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A central feature of living matter is its ability to grow and multiply. The
mechanical activity associated with growth produces both macroscopic
flows shaped by confinement, and striking self-organization phenomena,
such as orientational order and alignment, which are particularly prominent
in populations of rod-shaped bacteria due to their nematic properties. How-
ever, how active stresses, passive mechanical interactions and flow-induced
effects interact to give rise to the observed global alignment patterns remains
elusive. Here, we study in silico colonies of growing rod-shaped particles of
different aspect ratios confined in channel-like geometries. A spatially
resolved analysis of the stress tensor reveals a strong relationship between
near-perfect alignment and an inversion of stress anisotropy for particles
with large length-to-width ratios. We show that, in quantitative agreement
with an asymptotic theory, strong alignment can lead to a decoupling
of active and passive stresses parallel and perpendicular to the direction of
growth, respectively. We demonstrate the robustness of these effects in a
geometry that provides less restrictive confinement and introduces natural
perturbations in alignment. Our results illustrate the complexity arising
from the inherent coupling between nematic order and active stresses in
growing active matter, which is modulated by geometric and configurational
constraints due to confinement.
1. Introduction
Self-organization in multicellular biological systems is driven by inherent cellu-
lar activity. This non-equilibrium activity can take a variety of forms, including
self-propulsion from cell motility [1,2], active adhesion [3] or chemical activity
from metabolism or signalling [4,5], which also occur in non-biological active
matter [6,7]. Growth is one of the hallmarks of life. It constitutes another
process by which energy can be injected into the system at the microscopic
scale and has been shown to be able to balance out chemical interactions at
the level of large-scale behaviour [8]. The mechanisms by which growing
active matter self-organizes to form multicellular communities such as biofilms
[9,10] and functioning tissues [11–13] are complex and often involve other
forms of activity or internal regulation [14–17]. Here, we focus on the mechan-
ical aspects of growth, mediated by steric interactions between individual
rod-shaped cells and confinement. They are sufficient to reproduce alignment
and large-scale flow patterns observed in the initial stages of bacterial colony
formation [18–21] and represent a prime example for the class of systems
known as active nematics [22].

The consequences of these ingredients depend critically on the mechanical
environment: for freely expanding colonies in two dimensions, the overall
colony shows no preferred direction but generates locally orderedmicrodomains
arising from a competition between passive elastic properties and active extensile
stresses generated by growth, which are themselves functions of cell properties
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Figure 1. (a) Experimental observation of growing Escherichia coli exhibiting alignment when confined in a quasi-two-dimensional microfluidic trap. The openings
of the trap are at the top and bottom (bright refracting areas), the confining walls are towards the left and the right (outside the area shown here). Image recorded
by P. Bittihn and J. Hasty (UC San Diego) and used with permission of J. Hasty. (b) Illustration of Hertz-based repulsion force law (see also electronic supplementary
material, figure 1). (c) System configurations in a 50 × 50 channel after 7, 9 and 15 cell generations for parameter lmax ¼ 2 (top row) and lmax ¼ 6 (bottom row).
Colouring indicates orientation as defined in the colour wheel. (d ) Cuts along the length of a simulation channel with both height and length equal to 200 and
filled with lmax ¼ 2 (top) and lmax ¼ 6 (bottom) growing rods. Theoretical predictions (dashed) accompany simulation results.
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such as their length-to-width aspect ratio and growth rate
[19,23]. Topological defects typical for active nematics, which
arise naturally at the domain boundaries [23,24], have also
been shown to be important for the transition into the third
dimension [25,26].

In contrast, in both nature and lab experiments, colonies
often grow in confined environments. A prominent example
are rectangular channels, where populations of growing
rod-shaped cells develop global nematic order, with their
elongation direction oriented towards the exits (see figure 1a).
Despite the simple set-up, these systems show a plethora of
phenomena which have served to elucidate fundamental
processes governing growing active nematics in a number of
studies. In the course of these investigations, the emergence
and maintenance of global orientational order were attributed
to the response of the elongated particles to growth-induced
expansion flow [27] as well as to globally anisotropic stresses,
which build up due to the distinct boundary conditions in
different directions [28]. Similar to the local order characterized
by the microdomain size in freely expanding colonies, the
orientational order parameter for this global alignment was
found to depend on the mechanical parameters of the system,
such as the length-to-width ratios of the growing rods and
the growth rate, the latter also confirmed in experiments [29].
For near-perfect alignment, the system also becomes inhomo-
geneous in time and is characterized by intermittent
breakdowns of order due to a buckling instability [30,31].

The picture of anisotropic stress maintaining global order
is appealing, as it can be directly related to the geometry
of the system: in the direction of the openings, stress can be
dissipated more easily than in the confined direction perpen-
dicular to it, and this perpendicular stress can help stabilize
the emergent order, leading to a self-consistent, dynamic
steady state. While this phenomenology was reproduced by
a visco-elastic continuum theory and was also observed with-
out the perpendicular confinement [28], the buckling analogy
[30] (which is also related to anisotropic stress) and resulting
dynamical complexity [31] suggest that the interaction
between active and passive stresses becomes more complex
near perfect order.
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In this work, we further investigate this limit. By using par-
ticle-based simulations and coarse-graining the resulting
spatially varying stress tensor fields, we show that the picture
of excess stress perpendicular to the growth direction required
to stabilize alignment breaks down. Instead, we find that the
system can spontaneously organize into states with a long-
term average stress anisotropy which is inverted, i.e. showing
excess stress in the direction of growth. Starting from asympto-
tic theories for perfect alignment, we show that the resulting
stress tensor is consistent with a decoupling of active and pas-
sive stresses, which persists even in the case of open channels,
where confinement is not provided by perfectly straight walls
but by the fluctuating growing colony itself.
J.R.Soc.Interface
19:20220512
2. Methods
2.1. Agent-based modelling
We use an agent-based model of compressible rod-like cells that
grow in length and divide. Each rod is composed of a rectangular
fixed-width body with half-circle caps at both ends. Over time,
the total cell length l (which includes the caps) increases linearly
from lmax=2 to lmax and then divides into two daughter cells with
identical orientation w and randomly drawn growth rate from a
uniform distribution γ∈ [3/4, 5/4]. Neighbouring rods interact
mechanically only and repel one another according to the
Hertzian repulsion law [32]

FðdÞ ¼
Y
2

ffiffiffi
R
2

q
(2R� jdj)3=2d̂, jdj � 2R

0, jdj . 2R

(
ð2:1Þ

as illustrated in figure 1b, where d is the shortest connection between
the twocentre lines andR refers to the rod radius. Thesimulations are
set in the over-damped limit, such that the velocity of the ith particle
vi ¼ miFi, where Fi is the total force on particle i andmi is an anisotro-
pic mobility tensor derived by Tirado et al. [33–36] and given in
electronic supplementary material, equations (6)–(8). The model is
very similar to other models of dividing rods in the literature
[27,28,30,31] and builds on physical intuition, and hence, we refer
the reader to the electronic supplementary material for additional
details. One notable deviation from the norm is that we consider
our rods to be slightly compressible along their length with an
additional Hertzian spring as restoring force. This allows approxi-
mating stress fields without having to rely on virtual forces. Our
implementation of this model can be found in [37]. It builds upon
InPartS [38], and our in-house developed open-source framework
for agent-based simulations of interacting particles. Further details
can be found in the electronic supplementary material.

2.1.1. Confinement
We consider a two-dimensional channel with outlets on the two
opposing sides in the y direction and confinement on two sides
in the x direction. Particles are removed once their centre point
crosses the outlet boundaries. Confinement in the x direction is
modelled by walls that exert Hertzian forces as shown in
equation (2.1) on the cells, where d is now the shortest connec-
tion from the centre line of the cell to the wall. Two examples
of such channel simulations on a 50 × 50 unit domain are
shown in figure 1c. In our actual investigation, we will use
domains of size 200 × 200. All lengths are given in multiples of
the rod width, which is kept constant throughout this work,
and measurements are taken after discarding transient dynamics.

2.2. Extraction of continuous fields
To study the emergent dynamics at greater length scales, we com-
pute approximate continuum fields of the orientational order
parameter and stress tensor on a fine rectangular grid. We write
for the former

JðrÞ ¼ 1
ZðrÞ

X
k

expð2iwkÞaðk,DVÞ, ð2:2Þ

where a(k,ΔV ) is the overlapping area of particle k and small
sub-volume ΔV around point r, and the normalization factor
ZðrÞ ¼ P

k aðk,DVÞ corresponds to the total overlap area of all cells
with ΔV. The average orientation is given by

fðrÞ ¼ argðJðrÞÞ
2

, ð2:3Þ

where arg refers to the angle in the complex plane, and we divide
by two to account for the nematic symmetry. The scalar order
parameter within the same region is given by

jðrÞ ¼ jJðrÞj, ð2:4Þ
where ξ = 1 corresponds to complete alignment and ξ→ 0 to no
order. The stress tensor field is computed as follows [39]:

s ¼ � 1
2DV

X
k

X
l=k

hlklFkl � rkli, ð2:5Þ

where Fkl are the cell–cell interaction forces and 0≤ λkl≤ 1 is
fractional length of the line segment rkl = rk− rl that lies within
ΔV. Averages across larger areas or along an entire axis can then
be computed as required. Throughout this study, absolute stress
values are reported in units of S0, for which we arbitrarily
choose the central |σyy| for lmax ¼ 6 in a domain with our stan-
dard height of 200 length units (see electronic supplementary
material for an explicit definition of S0).

A useful quantity introduced by You et al. is the normalized
stress anisotropy [28]

DS ¼ jsxxj � jsyyj
jsxxj þ jsyyj , ð2:6Þ

which quantifies the excess stress across the channel, i.e.
perpendicular to the walls, in the direction of confinement.1
3. Results
3.1. Spatially varying fields
We set up the numerical experiments as described earlier by
placing four randomly oriented rods in the centre of a 200 ×
200 unit channel with confining walls at the sides, and let
the dynamics evolve for many cell division times. Examples
of this process are shown for a smaller domain and division
lengths lmax ¼ 2 and lmax ¼ 6 in figure 1c with snapshots
taken after 7, 9 and 15 generations, respectively. An important
observation is that preferential alignment is always directed
towards the channel outlets. However, the final, highly
ordered, columnar structure with ξ≈ 1 as in the second
example is only attained for lmax * 4, whereas for lmax & 4,
the steady state is characterized by imperfect order with ξ < 1.

For rods with lmax ¼ 2 (resulting in ξ≈ 0.5), we resolve the
stress field of the final steady state along the channel. We
find that both |σyy| and |σxx| take on a parabolic profile
with |σxx| being consistently larger, as shown in figure 1d
(top). The system is therefore, both locally and globally,
characterized by DS . 0, which has previously been
observed as typical [28], along with the intuitive explanation
that stress is more difficult to dissipate in the confined direc-
tion and needed to generate and maintain a preferential
alignment towards the channel outlets.
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However, cells dividing at a greater maximal length
lmax ¼ 6 (resulting in ξ≈ 1) exhibit a different behaviour, as
shown in figure 1d (bottom): here, measurements of the stress
tensor along a central cut through the channel show that,
while the vertical stress |σyy| follows the familiar parabolic
profile, the confined horizontal stress locks onto a constant
value in large parts of the domain. Surprisingly, this even
leads to an inversion of the stress anisotropy DS in the
colony centre, with the horizontal stress |σxx| remaining at
lower values than the vertical stress |σyy|.

Observing near-uniform values of |σxx| while |σyy|
changes continuously indicates a decoupling of the stresses
made possible by perfect ordering inside the channel. We will
approach the study of this (de-)coupling from two angles: we
begin by deriving limiting theories which reveal the physical
origin of |σyy| and |σxx| by predicting them separately.
We then continue numerically by modifying the geometry,
primarily impacting constraints on the horizontal stress.
ce
19:20220512
3.2. Column theory for active stress
A colony of our model rods has a well-defined and spatially
homogeneous distribution of cell age g∈ [0, 1) and growth
rate γ∈ [3/4, 5/4] described by

pðg, gÞ ¼ 2x
g
exp � xg

2g

� �
, ð3:1Þ

with a normalization parameter χ and averages

hgi � 0:985 and hgi � 0:441, ð3:2Þ
as derived the electronic supplementary material. With this
distribution at hand, we predict the parabolic stress profile
using the emergent and effectively one-dimensional columnar
structures. In this limit, we neglect all transverse (horizontal)
dynamics and derive an expression for the |σyy(y)| stress pro-
file within the colony. Also assuming incompressibility, a
generic continuity equation @trþr � ðvrÞ ¼ ar for the cell
density ρ with an effective growth rate α immediately leads
to the condition r � v ¼ a for the steady state, or ∂yvy = α for
our one-dimensional consideration. The effective rate α at
which line density is produced in our model can be calculated
from equation (3.1), such that

@vy
@y

¼ 1
hli

ð
gDl pðg, gÞdgdg ¼ hgiDl

hli ¼ hgi
h1þ gi , ð3:3Þ

where Dl ¼ lmax=2 is the length (including caps) by which a cell
grows between divisions and〈l〉 = Δl〈1 + g〉 is the average
length occupied by a cell. By defining y = 0 as the centre of the
colony with vy(y = 0) = 0, the velocity profile therefore becomes

vyðyÞ ¼ hgi
h1þ gi y ¼ m

@syy

@y
, ð3:4Þ

where the second equality represents force balance and μ is an
effective mobility that accounts for substrate friction, which, in
general, could be a function of density and therefore of y.
Again using the incompressibility assumption, it is computed
as follows:

m ¼ hli
m�1
k

D E , ð3:5Þ

where, in the agent-based model, the mobility parallel to the
symmetry axis μk is a function of the cell aspect ratio l/2R
with the cell radius R, as defined in the model description (see
electronic supplementary material), and the average can be
computed numerically. With the boundary condition that
the stress vanishes at the outlets, σyy(ymax) = 0, we integrate
equation (3.4) and obtain a parabolic stress profile

syyðyÞ ¼ hgi
mh1þ gi

ðymax � yÞ2
2

, ð3:6Þ

with the maximum stress at the centre. This result is used in
figure 1d to predict the stress profile and matches closely for
the case of lmax ¼ 6 while significantly underestimating the cen-
tral stress of lmax ¼ 2 due to compression effects neglected in the
theory. A more detailed comparison is shown in figure 2a,
where the maximal stress |σyy| is computed for a range of
division length values lmax. The theory matches numerical
results for long cells, the limit for which the theorywas derived,
as it yields the near-perfectly ordered quasi-columnar structure.
For shorter cells, disorder and compression become more rel-
evant, causing the theory to underestimate the measured
stresses. We conducted additional simulations with a single
one-dimensional columnof cellswhile freezing theorientational
degree of freedom (grey line in figure 2a). The fact that this
measurement matches the theory even more closely confirms
that a large part of the deviation is caused by transverse com-
pression, which effectively increases the density and thereby
also changes the mobility.

It may initially seem surprising that the theory approxi-
mately captures |σyy| even at small division lengths lmax & 4,
where the system self-organizes into a weakly ordered state
far away from a columnar structure assumed earlier. However,
on a mean-field level, the starting point of our incompressible
theory, including vx = 0, ∂yvy = α and the distribution of cell
ages, holds in the disordered system as well. Therefore, the
theory can also be viewed as an approximation to the disor-
dered two-dimensional scenario. An additional inaccuracy,
besides the violations of the incompressibility assumption
explained earlier, then arises from the anisotropic mobility of
the particles, which changes the estimate of μ in equation (3.5).

3.3. Passive stress theory
To determine whether active and passive stresses indeed
decouple in the highly ordered state, we calculate the expected
|σxx| arising only from the passive repulsion between neigh-
bouring columns. This is possible in such a state since the
overlap 2R− Δ between neighbouring columns can be calcu-
lated from the number of columns, the channel width
and the width 2R of a single cell. Parallel cells at distances Δ
from one another then exert Hertzian repulsion forces of
the form

fx ¼ Y

ffiffiffiffi
R
8

r
(2R� D)3=2 ð3:7Þ

on each other.
We then consider the line density of these force vectors

along the vertical axis: each cell pair has at most one interaction,
but depending on the cell length, which ranges between lmax=2
and lmax, and configuration, some cells may interact with up to
three cells on each side, as illustrated in figure 2b.

Considering two adjacent columns, we can count the
number of unique touching cell pairs. Every new cell in the left
column has one interaction partner on the right, and likewise
every new cell on the right interacts with the one to its left as
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indicated by red arrows in figure 2b. This scheme of counting
captures all interactions, and we write

sxx,passiveðDÞ ¼ 2
hliY

ffiffiffiffi
R
8

r
(2R� D)3=2 1� 1

2
4R
hli

� �
, ð3:8Þ

since on average there is a new cell every〈l〉 in each column.
The rightmost termrepresents acorrection factor: as illustrated in
figure 2c,whenever the cell caps are tooclose to those in the other
column, one of the two potential interactions is lost. Assuming
there are no long-range correlations between the neighbouring
columns, two cell cap regions are expected to overlapwith prob-
ability p= 4R〈l〉−1.

A first comparison with numerical estimates is shown in
figure 1d (bottom) where a dashed line indicates the expected
configurational stress |σxx| for 205 columns in the 200-unit-
wide channel using lmax ¼ 6. The measured value itself is
matched well by our theory, again with a slight underestima-
tion due to neglected compression along the columns, which
increases the line density of cells and therefore of the inter-
actions. Note that, in contrast to the theory for |σyy|
mentioned earlier, a meaningful comparison with the theory
for |σxx| is only possible for highly ordered states, like those
illustrated for lmax ¼ 6 in figure 1c,d (bottom). This is because
the theory requires a well-defined column number as input,
which itself is an emergent property of the steady state and
not a priori predicted.
3.4. Statistically negative stress anisotropy
An important input for the prediction is the exact number of
columns in the configuration, which is not predetermined by
the parameters of the system. Instead, it is an an emergent
result of the self-organization process that leads to perfect
alignment and, in principle, can also fluctuate over long time
scales [31]. Therefore, the question arises whether the inverted
anisotropy |σxx| < |σyy| in figure 1d (bottom) is typical, or,
more generally, what the distribution of the number of columns
is that the system naturally attains.

To evaluate this in detail, we generated channel simulations
with lmax ¼ 6 for slightly varying domain width. The result
is shown in figure 2d. The allowed discrete configuratio-
nal stress values for a fixed number of columns change
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continuously with the increasing domain width (dashed lines
with grey column numbers indicated next to them). For each
value of the domain width, 20 independent initial conditions
lead to a spectrum of observed column numbers, whose
stress values show excellent agreement with the corresponding
discrete levels. While a few simulation runs generated a state
with |σxx| > |σyy|, themajority exhibitDS , 0. This is further
emphasized by the marginal distributions shown in figure 2e.
3.5. Open domains
The channel geometry used so far is in many ways special:
not only does it impose a preferential direction for growth
(or, in fact, allows for only one possible flow direction)
but it also has perfectly straight walls which ensure that the
same amount of space is available to each column as cells
are pushed along the channel. Furthermore, the walls do not
introduce any perturbations. As we have seen, the passive
horizontal stress is purely determined by these boundary con-
ditions and is therefore also constant along the channel. Given
that the growth-induced active stress nevertheless drives the
self-organization process that selects a certain number of col-
umns, it may seem as if the special properties of the channel
confinement alone are responsible for the decoupling of the
two stresses and other unusual features of this state, such as
the negative stress anisotropy DS , 0.

To find out whether this is the case and better understand
the origin of emergent effects, we carry out simulations in rec-
tangular domains that have outlets on all four sides. Open
domains provide a weaker constraint on the dynamics as
they permit, a priori, flow in all directions. Still, for non-square
domains, we find preferential alignment between the long
opposing sides, as shown in figure 3a. From the initial un-
ordered phase, the dynamics produce a highly ordered
central region supported by disordered sides that generate
the required compression. This is a non-trivial result in itself
and highlights the system’s natural tendency to generate
order. However, due to the complex dynamics in the side
regions, the ordered phase may spontaneously become
unstable, leading to a macroscopic buckling event before the
ordered state is eventually re-established. An example of this
is shown in electronic supplementary material, figure S4.

Measurements of the stress tensor fields are shown in figure
3b–e. Analogous to figure 1d, these plots display stress profiles
as measured along a vertical cut through the domain centre
(figure 3b,c) and, in addition, the same along the horizontal
direction (figure 3d,e). For short cells, the behaviour along the
vertical shown in figure 3b is the same as in channels, and
along the horizontal axis (figure 3d), we find a profile that flat-
tens towards the centre. In the case of longer cells, as displayed
in figure 3c,e, the behaviour deviates from the channel simu-
lations. Most importantly, the open domains do not allow for
spatially homogeneous passive horizontal stress. Instead, hori-
zontal compression is actively generated near the domain sides
which can be seen from the steep increase in stress along the
horizontal cut in figure 3e. Still, the dynamics in the centre
are quite similar to the channel, as no horizontal motion is
apparent, and no active stress is generated horizontally due
to vertical nematic ordering (compare snapshot in figure 3a
and the flat part of the horizontal profile figure 3e). Therefore,
the horizontal stress in the central region can again be expected
to be mostly of passive origin, due to the compression of
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vertical cell columns. However, the fact that the horizontal
stress varies vertically in figure 3c (in contrast to figure 1d
bottom) means that the space that columns occupy is not
constant as in the channel, but increases from the middle
towards top and bottom. Therefore, the open geometry suc-
cessfully removed this artificial constraint imposed by the
channel walls and, at the same time, introduced perturbations
from the disordered sides. This lends additional weight to
the observation that, nevertheless, a negative anisotropy
|σxx| < |σyy| is clearly observed on average.

3.6. Length dependence
So far, we have only considered exemplary cell division lengths
lmax to understand the qualitatively different dynamics of short
and long cells. It is therefore natural to ask how the results com-
pare quantitatively across the entire lmax range and between
channels and open domains. A finely sampled length scan is
summarized in figure 4, displaying the average order par-
ameter ξ (figure 4a) and stress anisotropy DS (figure 4b) for
both geometries. These values are computed in a central
100 × 20 box around the centre of the domains. Averaging is
done over 150 instantaneous measurements sampled from
15 generations of time evolution and additionally over 10
independent initial conditions.

While always being slightlymore disordered, the dynamics
in the open domain centre closely resembles that of the chan-
nels across the full parameter range. In both cases, the order
approaches unity for division lengths lmax * 4, and this is
accompanied by a transition to negative anisotropy DS. Inter-
estingly, even though the order is slightly reduced in the
open domains for all lmax, they exhibit a cleaner relation of
lmax and DS as shown in figure 4b. Both effects mostly likely
have the same explanation, namely, that the lack of hard
boundaries in combination with the larger open domain
reduces finite-size effects in the column number.
4. Conclusion
We employed agent-based simulations to study the growth of
bacterial colonies in confinement. This topic has seen a range
of publications in recent years, but a careful analysis of the
interaction forces and the corresponding spatially resolved
stress fields has revealed previously unreported phenomena.

To understand the dynamics from a theoretical perspective,
we focused on the limiting case of perfect ordering. In this
limit, it was possible to predict the (active) vertical stress
field. It gives reasonable predictions even for short cells that
do not generate the column structure used in the derivation.

The column structure also allowed for an estimation of
the configurational horizontal stress. Comparison with simu-
lation data confirmed that, in the column structure, the
horizontal stress is indeed largely passive, with the theoreti-
cal prediction matching measurements up to a few per cent.

Many of the qualitative features of these states were also
found in simulations on open rectangular domains, which
revealed that, even without hard and flat walls, near-perfect
order and strong negative stress anisotropy may emerge.
This is an important result as it indicates that neither strong
ordering nor the negative stress anisotropy were an artefact
of the particular confining channel, but rather a natural emer-
gent property of the dynamics. It provides a compelling
argument that the ordered state can indeed be stable in the
presence of a (limited) stress anisotropy inversion.

Away from perfect order, there is a tight coupling of the
stress field components and order, as any imbalance in the
interaction forces causes microscopic reorientation away from
the direction of strongest compression. This feeds back to the
stresses, both through relaxation of the existing stress, as well
as by redirecting the active stress of growth. However, as the
order parameter approaches unity, compression along the prin-
cipal axes of the orientation field ceases to generate torques on
the rods involved and the components of the stress tensor
decouple. This decoupling then allows for the unintuitive
negative stress anisotropy we observed.

We note that the functional form of the passive stress theory
as derived here depends on the modelling details and, thus, in
itself does not provide generalizable insights.We did, however,
conduct a range of tests documented in the electronic sup-
plementary material to verify that the modelling details, in
particular those concerning the mechanical repulsion between
cells, do not impact our key observations concerning the stress
anisotropy of the emergent steady states.

The rectangular geometries in our study were chosen to
facilitate the analysis of the decoupling of active and passive
stresses by fixing the direction of the perfect alignment in
the lab frame and amplifying it to the scale of the system
size. However, as the open domains show, the decoupling
seems to be an intrinsic feature of near-perfect orientational
order. Therefore, it could also be relevant for the emergent
dynamics on other length scales, such as the growth and
break-up of microdomains in expanding colonies, which are
highly ordered patches at intermediate length scales
[19,21,40]. Moreover, the decoupling is closely related to the
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buckling instability, as it allows the build-up of unequal
stresses in the first place [30].

Another interesting connection to both microdomains and
buckling can be seen in the open domains themselves: the
rectangular geometry formed by outlets is sufficient to drive
the described ordering both instantaneously and in the long-
time average. However, at intermediate timescales, stochastic
buckling events are observed that break up even the macro-
scopically ordered domain in the middle region into smaller
fragments. The frequency of these events depends strongly on
the relative scales of the domain dimensions versus typical
microdomains which themselves depend on the division
length lmax. This effect required the use of many independent
initial conditions to produce figure 3ewithout significant fluctu-
ations in the |σxx| profile. The statistics of these events in open
domains and the connection to the smectic properties of the
column structure seem to warrant more detailed future investi-
gations (as done for the channel geometry [31]). Moreover,
interesting interactions between the different length and time
scales can be expected as the dimensions of the domain
approach those of a more symmetric square and the statistical
properties of the middle region gradually transition from
global order to those of typical microdomains.

Dell’Arciprete et al. [23] explain the underlying alignment
mechanism of the emergent dynamics using torques experi-
enced by rods in shear flow, similar to recent observations in
other geometries [21]. You et al. [28] on the other hand attribute
this to an anisotropy in the stress tensor. One could, of course,
argue that these two are not very different at all, given that the
stress field creates flows in the first place. However, our work
adds to this discussion. Unexpectedly, we found an inversion
of stress anisotropy in the strongly ordered limit, even in
open domains. This is not consistent with a purely stress-
based coupling. On the other hand, the observed stochastic col-
lapsing of the ordered structures in the open domains cannot
be explained using flow-based arguments only, as it lacks a
destabilizing mechanism for this case. A theory combining
both effects may be a promising avenue for capturing all
observed phenomena.

In this work, we presented a detailed analysis of a compu-
tationalmodel of growing rod-shaped particles and discovered
states inwhich activity-induced stresses, passive nematic prop-
erties, volume exclusion and confinement can interact in novel
ways and yield strongly anisotropic systems. Despite these
emergent intricacies, our model merely captures one specific
physical aspect of reality when it comes to the growth of bac-
teria in colonies or biofilms. It would be interesting to
elucidate what role the effects discovered here can play
among the complex processes that characterize natural sys-
tems. This includes nutrient distribution [16,41,42], which
leads to gradients of activity and thereby represents another
opportunity for the passive properties of the system to
become important, but also extends to structure formation in
three dimensions [20,41,42], interactions with other types of
activity such as motility and chemical signal production [43]
and different kinds of confinement [44]. In addition, it may
prove rewarding to look for even more general physical prin-
ciples by exploring the similarities the system exhibits to
dense systems of active polymers and filaments [45,46] due
to its columnar structure.

Data accessibility. The code necessary to reproduce the findings of
this study can be accessed at https://gitlab.gwdg.de/LMP-pub/
stressanisotropygrowingrods [37]. It is based on the open-source
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supplementary material [47].
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Endnote
1The physical meaning is identical to the definition in [28] despite the
difference in notation, which arises from a different orientation of the
channel, swapping x and y.
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