S. N.S.

SNP2 MAF: 0.5
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GLAUGEN data set (dbGaP Study Accession: phs000308.v1.p1, available at https://

www.ncbi.nlm.nih.gov/gap), which is harmonized with NEIGHBOR. The GLAUGEN

model is adjusted for age, sex, site, and the first 6 principal components to reflect the

eMERGE and NEIGHBOR models (the eMERGE and NEIGHBOR models additionally

adjusted for platform, but all GLAUGEN samples were assessed on the same platform).

Our analysis did not find a significant interaction between the two variants (Table 4).

However, application of PICV to this data did yield training and testing p-values (0.376

and 0.323, respectively) more consistent with the overall LRT p-value (0.327) than a

traditional cross validation procedure (0.442 and 0.470, respectively).

Discussion
Implementing a cross validation splitting procedure that maintains the relative propor-

tions of each SNP-SNP genotype when dividing the overall data set significantly im-

proved the sensitivity and positive predictive value consistencies between the training

and testing partitions in each of the experimental scenarios tested. Although specificity

and negative predictive value improvement did not meet statistical significance in most

cases, application of the PICV approach did yield smaller median and maximum abso-

lute differences between training and testing in the majority of scenarios. The inter-

action analysis did not replicate the prior finding between ALX4 and RBFOX1,

however PICV still produced more consistent estimates than a traditional cross valid-

ation procedure for this data. Verma et al. note that RBFOX1 has been previously

shown to be associated with myopia, and that eMERGE primary open-angle glaucoma

cases had not been screened for myopia; GLAUGEN excluded individuals with more

than 8 diopters of myopia. This inconsistent finding highlights the importance of

considering epidemiological confounders and co-morbidities of complex phenotypes in

genetic analyses.

Class imbalance is a well-recognized issue in machine learning analyses, particularly

for the analysis of high-dimensional data sets as in genomics and other biomedical

applications [32]. If the main objective of a machine learning analysis is maximizing

accuracy, and the minority class is very small, simply predicting the majority class for

Table 3 Number of scenarios for which PICV yielded smaller median, maximum differences
between training and testing

Measure, Model PICV median less than traditional CV
median (out of 15)

PICV maximum less than traditional CV
maximum (out of 15)

Prevalence Prevalence

0.02 0.1 0.5 0.02 0.1 0.5

Specificity, without interaction 15 15 12 15 15 15

Specificity, with interaction 15 15 15 15 15 15

NPV, without interaction 14 9 9 11 8 8

NPV, with interaction 8 9 10 8 9 9

Table 4 Interaction analysis summary

Data set ALX4 variant RBFOX1 variant LRT p-value

eMERGE rs10838251 rs653127 7.29E-06

NEIGHBOR rs7126447 rs11077011 1.62E-06

GLAUGEN rs7126447 rs11077011 0.327
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each observation may yield high overall accuracy, as in the spam filtering problem [33].

Clearly, adoption of a balanced accuracy measure or a cost-sensitivity analysis that

weighs the relative importance of avoiding false positives versus false negatives is crit-

ical for such problems, and numerous methods have been developed to address this

issue including novel fitness functions, sampling-based approaches, and ensemble

methods, including for epistasis modeling [34–37]. The present study, though themat-

ically similar to the class imbalance problem, instead addresses imbalance in observa-

tions of classes of an independent variable, e.g. the SNP-SNP interaction genotype. This

is also adjacent to the covariate and data set shift problems, in which the training and

testing distributions differ (for example due to model training using clean data from

consistent laboratory conditions to produce models that then fail to hold for experi-

mentally gathered data with unanticipated environmental differences), but for internal

cross validation [38–40]. Solutions to problems of both of these genres include re-

weighting and –sampling techniques, whereas the present study circumvents the need

for either via splitting the data to ensure balanced proportions by genotype between

training and testing sets. The example application of imbalanced SNP-SNP genotypes

considers a categorical variable, but the underlying idea of preserving the distribution

of instances between training and testing with regard to an independent variable could

be extended to continuous variables or combinations of variables via binning, propen-

sity scores, etc.

Conclusions
Although the contribution of epistatic interactions may help explain the “missing herit-

ability” of complex disease, statistical detection of epistasis remains challenging and can

require adjustment of general machine learning protocols. With decreasing minor allele

frequencies, the number of observations for rare SNP-SNP interaction genotypes be-

comes quite small in a GWAS of typical size, and a standard cross validation procedure

may result in training/testing data set splits that poorly represent the data as a whole.

This diminishes the ability to identify interactions of potential interest for experimental

follow-up, and underscores the need to perform interaction analyses in an interaction-

specific framework. A potentially overlooked element of performing reproducible

analyses includes the imperative to develop and modify methods considering how

intrinsic characteristics of the data and its structure may contribute to statistical failure

to replicate despite biological (or other scientific) validity. Genomics and the biomedical

sciences in general benefit from their increasingly multidisciplinary nature by incorpor-

ating methodology and theory from adjacent computational fields, but thoughtful

contextualization of the data in view of the underlying biology is necessary to reap the po-

tential benefits of applied machine learning methods and to successfully reproduce them.
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