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Abstract
Genetic monitoring estimates temporal changes in population parameters from mo-
lecular marker information. Most populations are complex in structure and change 
through time by expanding or contracting their geographic range, becoming frag-
mented or coalescing, or increasing or decreasing density. Traditional approaches to 
genetic monitoring rely on quantifying temporal shifts of specific population metrics—
heterozygosity, numbers of alleles, effective population size—or measures of geo-
graphic differentiation such as FST. However, the accuracy and precision of the results 
can be heavily influenced by the type of genetic marker used and how closely they 
adhere to analytical assumptions. Care must be taken to ensure that inferences reflect 
actual population processes rather than changing molecular techniques or incorrect 
assumptions of an underlying model of population structure. In many species of con-
servation concern, true population structure is unknown, or structure might shift over 
time. In these cases, metrics based on inappropriate assumptions of population struc-
ture may not provide quality information regarding the monitored population. Thus, 
we need an inference model that decouples the complex elements that define popula-
tion structure from estimation of population parameters of interest and reveals, rather 
than assumes, fine details of population structure. Encompassing a broad range of 
possible population structures would enable comparable inferences across biological 
systems, even in the face of range expansion or contraction, fragmentation, or changes 
in density. Currently, the best candidate is the spatial Λ-Fleming-Viot (SLFV) model, a 
spatially explicit individually based coalescent model that allows independent infer-
ence of two of the most important elements of population structure: local population 
density and local dispersal. We support increased use of the SLFV model for genetic 
monitoring by highlighting its benefits over traditional approaches. We also discuss 
necessary future directions for model development to support large genomic datasets 
informing real-world management and conservation issues.
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… the development of statistical procedures to uncover 
the demographic or selection history of a set of popula-
tions that best explains the observed genetic structure is 
certainly one of the most interesting challenges of popu-
lation genetics.� —L. Excoffier (2007)

1  | TR ADITIONAL GENETIC MONITORING

Genetic monitoring is concerned with estimating temporal 
changes in population demographic processes such as abundance, 
vital rates, and rates of exchange using information obtained 
from molecular markers (Schwartz, Luikart, & Waples, 2007). 
With the evolution of low-cost, high-throughput next-generation 
sequencing methods, there is greater power to detect changes 
over time or space. This greatly facilitates discovery of popula-
tion structure and makes genetic monitoring a valuable source 
of information for conservation policy decisions that would be 
difficult to obtain otherwise (Allendorf, England, Luikart, Ritchie, 
& Ryman, 2008; Duforet-Frebourg & Blum, 2013; Fromentin, 
Ernande, Fablet, & de Pontual, 2009; Kardos, Taylor, Ellegren, 
Luikart, & Allendorf, 2016; Laikre et al., 2009; Lankau, Jørgensen, 
Harris, & Sih, 2011; Leblois et al., 2014; Lloyd, Campbell, & Neel, 
2013; Mijangos, Pacioni, Spencer, & Craig, 2015; Ovenden, Berry, 
Welch, Buckworth, & Dichmont, 2015; Paz-Vinas et al., 2013; 
Pierson et al., 2016; Rodrguez-Trelles & Rodrguez, 2010; Waples, 
Punt, & Cope, 2008).

However, because studies can span long time frames and also 
incorporate results of other studies, care must be taken to ensure 
that inferences reflect actual population processes rather than 
changing molecular techniques (Allendorf, 2017; Charlesworth & 
Charlesworth, 2017) or incorrect model assumptions (Morin et al., 
2010; Peery et al., 2012; Samarasin, Shuter, Wright, & Rodd, 2017). 
Moreover, populations tend to be complex in structure and change 
through time by expanding or contracting their geographic range, 
becoming fragmented or coalescing, or increasing or decreasing 
density (Hey & Machado, 2003). Indeed, all of these can be occur-
ring simultaneously in different parts of a single species’ geographic 
range, and are more likely occurring in species of conservation con-
cern (Whitlock & McCauley, 1999). While these changes are often in 
and of themselves important to conservation and basic population 
genetics, they can also cause challenges in the interpretation of anal-
yses that are often overlooked.

In traditional approaches to genetic monitoring, the predom-
inant approach quantifies patterns of variation or differentiation 
using measures such as heterozygosity, nucleotide diversity, num-
bers of alleles and percentage of polymorphic loci, and estimates 
of effective population size, Ne (Aravanopoulos, 2011; Excoffier, 
2007; Schwartz et al., 2007; Tallmon et al., 2010). The underlying 
assumption is that temporal changes in these quantities are related 
to demographic parameters of conservation concern (Hoffmann & 
Willi, 2008; Pertoldi, Bijlsma, & Loeschcke, 2007; Schwartz et al., 
2007). However, these relationships can be affected by changes in 

population processes (Schwartz et al., 2007) and by the number and 
type of genetic markers used and how closely they adhere to the an-
alytical assumptions (Narum et al., 2008; Smith & Seeb, 2008; Smith 
et al., 2007). Consequently, metric-based approaches to genetic 
monitoring or to quantifying population structure can be misleading 
when the necessary a priori assumptions are incorrect.

As an example, one of the most commonly used measures of dif-
ferentiation is FST, which was originally defined by Wright (1965) as 
the correlation of two alleles randomly sampled from a single sub-
population relative to the correlation of two alleles randomly sam-
pled from the population as a whole. Under some conditions, FST is 
also related to the inverse of the migration rate: FST≈1∕(4Nem+1), 
where Nem is the effective number of reproducing migrants per gen-
eration (Wright, 1931). This relationship has led to widespread use of 
FST as an indirect measure of gene flow (Slatkin, 1985).

However, this relationship is based on Wright’s island model of 
population structuring in which all members of a population have 
an equal probability of contributing gametes to the next generation, 
generations are temporally nonoverlapping, all members of a popu-
lation have an equal and constant probability of migrating, all popu-
lations are the same constant size, and populations are in equilibrium 
with respect to migration and genetic drift (Wright, 1931). While this 
model has proven to be a useful simplification, it is widely recognized 
that in most empirical populations these assumptions are practically 
never satisfied (Waples, 1998; Whitlock & McCauley, 1999). In fact, 
populations of conservation concern are very likely to demonstrate 
deviations from ideal conditions. These populations often change in 
size rapidly and are not in equilibrium (Archer et al., 2010; Whitlock 
& McCauley, 1999). A genetic monitoring study of such species that 
compares values of FST among samples from different time points, 
each of which can be out of equilibrium to differing degrees, is likely 
to be misleading, because estimates of gene flow derived from FST 
integrate long-term demographic effects (Neigel, 2002). Strand, 
Milligan, and Pruitt (1996) also demonstrated that FST is informative 
about gene flow only if equilibrium under Wright’s island model is as-
sumed; while alternatively, the same value of FST is informative about 
the time since population divergence only if a strict radiation model 
of subdivision with no gene flow is assumed.

Finally, for most standard tests of population structure, there is 
a requirement that the samples are a priori partitioned into discrete 
populations. Population stratification schemes are necessary sim-
plifications of real population structure and are often hypotheses 
being tested with the data at hand. Unless independent sources of 
data exist for comparison (Charpentier et al., 2012; Musiani et al., 
2007), it can be difficult to assess how well putative stratifications 
reflect real populations. However, even when such datasets exist, 
population stratification defined by genetic data often differs from 
stratification defined by, for example, morphology or behavior, be-
cause they are influenced differently by demography and selection 
(Ortego, Garca-Navas, Noguerales, & Cordero, 2015; Serrouya et al., 
2012). In the absence of independent sources of data, populations 
are usually defined either based on how samples have been collected 
or as perceived centers of density within the species’ distribution, 
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both of which can be biased by collection methods and might not 
reflect actual distribution or mating patterns.

Thus, most uses and interpretations of gene flow from estimates 
of FST are accompanied by implicit acceptance of a particular model 
of population structure, and their relevance depends crucially on the 
appropriateness of the model used to relate the pattern-based quan-
tities to underlying biological processes of interest. Further, models 
of population structure and models of population size change can 
make identical predictions for observable genetic quantities, and 
therefore, these processes cannot be distinguished without consid-
ering the full distribution of genetic variation (Mazet, Rodrguez, & 
Chikhi, 2015; Mazet, Rodríguez, Grusea, Boitard, & Chikhi, 2016). In 
the context of genetic monitoring, differentiating these is of crucial 
importance, so confounding them as a consequence of a priori as-
sumptions is a serious issue. The inherent complexity of populations 
therefore poses a nontrivial problem for the prospect of discovering 
population structure, and presents significant challenges to the de-
velopment of a coherent means of monitoring populations using ge-
netic information gathered over any reasonably large spatiotemporal 
extent (Crandall, Bininda-Emonds, Mace, & Wayne, 2000; Excoffier, 
2007; Segelbacher et al., 2010). Nevertheless, this is a problem that 
must be addressed. What follows is our view of the path forward.

2  | THEORY AND RE ALIT Y IN 
POPUL ATION GENETIC S

The rich theoretical foundation of population genetics has inspired 
numerous models to describe how genetic characteristics vary over 
space and time. This creates a challenge for discovering population 
structure or guiding genetic monitoring, because choices among 
models must be made a priori and available models might not cor-
respond to biological reality. The range of patterns of structure in 
natural populations can be viewed as a triangular space described by 
patchiness and individual dispersal distance (Figure 1). If both patch-
iness and dispersal are low, individuals are relatively uniformly dis-
tributed. As patchiness increases, individuals become more clumped 
into discrete populations. As dispersal increases, all cases converge 
to a single panmictic population. In reality, groups of individuals 
within a metapopulation can exist at multiple locations in this space. 
Certainly for the discovery of population structure and often for the 
purposes of genetic monitoring, we are interested in where in this 
space a set of individuals lies, whether the location is shifting over 
time, and if so, the rate of change. To maximize analytical tractability, 
however, traditional population genetics models typically make sim-
plifying assumptions about life histories and demographic and evo-
lutionary processes. This limits their applicability by interpreting the 
study system with respect to a small subset of the parameter space.

In the most widely adopted paradigm, individuals are assumed to 
assort themselves into semi-discrete subpopulations, within which 
matings occur at random. The two most commonly used models of 
this class are Wright’s island model, introduced in Wright (1931) but 
not named until Wright (1943), and the stepping-stone model (Kimura 

& Weiss, 1964; Weiss & Kimura, 1965). These models limit them-
selves to the right border of the spatial structure triangle (Figure 1). 
Here, subpopulations are convenient, and often necessary, units for 
subsequent analyses of genetic diversity within (heterozygosity, al-
lelic and nucleotide diversity) and among (FST and related measures) 
groups of individuals. The primary parameters governing these mod-
els are the effective size of each subpopulation (Ne) and the rate of 
migration among subpopulations (in the island model, m is the sin-
gle migration rate among all subpopulations; in the stepping-stone 
model, mj is the migration rate among subpopulations separated by 
j steps and m∞ is the rate of long-range migration, equivalent to m in 
the island model). Spatial heterogeneity is captured mainly through 
analysis of pairwise combinations of connected, discrete populations 
(Rousset, 1997; Slatkin, 1993), or by the estimation of migration ma-
trices (Beerli & Felsenstein, 2001).

In contrast, the most widely adopted alternative paradigm is 
Wright’s IBD model (Wright, 1943, 1946), which focuses on individ-
uals assumed to be distributed continuously and uniformly across 
space. These models limit themselves to the left border of the spatial 
structure triangle (Figure 1). Here the primary parameters govern-
ing the models are local density (d) and the variance of parent–off-
spring dispersal distance (σ2). Together these define the concept of 
neighborhood size as the geographic area within which most matings 
take place. Spatial heterogeneity is generally not considered in these 
models.

Some attempts to bridge these two paradigms have been made, 
but they are limited to identifying special cases that can transform 
one into the other. Stepping-stone models, for example, converge 

F IGURE  1 The parameter space for complex populations. 
Populations with complex spatial structure are located within 
a parameter space defined by dimensions corresponding to the 
degrees of patchiness and connectivity. For simplicity, an additional 
dimension corresponding to the local population density is not 
shown. Increasing connectivity for any population structure 
converges to the same outcome, that is, panmixia, so the feasible 
parameter space is shown as triangular
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to Wright’s island model if migration rates except for m∞ are zero 
(Kimura & Weiss, 1964; Weiss & Kimura, 1965). Conversely, as the 
number of subpopulations increases and effective size of each be-
comes arbitrarily small, the stepping-stone model approaches the 
IBD model. Kimura and Weiss (1964) suggested that their stepping-
stone model could be analyzed in terms of IBD by replacing m1 with 
σ2 and by substituting the effective density d(Ne/N) for Ne.

Importantly, neither dominant paradigm penetrates the inte-
rior of the spatial structure parameter space (Figure 1), which cre-
ates problems when models based on those paradigms are used to 
discover population structure or are applied to genetic monitoring. 
Although some real-world species fall neatly into one or the other of 
these paradigms, many others exist somewhere in the interior space 
of the triangle. In some species, individuals are neither randomly dis-
tributed across the landscape nor neatly clumped into semi-discrete 
subpopulations, while for others individuals are arrayed in different 
spatial patterns in different areas and/or at different times. And for 
many other species, connectivity depends strongly on features of 
the habitat (which might change at different spatiotemporal scales) 
rather than being a simple function of distance as implied by the IBD 
model.

3  | INDIVIDUALLY BA SED L ANDSC APE 
GENETIC S MODEL S

In general, the area within the spatial structure triangle (Figure 1) 
can be considered the domain of landscape genetics, which inte-
grates population genetics, landscape ecology, and spatial statis-
tics to identify landscape and environmental factors that affect 
genetic and genomic variation (Milligan, 2017; Segelbacher et al., 
2010). Landscape genetics, a term coined in 2003 (Manel, Schwartz, 
Luikart, & Taberlet, 2003) to describe increasingly spatially explicit 
advances in population genetics (Dyer, 2015a), has had a strong 
focus on the flow of genetic information across the landscape and 
hence population structure. Further, it is well recognized that model 
output and inference in landscape genetics is heavily influenced by 
and dependent on the scale and resolution (i.e., how finely resolved 
are measures of ecological differences) of ecological processes (e.g., 
dispersal and demography) that influence gene flow and population 
structure (Cushman & Landguth, 2010; Galpern & Manseau, 2013; 
Hand, Cushman, Landguth, & Lucotch, 2014; Wasserman, Cushman, 
Schwartz, & Wallin, 2010).

Most landscape genetic studies rely strongly on the dichotomy 
of individual versus population-based models for inference (Dyer, 
2015a; Storfer, Murphy, Spear, Holderegger, & Waits, 2010). The 
approach of using pattern-based measures such as FST and correlat-
ing them with spatial and/or environmental factors, has long domi-
nated landscape genetics (Waits & Storfer, 2016). These approaches 
require a priori stratification of samples into putative populations. 
Newer approaches like population graph approaches (Dyer, 2007, 
2015b; Dyer & Nason, 2004; Murphy, Dyer, & Cushman, 2016) have 
been largely applied in population-based frameworks, often where 

sampling locations, not genetically discrete populations, define the 
vertices of the graph. Individual-based analyses in landscape ge-
netics can help overcome problems with predefining populations, 
and many landscape genetic statistics can be adapted to individual-
based measures of genetic differentiation. However, individual-
based studies often yield thousands of pairwise values, making it 
difficult to make biologically relevant inferences of genetic structure 
(Kierepka & Latch, 2015). Furthermore, popular tests of associa-
tion between matrices of pairwise distances, for example, Mantel 
tests, suffer from statistical errors (Graves, Beier, & Royle, 2012; 
Kierepka & Latch, 2015) and are easily susceptible to sampling biases 
(Kierepka & Latch, 2015; Oyler-McCance, Fedy, & Landguth, 2013; 
Schwartz & McKelvey, 2009). Thus, despite its promise, much of the 
core of landscape genetics must be improved before it is ready to 
tackle the challenges of long-term genetic monitoring and discovery 
of population structure.

Improvement of landscape genetics models for genetic moni-
toring might start from either of two points. The first is the family 
of spatially explicit, individually based ancestry clustering models, 
which includes geneland (Guillot, Estoup, Mortier, & Cosson, 2005), 
TESS (Chen, Durand, Forbes, & François, 2007), BAPS (Corander & 
Marttinen, 2006), and POPS (Jay, Durand, François, & Blum, 2015), 
many of which are derived from the nonspatial structure model 
(Falush, Stephens, & Pritchard, 2003; Pritchard, Stephens, & Donnelly, 
2000). All of these models interpret the observed multilocus gen-
otypes as samples from putative populations, which are inferred 
during the modeling process. As a consequence, they are limited to 
the right border of the spatial parameter space (Figure 1). In addi-
tion, a range of covariates are often included. For example, structure 
(Pritchard et al., 2000) allows prior distributions to be influenced by 
the sampled spatial location of each individual, while geneland (Guillot 
et al., 2005), TESS (Chen et al., 2007), spatial BAPS (Corander, Sirén, 
& Arjas, 2008), and POPS (Jay et al., 2015) explicitly include the sam-
pled spatial location of each individual in the model. In addition, POPS 
(Jay et al., 2015) explicitly includes environmental as well as spatial 
information. However, none of these models explicitly includes gene 
flow, despite it being one of the most important genetic mechanisms 
influencing variability and local adaptation (Holderegger & Wagner, 
2008). Thus, despite their promise, these models also need improve-
ment if they are to be used to handle the complexities of long-term 
genetic monitoring. Specific areas of improvement include the addi-
tion of more biologically relevant mechanisms such as gene flow in 
ways that acknowledge the spatial heterogeneity required for genetic 
monitoring and discovery of population structure (Milligan, 2017).

The second family contains the individually based explicitly ge-
nealogical models of ancestry, which are based upon the coalescent 
(Kingman, 1982). This includes a large set of models that infer, gen-
erally from DNA sequence data, such quantities as effective pop-
ulation size and growth rate, gene flow, and population divergence 
(Kuhner, 2008). Unlike most of the models in the first category, 
these are not truly spatially explicit; at best individuals are gathered 
into predefined populations for analysis using a structured coales-
cent (Hudson, 1990; Notohara, 1990). Furthermore, many of the 
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parameters inferred in these models are averages across the entire 
sample. Thus, for example, spatially dependent density or gene flow 
cannot be ascertained, both of which are important for long-term 
genetic monitoring or for discovery of population structure. As a re-
sult, while offering much promise, this set is likewise not immediately 
suitable.

The main approaches to population and landscape genetics 
provide strong foundations for genetic monitoring. However, they 
generally require making a priori assumptions about quantities that 
are the subject of inference and the models exhibit many prob-
lems when applied to the challenge of genetic monitoring (Table 1). 
Consequently, a new look at genetic monitoring and discovery of 
population structure is required.

4  | MODEL S FOR GENETIC MONITORING 
AND DISCOVERY OF POPUL ATION 
STRUC TURE

A more general approach to population genetic analysis must place 
the focal system within the spatial structure triangle (Figure 1) as 
a natural outcome of the analysis, not start with a priori assump-
tions about its location within the parameter space. Additionally, the 
model would directly quantify the full distribution of actual popula-
tion or evolutionary processes of interest as best as possible, de-
coupling these parameters from the elements that define population 
structure (Excoffier, 2007). In particular, this model would:

•	 Encompass a broad range of possible population structures, so 
that inferences made would be comparable across different geo-
graphic scales and types of biological systems,

•	 Utilize spatial information,

•	 Simultaneously quantify processes influencing population struc-
ture and connectivity, and assess changes in both over time,

•	 Allow for spatial heterogeneity in model parameters,
•	 Directly estimate parameters of interest and their uncertainty, 
while not being confounded by range expansion or contraction, 
fragmentation, or changes in density, and

•	 Be compatible with multiple types of genetic data, allowing it to 
be informed by legacy microsatellite or potentially allozyme data 
sets, next-generation sequencing data, or data generated by fu-
ture technologies.

The basic observations for a general analysis with this hypothetical 
model would be multilocus genotypes, multilocus sequences, or full 
genome sequences of individuals, their geographic locations, and in-
formation on covariates that might influence local density, movement, 
and selection. The model should serve as a bridge between the two 
main paradigms of individual neighborhood and island/stepping-stone 
models (i.e., the left and right borders of the spatial structure trian-
gle (Figure 1)), and encompass these models as boundary conditions. 
Preliminary analyses using the model might indicate that a given sys-
tem fits comfortably onto either border, justifying the use of one or 
the other set of standard analytical regimes. However, most empirical 
cases are more likely to lie in the interior, so the model could also give 
an indication of the appropriateness of measures deriving from one or 
the other of the main paradigms.

5  | SPATIAL Λ- FLEMING -VIOT MODEL

Currently, the only model with immediate potential to address most 
of the requirements for long-term genetic monitoring is the spatial 
Λ-Fleming-Viot (SLFV) model (Barton, Etheridge, & Véber, 2013; 

TABLE  1 Current problems in the implementation of genetic monitoring models and important qualities of a genetic monitoring model

Primary problem Examples of potential consequences
Improvements needed in 
genetic monitoring models

Current metrics heavily influenced by scale and 
vary greatly depending on the scale used

Multi-scale studies show that landscape effects are 
evident at one scale and absent at another (Balkenhol 
et al., 2014; Millete & Keyghobadi, 2015)

Scale-independent 
quantification of local 
population structure and 
connectivity

Spatial heterogeneity in 
model parameters

Many genetic metric models require assignment of 
individuals to predetermined groups

Potential for erroneous groups from clustering algorithms 
(Frantz, Cellina, Krier, Schley, & Burke, 2009; Latch, 
Dharmarajan, Glaubitz, & Rhodes, 2006; Schwartz & 
McKelvey, 2009)

No a priori grouping

Genetic metrics are often divorced from the 
underlying genetic process, leading to poor 
estimation of the process itself

Inaccurate estimates of migration rates, especially at low 
values of FST (Allendorf, Luikart, & Aitken, 2013)

Directly incorporate known 
population genetics 
mechanismsViolation of assumptions can greatly impact estimates of 

effective population size (Neel et al., 2013)

Genetic metrics can be sensitive to the marker 
type used and could therefore change temporally 
based solely on the methodology

Different spatial genetic structures between marker types 
(Bradbury et al., 2015)

Technology independent

Limited applicability across studies for wide-ranging 
species (de Groot et al., 2016)
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Guindon, Guo, & Welch, 2016; Joseph, Hickerson, & Alvarado-
Serrano, 2016; Kelleher, Barton, & Etheridge, 2013). The SLFV is a 
spatially explicit extension of the Λ-Fleming–Viot model which is it-
self an extension of the Fleming–Viot model (Fleming & Viot, 1979). 
Equivalently, it is a spatially explicit version of the Λ-coalescent which 
is an extension of Kingman’s coalescent (Kingman, 1982; Tellier & 
Lemaire, 2014). Specifically, coalescence in the SLFV model is not 
limited to two lineages, and individuals can be distributed arbitrarily 
across space, avoiding the restriction in classical island and stepping-
stone models of discrete population boundaries. As a result, the 
SLFV model permits the simultaneous, yet independent, estimation 
of local population density and local dispersal rates, two key param-
eters of population processes integral to genetic monitoring studies. 
The mathematical background for the SLFV model was introduced 
in Etheridge (2008) and is well described in Barton, Etheridge, and 
Véber (2010), Barton et al. (2013), Berestycki, Etheridge, and Véber 
(2013), and Véber and Wakolbinger (2015). Extensions to the model 
including selection, mutation, recombination, and skewed reproduc-
tive success are thoroughly covered by Dawson and Greven (2014), 
Etheridge and Véber (2012), Etheridge, Freeman, and Straulino 
(2017), and Montano (2016). Efficient implementations of the selec-
tively neutral, spatially homogeneous SLFV model, with and with-
out recombination, are described in Kelleher et al. (2013), Kelleher, 
Etheridge, and Barton (2014) and Kelleher, Etheridge, and McVean 
(2016). In what follows, we introduce informally this simple model, 

then present the steps involved in a more mathematically rigorous 
form to illustrate explicitly how the restrictive assumptions can be 
relaxed to obtain a model with the desired characteristics outlined 
in the previous section.

In its simplest form, the SLFV model constructs coalescent ge-
nealogies of subgroups of haploid individuals through iterations of 
reproduction and movement events backwards in time (Figure 2). 
The sequence begins with a set of individuals, arbitrarily distributed 
across a continuous landscape (Figure 2a), each carrying their empir-
ical genotypic data (although they can also optionally be associated 
with other data such as sex, demographic or reproductive state). In 
the first step, a neighborhood center (x) and radius (r) are randomly 
selected (Figure 2b). All coalescent events will be limited to individ-
uals within this neighborhood. A new location within the neighbor-
hood is randomly selected for the ancestor (a) and its genotype is 
selected from the distribution in the neighborhood associated with 
that location (Figure 2c). Existing individuals within the neighbor-
hood are then randomly selected to be descendants of the new an-
cestor. Finally, as for the Moran (1958) model, the descendants are 
removed, having been replaced by the ancestor (Figure 2d), and a 
new iteration begins, with iterations continuing until only a single 
ancestor remains.

As outlined below, the individuals need not be haploid. Sexual 
reproduction can be accommodated by selecting more than a sin-
gle ancestor. Note that small-scale, for example, single generation, 

F IGURE  2  Illustration of one iteration 
of the SLFV model. (a) Initial condition 
involving individuals at their empirical 
sampling locations with two haplotypes 
(white and gray), (b) placement of a 
random neighborhood (circle) defined 
by its center (x) and radius (r), (c) random 
placement of a putative ancestor (square) 
and coalescence of ancestry of randomly 
selected descendants, and (d) distribution 
of remaining individuals after removal of 
the descendants
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reproduction events will necessarily involve two ancestors, but 
large-scale events, that is, those with long intervals or covering 
large areas, can involve more than two because multiple generations 
might have intervened (Kelleher et al., 2013).

The steps in this process can be formalized to illustrate the gen-
eralizations that are possible. For clarity of exposition we will con-
sider the single locus model, because it captures the spatially explicit 
nature that is crucial for genetic monitoring; multilocus extensions 
are straightforward (Kelleher et al., 2013, 2014, 2016). Consider a 
sample of n, not necessarily haploid, individuals, each from a known 
location x within a d-dimensional landscape L and with a known state 
s (e.g., genotype, sex, etc.). Thus, each individual i can be represented 
by the quantities i, xi, and si. Let C(t) be the set of individuals extant at 
time t; this can change at discrete points in time as reproductive or 
movement events occur. Initially, C={(i,xi, si)∀i}. Iterate through the 
following steps until C contains only a single individual, the ancestor 
of the entire sample.

1.	 Generate an event at a location, which will involve a mixture 
of reproduction and movement. To do so, sample a spatial 
probability distribution E(x) from a family of spatial distributions 
across the landscape L. In the simplest case (Kelleher et al., 
2013), the family of distributions E(x) for a d + 1 dimensional 
landscape L is composed of uniform distributions within d-
spheres of radius r centered at points e. Alternatively, a Gaussian 
distribution for the selection has been used (Guindon et al., 
2016). Nonhomogeneity in the landscape can be incorporated 
with different families of E(x), which might, for example, de-
pend on the distribution of habitats, land use patterns, other 
environmental characteristics, or the state (genetic or demo-
graphic) of the individuals.

2.	 Select a set C′ of individuals based upon the spatial distribution 
E(x). For every individual j in C, select it with a probability of E(xj,sj). 
This will yield a set C′ containing zero or more individuals, ran-
domly selected according to the spatial distribution associated 
with the event and their state. In the case of no mutation, all indi-
viduals in C′ will have the same state, but this restriction is not 
necessary. Depending on the number of individuals in C′, this 
event either has no effect or involves a mixture of reproduction 
and movement. 
(a) 	If C′ is empty, no individuals are affected by the event and C is 
unchanged. Construct a new event.

(b) 	If C′ contains at least one individual, the event is potentially a 
mixture of reproduction and movement (and possibly muta-
tion). Sample a set of individuals, which will replace those in C′,  
from the distribution R(x|C′). Some or all of these individuals 
may be ancestors of (some of) those in C′; the remainder are 
individuals in C′ that have simply moved. Thus, the distribution 
R(x|C′) determines the mixture of reproduction and movement 
that occurs in the event. For sexual reproduction, R(x|C′) can 
generate locations for more than one ancestor, and even for 
more than two in the case of large-scale events. In this case, 
ancestry must be distributed across the selected individuals; 

Kelleher et al. (2016) compares the efficiency of alternative al-
gorithms for accomplishing this. In the simplest cases, R(x|C′) 
is uniform across the d-sphere defined by E(x) (Kelleher et al., 
2013) or may only depend on the distance between individ-
uals (Guindon et al., 2016). However, more complex distri-
butions can depend on the locations of individuals in C′, on 
environmental characteristics across L, or on individual states. 
If mutation is possible, sample the state of these replacement 
individuals from the distribution S(s|C′). Finally, remove all indi-
viduals in C′ from C and replace them with the newly sampled 
ones.

Clearly the SLFV model is very general. It is applicable to 1-  or 
2-dimensional habitats, and the landscape can be homogeneous or 
heterogeneous in any way. The suitable locations for individuals can be 
continuously distributed (either uniformly or not) across the landscape, 
can be patchily distributed, can be limited to discrete positions, or can 
be a complex mixture of these. The flexibility of the SLFV model en-
ables the spatial structure to emerge from the analysis rather than be 
imposed a priori. Developing software that reflects the range of appli-
cability of the SLFV model remains an open challenge that is crucial to 
the advancement of genetic monitoring as well as population genetics.

The selectively neutral, spatially homogeneous SLFV model is 
dependent on several parameters, the two most important of which 
govern how R(x|C′), the spatial distribution of new ancestors and co-
alescent events, reflects local population density and local dispersal 
rate. This means that the SLFV model is directly based on biologi-
cal processes of known importance to the genetic composition of 
populations, a feature critical for genetic monitoring and discovery 
of population structure. For example, it explicitly models the pro-
cesses of reproduction and local movement (Figure 2c), permitting 
direct inference of the spatial distribution of relevant population 
processes. This is in contrast to summary pattern-based measures 
such as FST that can be related to biological mechanisms such as gene 
flow only if a population fits a particular model.

The data required for the SLFV model are those already gen-
erally obtained for genetic monitoring: individual-specific genetic 
data, either multilocus genotypes or DNA sequences, and individual-
specific geographic locations. Additionally, spatially or temporally 
heterogeneous versions of the model could use spatial or temporal 
covariates, such as habitat characteristics, to parameterize the local 
population density and dispersal parameters. Analogous parameter-
izations are central to the success of landscape genetics (Balkenhol, 
Cushman, Storfer, & Waits, 2016; Manel et al., 2003), which seeks 
to relate landscape or environmental characteristics to, for example, 
dispersal through surfaces that quantify flow of individuals through 
the landscape (McRae, 2006).

Two applications of the SLFV model illustrate both its power 
and the importance of relaxing the assumptions incorporated into 
existing software. Joseph et al. (2016) developed an approximate 
Bayesian computation (ABC) pipeline based upon the selectively 
neutral, spatially homogeneous SLFV model (Kelleher et al., 2013, 
2014). The pipeline was used to validate the estimation of neigh-
borhood size from simulated data and subsequently to estimate 
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both neighborhood size and dispersal radius from empirical data on 
Berkheya cuneata (Asteraceae) from South Africa. In their model, dis-
persal radius R was the maximum distance individuals could disperse, 
and neighborhood size was the number of individuals within the area 
of an event of radius R. For validation, 100,000 datasets were gen-
erated for eight individuals sampled at 10 unlinked loci. Each dataset 
was composed of the genealogy generated by the SLFV model and 
1 kb sequences simulated along each genealogy. Data generation 
took 2 days on a 12-core computer. Subsequently, the posterior 
distribution of neighborhood size was calculated using ABC based 
upon 100 replicate leave-one-out cross-validations; regression of 
the estimated neighborhood size on the actual neighborhood size 
had R2 = 0.87.

The empirical analysis of Berkheya cuneata used a total of 33 in-
dividuals with known locations and sequence data at one nuclear 
and two plastid loci (Joseph et al., 2016). The same pipeline imple-
menting the selectively neutral, spatially homogeneous SLFV model 
was used to generate 100,472 datasets; rejection ABC was used to 
sample from the posterior distributions of both neighborhood size 
and dispersal distance. The median estimates of neighborhood size 
and dispersal distance were 502.50 (95% HPDI 56.03–962.00) and 
7.33 km (HPDI 2.44–9.86 km), respectively. The process of generat-
ing datasets took 36 days to complete.

This study illustrates several important points regarding practi-
cal use of the SLFV model. First, the two most biologically important 
parameters, neighborhood size and dispersal distance, are identifi-
able; that is, they can be estimated separately using the SLFV model. 
Second, it is possible to obtain useful estimates even from relatively 
small datasets composed of no more than dozens of individuals or 
handfuls of loci. Third, there is room for improved computational ef-
ficiency to accommodate larger datasets. Finally, adding spatial het-
erogeneity in the form of known resistance surfaces or the like, as 
is often done in landscape genetics (McRae, 2006; Spear, Cushman, 
& McRae, 2016), will increase realism without adding parameters; 
inferring properties of resistance surfaces adds no more parame-
ters than the equivalent multivariate regression or similar landscape 
genetic analysis would. Thus, while the existing pipeline (Kelleher 
et al., 2013, 2014) does not accommodate that flexibility, a spatially 
heterogeneous SLFV model is both feasible and likely to be compu-
tationally tractable.

A second example using the selectively neutral, spatially ho-
mogeneous SLFV model reinforces these points and illustrates ad-
ditional ones. Guindon et al. (2016) also validated the SLFV model 
with simulations and applied it to data, in this case from influenza A 
virus (H1N1 subtype) for the flu seasons from 2009 to 2014. Instead 
of using ABC as did Joseph et al. (2016), Guindon et al. (2016) gen-
erated samples from the posterior distributions of the parameters 
with the Metropolis-Hastings MCMC algorithm. For validation, 300 
simulated datasets of 5,000 individuals were generated using the 
SLFV model to generate genealogies and the Kimura 2-parameter 
model (Kimura, 1980) to generate nucleotide sequences given the 
genealogies. Effective population density (d) and dispersal intensity 
(σ2) (Wright, 1946) were estimated using the SLFV model based upon 

a sample of 50 individuals sampled at either two or ten different 
sites. Additionally, parameter estimates were obtained using the 
structured coalescent (Hudson, 1990; Notohara, 1990) under the 
assumption of either two or ten discrete populations. Estimates from 
the structured coalescent were upwardly biased to a large degree, 
though much less so for ten than for two populations. Estimates 
from the SLFV model were much better, although the precision de-
clined with larger values of dispersal intensity. These computations 
took 100 hr to complete on a computer with 2.7–2.8 GHz CPUs.

The empirical analysis of influenza (Guindon et al., 2016) was 
based upon two biological replicates, each involving one sequence 
of the NA segment of the influenza A virus (H1N1 subtype) per 48 
contiguous state of the U.S.A. from each of the five flu seasons from 
2009 to 2014. Each dataset yielded an estimate of the posterior 
distributions for neighborhood size Ns∝σ2d and dispersal radius σ 
(Wright, 1946). Comparison of the five distributions for these two 
parameters revealed that the two biological replicates yielded simi-
lar distributions, an indication of consistency despite moderate sam-
ple size. Further, the 2009–2010 flu season was different from the 
other four; it was characterized by a smaller neighborhood size and 
a larger dispersal radius. This observation indicates limited infec-
tion rates and broader climatic tolerance, which is consistent with 
the known history (longer duration and milder incidence) of that 
epidemic.

This study reinforces the point that neighborhood size and dis-
persal rates can be estimated separately using the SLFV model. 
Distinguishing between them is important, especially in the case 
of genetic monitoring where either or both might shift (as they 
did with influenza) through time. Detecting those shifts may in 
fact be a major reason for undertaking a monitoring program. It 
also reinforces the point that useful estimates can be obtained for 
typical samples using a reasonable amount of computation. Thus, 
the SLFV model can be developed into a practical approach to ge-
netic monitoring. It may also serve the task much better than other 
methods, such as those based upon FST or the structured coales-
cent, that impose a priori assumptions upon the spatial structure 
of the populations under study.

Although analyses using the SLFV model to date (Guindon et al., 
2016; Joseph et al., 2016) have assumed spatial homogeneity in both 
neighborhood size and dispersal, there is no inherent reason not to 
allow spatial heterogeneity, just as it is routinely included in land-
scape genetics analysis (Balkenhol et al., 2016). For example, given 
information on the spatial layout of distinct habitat types, one could 
estimate different densities or dispersal rates for each habitat. In 
turn, those parameters could be the focus of genetic monitoring to 
detect changes in habitat-specific density or dispersal, information 
that would be of great value to a monitoring program. It would also 
reveal valuable information on the basic biology of the species under 
study. Importantly, differences among habitats (or other spatially de-
fined factors) would emerge naturally from the analysis if they exist 
rather than be imposed at the outset by selection of the analysis 
framework. Of course, as with landscape genetics models, SLFV 
models with too many parameters will be impossible to estimate. 
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How many and which parameters can be estimated remains an open 
question, and software implementations of more complex, and pos-
sibly biologically realistic, models are required to investigate this.

6  | POTENTIAL SHORTCOMINGS OF 
CURRENT IMPLEMENTATIONS OF THE SLF V 
MODEL

Current implementations of the SLFV model (Guindon et al., 2016; 
Kelleher et al., 2013, 2016) include restriction to selectively neutral 
markers and spatially homogeneous landscapes. Inefficiencies of 
implementation or limited sets of MCMC operators might also be 
shortcomings leading to analyses taking longer to complete or being 
limited in scope. These are purely technical limitations related to the 
early stage of development of the SLFV model, and can be over-
come by improvements in software design coupled with additional 
investigation of model performance. Given that coalescent models 
have recently been extended to genome-scale data for phylogenetic 
analysis (Bansal, Burleigh, & Eulenstein, 2010; Boussau et al., 2013; 
Jenkins, Fearnhead, & Song, 2015; Kumar, Hallström, & Janke, 2013), 
it is likely that the same will be true for the SLFV model.

A feature of the SLFV model as currently implemented is that 
no distinction, other than location, is made among individuals with 
respect to their likelihood of birth; in the backward in time version 
of the model described above, the probability distribution E(x) that 
selects individuals influenced by an event depends only on location. 
Greater biological realism could be incorporated into the model by 
allowing E(x) to depend on, for example, the demographic state of 
individuals or their genotype. These states need not even be static; 
they could be projected through time from one event to the next 
much as phylogenetic analysis projects state change along lineages. 
Further, these projections could incorporate structured population 
models (Caswell, 2000) in a natural way.

Like the Moran (1958) model, the SLFV model applies to over-
lapping generations, as reproductive events are not synchronized 
across the population in any way other than by the geographic 
scale of each event. Interestingly, this feature contrasts with most 
other models, which have the opposite limitation of applying to 
nonoverlapping generations. As many biological life cycles involve 
overlapping generations, this gives the SLFV model greater practical 
relevance than discrete generation models.

Despite these limitations of implementation, the SLFV model is 
already useful for separate estimation of such biologically meaning-
ful parameters as local population density and dispersal, which are 
confounded in other models. Current software implementations as-
sume that individuals are distributed uniformly in space, so variation 
in density must be discovered by modeling different spatial parti-
tions. However, as outlined above this is a technical limitation of the 
current implementations not of the SLFV model itself. One priority, 
therefore, is to generalize the implementations to match the poten-
tial of the model so that population structure need not be imposed 
in advance but can be obtained as a direct outcome of analysis. This 

would enable discovery of the nature of populations or monitoring 
their state over time or space in ways that are impossible if the struc-
ture of the populations must be assumed a priori. For this reason, the 
SLFV model offers distinct advantages both for the advancement of 
our understanding of population genetics and our application of it to 
genetic monitoring.

7  | A LONG -TERM GENETIC MONITORING 
STR ATEGY

What would a long-term genetic monitoring strategy based upon spa-
tially explicit coalescent models, such as the spatial Λ-Fleming-Viot 
model, look like? From the data acquisition viewpoint, such a monitor-
ing strategy would largely resemble any other. Geo-referenced sam-
ples of individuals would be distributed across the species range, and 
sampling would be repeated to create a time series. Environmental 
and landscape data would be obtained as well to provide information 
on potential covariates. As with all similar studies, the goal of sam-
pling is to ensure that each individual is equally likely to be sampled, 
that individuals are sampled independently, and that the environmen-
tal and landscape covariates are spatially representative.

From the data analysis viewpoint, however, such a monitoring 
strategy would look quite different from common practice. First, 
different types of genetic data, for example, DNA sequences and 
multilocus genotypes would be analyzed simultaneously in the 
same model. In principle, this has long been possible for coalescent-
based methods (Beerli & Palczewski, 2010; Bouckaert et al., 2014; 
Drummond & Rambaut, 2007); however, in practice different types 
of data, for example, single nucleotide polymorphisms (SNPs) and 
microsatellites, are analyzed separately. For genetic monitoring, the 
focus is on basic properties of the populations, for example, spatially 
dependent density and dispersal, not on data type-specific estimates 
(Milligan, Leebens-Mack, & Strand, 1994). Joint analysis of the data is 
likely to be better than independent analyses of partitions, in much 
the same way that joint analysis of gene trees leads to better infer-
ence of species trees in phylogenetics (Liu, Xi, Wu, Davis, & Edwards, 
2015).

Second, increasing emphasis would be placed on the posterior 
distributions of parameters, as opposed to their point estimates. 
Much as Guindon et al. (2016) were able to recognize similarities and 
differences among distributions inferred for a sequence of influenza 
outbreaks, genetic monitoring must recognize similarities and dif-
ferences in parameters across spatial and temporal dimensions. This 
can only be done accurately if information on the full distributions 
is available.

Third, the same model would be used for temporal comparisons 
to identify biological, not methodological, shifts. Not only would this 
make comparisons more meaningful, it would also enable direct and 
quantitative analysis of changes. The current practice of using dif-
ferent data and models over time, coupled with ad hoc interpreta-
tions of the differences, does not lend itself to reliable monitoring 
protocols.
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Finally, the nature of the models used must of course be im-
proved so that they will handle these demands. They must cover a 
full range of data types and include a full range of biological mecha-
nisms to achieve this. Consequently, advances in genetic monitoring 
depend crucially on advances in the models and analyses that are 
possible. The rapid technological advances in data acquisition, for 
example, the increasing accessibility of genome-scale data, make it 
easy to forget that the data are meaningless without suitable anal-
yses. For long-term genetic monitoring, those analyses must yield 
comparable information, and they must do so in the face of both 
dynamically changing populations and changing types of data.

8  | CONCLUSIONS

In conservation biology, there has been a movement toward bet-
ter utilizing genomic data and information about adaptive genetic 
markers to improve our understanding of evolutionary processes, 
rates of dispersal, local adaptation, genotype-by-environment 
interactions, and other important factors influencing population 
structure at multiple scales (Allendorf, Hohenlohe, & Luikart, 
2010; Garner et al., 2016). By enabling process-based, rather than 
pattern-based, approaches, models such as the spatial Λ-Fleming-
Viot model will allow the quantitative, spatiotemporal compari-
sons required for rigorous and informative genetic monitoring and 
for discovering the structure of natural populations. They will also 
allow adaptive incorporation of additional monitoring effort to ef-
ficiently reduce uncertainties and iteratively improve inferences 
about temporal changes in monitored systems. Finally, they will 
allow integration of new samples, including historical ones from 
archival collections, into a monitoring effort, thereby greatly ex-
panding the time scale over which monitoring can meaningfully 
occur. As a consequence of the parallel development of these 
models and genetics technology, genetic monitoring stands poised 
to provide a rich source of information for more effectively guiding 
real-time management decisions, monitoring the impact of human 
activities including changes in policy, and informing us about fun-
damental biological processes such as responses to global climate 
change.
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