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This study proposes a new criterion for choosing the optimal decision in a game against nature under a partial a
priori uncertainty. The paper's main novelty consists in examining the situation when a part of the a priori
probabilities of states of nature is known, and the other part is unknown. We prove the theorems for choosing the
optimal decision as for the payoff and risk matrix, as well as for the profit matrix in the situation of a partial a
priori uncertainty. The proposed approach also generalizes the Bayes, Wald, Savage, Hurwicz, and Laplace criteria
since the minimum average payoff (or risk) for each of these criteria we can quickly obtain from the article's

derived formulas. A practical example of a game against nature under a partial a priori uncertainty illustrates the
proposed approach and shows its effectiveness compared to well-known criteria. We show that the introduced
criterion provides the choice of a decision that is also optimal in conditions of risk, which indicates the effective
use of the vector of known a priori probabilities.

1. Introduction

Game theory (GT) is increasingly penetrating the practice of eco-
nomic, technical, and military decisions. It is a tool to increase the
effectiveness of planned and managerial decisions. Game theory is of
great importance in solving industry, transport, agriculture, and trade
problems. So, GT helps to determine scientifically substantiated levels of
lowering retail prices [1] and the optimal level of inventories [2]; solve
the problems of tourist services [3], traffic control of urban transport [4],
and artificial intelligence [5]; find emerging signal processing applica-
tions [6] and plan the military operations [7], etc. Usually, GT is defined
as a branch of mathematics for the study of conflict situations. In general,
we can divide the GT into the theory of strategic games [8] and statistical
games [9], i.e., games against nature. In strategic games, some players,
when choosing their decision, consider what impact this decision, ac-
cording to their assumption, will have on the choice of policy by other
players. Statistical game is a specific type of matrix game, in which one of
the players is neutral, i.e., does not actively oppose the other participant
in the game but keeps his decision secret. Usually, we call such a player
“nature.”

In this article, we consider only games against nature. As is well
known [9], there are two players in a game against nature, only one of
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which acts consciously. We will call this player the decision-maker and
designate it as DM. Being the second participant in the game, nature is
neither the opponent nor the ally of player DM. The player nature, being
in one of the possible states, does not act against the player DM or in
favor of him; it does not pursue a specific goal and is indifferent to the
game's outcome. Moreover, player DM cannot exert any influence on the
state of nature. One of the crucial assumptions in the GT against nature
is the assumption that at any given time, the player nature can be in
only one of n possible states Sq,Ss, ..., S, that are collectively exhaus-
tive and mutually exclusive [10]. The set of states S1,Ss, ..., Sp is
formed either based on real experience or assumptions of experts. To
describe the game against nature, we also need a set of decisions of
player DM: {¢;, @5, ..., 9,}. When the probabilities of the states of
nature P(S1),P(Sz2),...,P(Sy) are known, such a situation is called the
decision-making under risk [11]. When the probabilities P(S1),P(S2), ...
,P(S,) are unknown, the corresponding situation is called the
decision-making under ignorance [11].

From the literature review (see Section 2) follows that over the past
75 years, in the GT against nature, depending on the availability of a
priori information about the probabilities P(S;), P(S2), ..., P(S,), the
following criteria have been proposed to select the optimal decision of
DM:
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e Bayes criterion

e Wald criterion

e Savage criterion
e Hurwicz criterion
e Laplace criterion

The Bayes criterion is used under the condition of risk, i.e., when the a
priori probabilities P(S1),P(Sz2), ..., P(Sn) are known. In the situation of
ignorance, i.e., when the probabilities P(S;),P(S2),...,P(S,) are un-
known, the criteria of Wald and Savage are usually used. Thus, the Bayes
criterion and the criteria of Wald and Savage correspond to two extreme
cases of risk (a priori probabilities are known) and ignorance (a priori
probabilities are unknown). The Hurwicz criterion recommends that
when choosing a decision not to be guided by either extreme optimism or
extreme pessimism. According to the Hurwicz criterion, the weighted
average between the losses of extreme optimism and extreme pessimism
is minimized, with the “weight” being the pessimism-optimism index o
between 0 and 1. The Laplace criterion is used when we can assume that
any of the states of nature is no more likely than the other. It means that
all states of nature are equally probable. Thus, Bayes, Wald, and Savage
created optimality criteria for complete a priori certainty (probabilities of
nature states are known) or complete a priori uncertainty (probabilities
of nature states are unknown). The Hurwitz and Laplace criteria are
subjective because either they require choosing the value of the
pessimism-optimism index or the equality of all probabilities of the states
of nature, which in most cases cannot be justified.

In practice, however, there are cases of partial uncertainty when there
is a priori information about some probabilities of states of nature. For
example, such a problem appears in artificial intelligence and machine
learning at an increase of groups of observed objects provided that the a
priori probabilities of dividing the source objects into groups (classes) are
known. The well-known optimality criteria do not cover such cases.
Therefore, there is a certain gap not covered by classical criteria. The
application of the Wald, Savage, Hurwicz and Laplace criteria under
conditions of partial a priori uncertainty may turn out to be ineffective
due to ignoring information about a part of the probabilities of the states
of nature. The purpose of this study is to develop a new criterion for
choosing the optimal decision of DM in a game against nature under a
partial a priori uncertainty. Contrary to previous studies, the proposed
approach assumes that a part of a priori probabilities is known. Thus, the
proposed criterion is a kind of bridge between the two extreme cases that
meet the criteria of Bayes and Wald. Besides, the developed criterion
generalizes the Wald, Savage, Hurwicz, Laplace, and Bayes criteria since
the minimum average payoff (or risk) for each of the listed we can easily
obtain from the derived formulas in this article. A practical example of a
game against nature under a partial a priori uncertainty shows that the
proposed criterion provides the choice of the decision that is also optimal
in the condition of risk, which indicates the effective use of the vector of
known a priori probabilities.

The article's organization is as follows: Section 2 provides a literature
review on the existing optimality criteria in a game against nature. Sec-
tion 3 considers the decision-making under a partial a priori uncertainty.
Section 4 presents the results and discussion. The conclusions are
formulated in Section 5. We place nomenclature and references at the
end of the article.

2. Review

Suppose that the payoff matrix C, =|| C;; || (i=1,m, j= 1,n) and the
risk matrix R =|| R;; || are known, where Cj; is the payoff associated with
the decision ¢; and state of the nature Sj, and R;; is the difference be-
tween the payoff that the DM could get with the i-th decision and the
effect that the DM would get if he knew the actual state of nature, i.e.,

Rij = Cjj — min C;;. At first, let's formulate the existing criteria when
i=1m

matrix Ct, is considered in terms of the cost.
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Then, the Bayes decision ¢, is the optimal because it minimizes the
average risk [9, 10].

i=1,m

n
(pgpt => ZRUP(S}) = le
=1

ZRUP(SJ')} : @
j=1

Criterion (1) is formulated similarly for the case of the payoff matrix
I Cij |l

The uncertainty associated with the complete lack of information
about the probabilities of nature is the worst or hopeless. In this situation,
the criteria of Wald [12] and Savage [13] are used to determine the best
decision of DM. From the standpoint of the Wald criterion, the DM
considers nature as an aggressively disposed and consciously acting ad-
versary. If, according to the game condition, in the original matrix Cp,
component C;; represents the DM's payoff, then he selects a decision that
satisfies the minimax value.

¢P* = min max Cj;. @
i=1,m j=1n

According to the Wald criterion, we select the best decision from all
the most unlucky results; this is the reinsurance position of extreme
pessimism designed for the worst case.

When using the Savage minimax risk criterion, the choice of decision
is similar to that according to the Wald criterion with the difference that
the DM is guided not by the payoff matrix Cp, but by the risk matrix R:

¢%" = min max R;;. 3
i=1m j=1n

Application of the Savage criterion allows the DM by any means to
avoid a significant risk when choosing a decision.

The Hurwicz criterion of pessimism-optimism [14, 15] recommends
that when choosing a decision to be guided by some average result
characterizing the state between extreme pessimism and unbridled
optimism. It uses the following two assumptions: nature can be in the
most favorable state with probability o and in the most unfavorable state
with probability (1 — ), where o is the pessimism-optimism index,
a € [0,1]. The best decision by the Hurwicz criterion satisfies the
following condition:

(p‘v’l’t:min[ocmin Cij + (1 — a) max Cw} @
i=1m j=1n j=1n

At o = 0, Hurwitz's criterion coincides with the Wald criterion. For
a = 1, the choice of DM decision is subject to the least of all possible
payoffs (min Cj;).

For the risk matrix R, the Hurwicz criterion of pessimism-optimism
has the following form:

(p;’p‘:mg ocrni_n Ri_j+(1—(x) max Ri_j 5)
i=1m j=1ln j=1n
For o = 0, the choice of decision is carried out according to the

Savage minimax risk criterion; when a = 1 - by the condition of the least
of all possible risks (min R;;).

The DM chooses the value of a from O to 1, depending on his (or her)
tendency to pessimism or optimism.

Giang [16] proposed a further extension of the Hurwicz criterion
(t-anchor criterion), developing a decision-making model under uncer-
tainty that combines Hurwicz-Arrow's decision-making theory under
ignorance with the theory of subjective probability [17].

Fargier and Guillaume [18] proposed new qualitative criteria (R~ and
R") in the decision-making problem under ignorance that arbitrates be-
tween pure pessimism and pure optimism Hurwicz criterion.

Krug et al. [19] compared the Hurwicz, t-anchor, and R+ and R
criteria and concluded that these criteria could be classified into two
groups: t-anchor and R’, and R- and Hurwicz. The first group criteria
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always lead to extreme solutions. The second group criteria may lead to a
compromised solution.

The Laplace criterion [20] postulates that if no information is avail-
able about the a priori probabilities P(S1),P(S2),...,P(Sn), it is reasonable
to assume that they are equal. Therefore, if there are n nature states, the
probability of each is 1/n.

The best by the Laplace criterion decision satisfies the following
condition:

PP == Zwa min |:H ZRU

(6)

i=1,m

If in the original matrix C;, by the condition of the problem, the result
C;; represents the profit of the DM, the Bayes, Wald, Hurwicz, and Lap-
lace criteria have the following well-known formulations:

ax; {Z CiiP(S)) } ; Q)
=

n
o =D _CuP(S) =
=1

@ = max,_mmin_i; Cyj, (8)
o' = max |:(x max Cj;+ (1 —o)min Ci_,} , 9)
i=lm| j=1n j=1n

@ = max { Z cl,} (10)

i=1m

In recent decades, the classic criteria for decision-making under
conditions of uncertainty have been extended based on the belief
functions introduced by Dempster [21, 22] instead of the probabilities
of nature states. Schafer [23] applied the theory of the belief functions
to the decision-making process under uncertainty. For each action, a
belief function is constructed considering possible consequences.
Then, a combination of beliefs and goals is determined to estimate the
secured value and the rejected value for each action. Denoeux [24]
conducted a detailed review of using the belief functions in the game
theory against nature. The author considered extensions of classical
criteria in the case of using belief functions. He analyzes the lower
and upper expected utilities [25, 26, 27] to construct generalized
maximin and maximax criteria. Further, the author shows how the
Hurwicz criterion can be generalized by introducing the expected
utility and some other improvements proposed in [28, 29, 30]. The
author also analyses the pignistic criterion developed in [31, 32],
which generalizes the Laplace criterion of insufficient reason when
belief functions evaluate uncertainty. Finally, the author analyses the
extension of the minimax regret criterion to belief functions consid-
ered in [33].

From the analysis of published studies on the criteria for choosing the
optimal decision in a game against nature, we can draw the following
conclusions:

1. The classical criteria of optimality, Bayes, Wald, and Savage, are
applicable either for conditions of complete a priori certainty or
complete a priori uncertainty. The Hurwitz and Laplace criteria are
subjective because they require either to choose the value of the
pessimistic-optimistic index or the equality of all probabilities of
nature states.

2. In recent years, new criteria have been developed. The t-anchor cri-
terion introduces the tolerance for ignorance (t) defined in the in-
terval [~ oo, + oo]. The selection of the optimal decision is based on
the representation theorem [16]. The R+ and R criteria generalize
the maxmin and maxmax criteria introducing the optimism threshold
defined in the interval [- oo, + o0].
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3. The classical criteria of optimality under conditions of uncertainty
have been extended based on the belief functions, which replaced the
probabilities of states of nature. However, the choice of these func-
tions is mainly subjective [34].

4. The classical optimality criteria do not consider the case of a partial a priori
uncertainty in which we know a part of the a priori probabilities of the
states of nature, and the other part is unknown. We can find an example of
such a classification problem in trade with the classification of customers
and goods. As shown in Section 4, the solution to such a problem based on
the proposed approach allows optimization of marketing decisions by
reducing costs compared to classical criteria under ignorance.

3. Decision making under a partial a priori uncertainty

Cases of complete a priori certainty and ignorance are extreme. The
intermediate cases correspond to a situation with partial uncertainty.
Consider when r < n a priori probabilities are known, and the values of
n —r probabilities are unknown. We introduce the following designa-
tions: Py = P(S1),P(Sn) and Pp_, = P(Sr41),P(Sn).

Let us represent the average payoff for ¢; decision of DM as follows:

payoff <Pl ZCIJP Z Clmp (11)
o=r+1
The second term in (11) includes unknown probabilities

P(S,11), P(Sn).

Definition 1. The decision ¢, = ¢}™ is called partially-minimax if

Y Ci.LuP(Sm) 9 (12)

o=r+1

+ max

i=1,m Py rc¥

Cpayoff [(pu7 Pn r (p\/ = min |: Z CUP

where P, (¢,) is the least favorable distribution of vector P,_, at deci-
sion ¢, and W is the set of feasible solutions.

Theorem 1. If

> CuP(s) +
j=1

— ZP(SJ')] max C,,
=

o=r+1.n
r r a3
= _rnin{ ZCUP(S,) +[1- ZP(SJ-)} max C,»_m}
i=1m =1 =1 o=r+1n

then ¢, is the partially-minimax decision, i.e., ¢, = ™.

Proof. With the decision of ¢, and the least favorable distribution of the
vector of unknown probabilities P, .(¢,), the average payoff is of the
following form:

CuoP(S,). 14

CPG}'Off [(pu7P;—r ((pv)} = ZCVJP(S) + max

j=1 Prr ¥ o=r+1

Let us write the second term of (14) separately as

n

pr,.l}?e)fv Cy0P(S,). (15)
o=r+1

Optimization problem (15) is a linear programming formulation [35].
As is well-known from the linear programming theory, the solution to the
problem (15) exists if the set ¥ is convex polyhedron and the maximized
objective function is bounded above. Let us show that these conditions
are satisfied. Let P and P'?  be arbitrary points of the set ¥ and
0 < A < 1. Then the set ¥ is a convex if

which is equivalent to the condition
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PO(S,)=1->"P(S)) A7) Coor [0,. P, (9,)] = mm{ > CyP(S) + 1 P(sj)} max ci_m}.
w=r+1 j=1 i=1,m j=1 j=1 o=r+1,n
Indeed, (25)
PO(S,) = > [WPI(S,) + (1 = P(S,)] = A Z pw 1) ) P?
o=r+1 w=r+1 o=r+1 o=r+1
. , (18)
—7{1— PS)| +@-n[1->P(S }—1—21)
j=1 j=1

The set ¥ is a convex polyhedron since it is formed by the intersection
of a finite number of half-spaces P(S,,) > 0 and the hyperplane

P(S,) =1~ ip(s,)
j=1

The second term of function (11) is bounded above since the
following inequality always holds:

zn: CiwP(S)

o=r+1

n

>

w=r+1

19

< max Gi,. (20)

o=r+1,m

Thus, the solution to the optimization problem (15) exists. As is well
known, the solution to the linear programming problem (15) is located at
one of the vertices of the set W. Let us show that the points

r r
PIV=1-Y"P(s), L |, PP = 10,1-> P(S), 22|,
n—r j:1 ( J) 07 07 0:| n—r |: ; ( J) 07 0’“.7 0:|

are the vertices of the set . Indeed, each point P® (k=r+1,n) sat-
isfies a system of n — r linearly independent constraints
P(S)=1— ZP

=0, 0=r+1,n 0#k, (22)

as exact equalities and, therefore, is the vertex of the set W. At an arbi-

trary vertex P, the average payoff is defined as

ZCUP 1- ip(sj)]c k

Since the number of vertices is finite, in one of them, the second term
of function (23) reaches the maximum, which corresponds to the least
favorable distribution of the vector of unknown probabilities at decision
@;. Therefore,

Cpayoff (P, (23)

r

n r(q)l)} = CiJP(S]) +

Jj=1

max G, (24)

o=r+1,n

Cptwff [

1- jil:p(sj)}

where P,, ,(¢;) is the least favorable distribution of vector P,_, at deci-
sion ;. It follows from condition (13) that the minimum of average
payoff with the least favorable distribution of unknown probabilities will
correspond to the decision ¢, of DM, i.e.,

Thus, @, is the partially-minimax decision, i.e., ¢, = ¢?™. The theo-
rem is proved. The partially-minimax decision guarantees that for any a
priori distribution of the vector P, , other than P, (g,), the average
payoff will not exceed the value determined by (25). If we use the risk
matrix || R;; ||, then (13) takes the following form:

max R,

S-rs) + 1 - D(sjﬂ
= R,P 1- P(S; Riy -
?1",1{2 j 2. (,)} e }

j=1
As it is easy to see, we can obtain all the known criteria from (13) and
(26). Indeed, for r = n, from (26) the Bayes criterion (1) follows; forr =0,
from (13) and (26), we obtain the Wald criterion (2) and the Savage
criterion (3); if r =1, from (13) and (26) we get a criterion that is close to

(26)

B - {,_/_ 1-3(s) e

0,0,...,0 =

the Hurwitz criteria (4) and (5), and finally, from (26) when r = n and
P(Sj) = 1/n we obtain the Laplace criterion (6).

Let us now consider when the original matrix || C;; || represents the
profit of the DM.

Definition 2. The decision ¢, = @)™ is called partially-maximin if

CPTOf [(pw P;—r((pv)] max Z CIJP + min Ci.u)P(Su)) ) (27)
i=Im Prre¥ o=r+1
where G is the average profit.
Theorem 2. If
r r
> CuP(S) + |1 - ZP(S,-)] min C,,
=1 =1 o=r+1,n
r (28)
= max CP 1- P(S;)| min G;
i= lm{ Z Y J:Zl ( J):| o=r+1n ltm}

then ¢, is the partially-maximin decision, i.e., ¢, = ¢0™". The Proof of
statement (28) is similar to the proof of Theorem 1. We can see from (28)
that the proposed criterion generalizes criteria (7)—(10). Indeed, for r =
n, from (28), the criterion of maximum average profit (7) follows; forr =
0, from (28), we obtain the maximin criterion (8); for r = 1, from (28),
we get a criterion that is close to the Hurwicz criterion (9), and, finally,
when r = n and P(S;) = 1/n we obtain the Laplace criterion (10). Thus,
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Table 1. Matrix of decisions and payoffs.

Decision ¢;/Payoff in the state S; S Sa Ss Sy Ss

@ 11,000 11,100 11,500 13,200 13,400
% 11,900 12,700 13,000 13,500 14,000
@3 10,900 11,800 12,000 12,100 13,300
@4 12,200 12,500 13,100 13,400 13,900
@s 12,600 13,100 12,200 11,900 11,600

Table 2. Results of calculations.

Decisions Expected gift costs ($)
Proposed criterion Wald criterion Hurwicz criterion Bayes criterion
@ 11,935 13,400 12,200 11,925
[ 12,960 14,000 12,950 12,935
@3 12,085 13,300 12,100 12,025
' 12,990 13,900 13,050 12,965
@5 12,395 13,100 12,350 12,305
the proven mathematical relations (13), (26), and (28) generalize the Let vector of a priori probabilities of states S;,Ss, ..., Ss be Py = 0.3,

relations for the minimum average payoff (or Bayes risk) and the
maximum average income that meet the criteria of Bayes, Wald, Savage,
Hurwitz, and Laplace.

4. Results and discussion

Let us consider the features of the application of the proposed crite-
rion in the following example. A car dealer decided to run an advertising
campaign “gift for buying a car.” Five possible gift options were chosen:
¢, —abicycle, ¢, —a TV, @3 —a video camera, ¢, — a refrigerator, and @5 —
a paid tourist trip. The costs of this advertising company depend on the
activity of car purchases during the campaign. The marketing department
predicts five possible options for consumer activity: S;,S2, ..., Ss. Table 1
presents the total costs for each gift option depending on the consumer
activity option.

1.4x10*
N 1
_ 130T N,
%)
g \
o
>
= 4 \
B 1.2x10 e e e
%D 3 \
(5]
E 1 — Wald \
4 — a
e 2 — Hurwicz
3 — Bayes
4 - Proposed
1x10* J
0 0.2 0.4 0.6 0.8 1

Pessimism-optimism index (o)

Figure 1. A graphical presentation of the average payoff calculated according to
the criteria of Wald (curve 1), Hurwicz (curve 2), Bayes (curve 3), and proposed
(curve 4).

0.2, 0.15, X, X and P, , =Ps_3 = XX, i.e., the probabilities P(S;) and
P(Ss) are unknown. Using the proposed criterion, the DM should make
the best decision on choosing a gift for this car dealer.

Using (25), we calculate the average payoff in choosing each of the
gifts. Table 2 shows the calculation results for the proposed partially-
minimax decision and the decisions of Wald, Hurwicz, and Bayes
criteria. When calculating average payoff by the Hurwicz criterion, we, as
usual, set & = 0.5. Since the sum of the known probabilities is 0.65, then
just for comparison we assumed that for the Bayes criterion P(S4) = 0.05
and P(Ss) = 0.3.

As can be seen in Table 2, according to the proposed criterion, the
optimal decision is to choose ¢, i.e., to choose a bicycle as a gift. Ac-
cording to the Wald criterion, optimal is the decision ¢s, i.e., choosing a
tourist trip as a gift. Optimal by the Hurwicz criterion is the ¢4 decision,
i.e., the choice of a video camera. Finally, according to the Bayes crite-
rion, the best decision is also ¢;. The minimum expected gift costs for
each criterion are bolded in Table 2. Thus, the proposed approach in this
example provides the choice of a decision that is also optimal under risk,
which indicates the effectiveness of the proposed approach in the con-
dition of partial a priori uncertainty.

Figure 1 shows a graphical presentation of the minimum average
payoff calculated according to the criteria of Wald (curve 1), Hurwicz
(curve 2), Bayes (curve 3), and proposed (curve 4). As we can see in
Figure 1, the proposed criterion gives the best approximation to the value
of the average payoff calculated by the Bayes criterion under the con-
dition that all a priori probabilities are known.

We should also note that the minimum average payoff by the Hurwicz
criterion leads to the same payoff as by the Bayes criterion at a = 0.575,
but this value of a is not known a priori. Moreover, the optimal by the
Bayes criterion is the decision ¢, , and not ¢4 as according to the Hurwicz.
Thus, the proposed criterion gives, firstly, the coincidence of the optimal
decision with the Bayes decision under the assumption that all a priori
probabilities are known and, secondly, a close value of the minimum
payoff.

We should note that the proposed approach to decision-making covers
only those cases of partial a priori uncertainty in which at least one or more
probabilities of states of nature are known. However, there are other cases
of partial a priori uncertainty in practice, in which the existing information
can significantly increase the effectiveness of the made decisions. For
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example, sometimes, the probabilities of states of nature are functions of
the distribution densities of random variables, and some of these densities
are unknown. For this and other partial a priori uncertainty situations, one
can prove theorems similar to Theorems 1 and 2.

5. Conclusion

The article has proposed a new criterion for choosing the optimal
decision in a game against nature under a partial a priori uncertainty. We
have proved the theorems allowing us to choose the optimal decision in a
situation when only a part of the a priori probabilities of the states of
nature is known. The proposed criterion generalizes the Wald, Savage,
Hurwicz, Bayes, and Laplace criteria since the minimum average payoff
(or risk) for each of the listed we can easily obtain from the derived
formulas in this article. Indeed, if all the a priori probabilities of the states
of nature are unknown, then the Wald and Savage criteria follow from the
proved theorems. If only one a priori probability is known or the
pessimism-optimism index is introduced, we obtain the very close cri-
terion to the Hurwicz. With all the a priori probabilities of the states of
nature known, we obtain the Bayes criterion. And, finally, if there is no
information about the prior probabilities of the states of nature, then
assuming them to be equal, we obtain the Laplace criterion. A practical
example of a game against nature under a partial a priori uncertainty
shows that the proposed approach provides the choice of the decision
that is also optimal under risk, i.e., in conditions of complete a priori
certainty, which indicates the effective use of the vector of known a priori
probabilities. Besides, it has been shown that the proposed criterion also
provides a value of minimum average payoff very close to the amount of
payoff by the Bayes criterion; the latter we calculated under the
assumption that all a priori probabilities are known. Finally, we should
note that the proposed criterion for choosing the optimal decision in a
game against nature under conditions of a partial a priori uncertainty is a
kind of bridge between the two extreme cases that meet the criteria of
Savage and Bayes. On this bridge, we can smoothly move from the
Savage criterion to the Bayes criterion as statistical information on the
probabilities of nature states has been accumulating. Such a movement
cannot be made using the Hurwicz criterion since the choice of the
pessimism-optimism index is very subjective.

Our future work will be related to considering a situation in which the
a priori probabilities of the states of nature are functions of the distri-
bution densities of random variables, and some of these densities are
unknown. For this situation of a partial a priori uncertainty, we plan to
prove theorems that allow us to choose the optimal decision of the de-
cision-maker.
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