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Abstract

The role of foot-and-mouth disease virus (FMDV) persistently infected ruminants in initiating

new outbreaks remains controversial, and the perceived threat posed by such animals hin-

ders international trade in FMD-endemic countries. In this study we report longitudinal anal-

yses of genetic and antigenic variations of FMDV serotype O/ME-SA/Ind2001d sublineage

during naturally occurring, persistent infection in cattle and buffalo at an organised dairy

farm in India. The proportion of animals from which FMDV RNA was recovered was not sig-

nificantly different between convalescent (post-clinical) and sub-clinically infected animals

or between cattle and buffalo across the sampling period. However, infectious virus was iso-

lated from a higher proportion of buffalo samples and for a longer duration compared to cat-

tle. Analysis of the P1 sequences from recovered viruses indicated fixation of mutations at

the rate of 1.816 x 10-2substitution/site/year (s/s/y) (95% CI 1.362–2.31 x 10−2 s/s/y). How-

ever, the majority of point mutations were transitional substitutions. Within individual ani-

mals, the mean dN/dS (ω) value for the P1 region varied from 0.076 to 0.357, suggesting

the selection pressure acting on viral genomes differed substantially across individual ani-

mals. Statistical parsimony analysis indicated that all of the virus isolates from carrier ani-

mals originated from the outbreak virus. The antigenic relationship value as determined by

2D-VNT assay revealed fluctuation of antigenic variants within and between carrier animals

during the carrier state which suggested that some carrier viruses had diverged substantially

from the protection provided by the vaccine strain. This study contributes to understanding

the extent of within-host and within-herd evolution that occurs during the carrier state of

FMDV.
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Introduction

Foot-and-mouth disease (FMD) is a highly contagious vesicular, viral disease of domesticated

and wild even-toed ungulates. The classical clinical FMD syndrome in ruminants is character-

ised by fever, anorexia, lameness, and vesicles in and around the mouth, feet, and teats. Mor-

bidity can reach 100%, whereas high mortality occurs occasionally amongst young-stock [1–

3]. The causative agent, FMD virus (FMDV), is the prototype member of the genus Aphtho-
virus in the Picornaviridae family [4]. The FMDV viral particle contains a single-stranded posi-

tive sense RNA genome of approximately 8.2 kb nucleotides in length, enclosed in an

icosahedral non-enveloped capsid consisting of 60-copies of each of the four structural pro-

teins VP1, VP2, VP3 and VP4 [5]. Seven genetically and antigenically distinct serotypes of

FMDV exist (O, A, Asia-1, C, SAT1-3), and within each serotype there are a substantial num-

ber of topotypes/genotypes and lineages which have varying degrees of genetic and antigenic

diversity [6].

FMDV-infected ruminants typically clear generalized infection within 10 days. However,

approximately 50% of FMD-recovered ruminants become FMDV-carriers, defined as animals

from which FMDV can be detected in oro-pharyngeal fluid (OPF) more than 28 days post-

infection [7–9]. The mechanisms that mediate FMDV persistence in specialized regions of

nasopharyngeal mucosa are incompletely elucidated, but have been shown to result from a

dynamic host-virus interaction at the site of persistence [10–12]. Additionally, vaccination

does not protect against persistent infection [10, 11, 13], and vaccinated animals often experi-

ence neoteric, subclinical infections [14]. The duration of FMDV persistent infection may be

influenced by a combination of undetermined host and viral factors, and may vary from

months to years depending upon the epidemiological context [15–17]. The role of persistently

infected animals in the evolution and ecology of FMDV remains controversial [7, 18].

Although circumstantial evidence from field studies has linked carrier cattle to subsequent

outbreaks [19–23], transmission from persistently infected cattle to susceptible naïve animals

has not been demonstrated under experimental conditions [24, 25]. Yet, oropharyngeal fluid

harvested from carriers has been demonstrated to be infectious to naïve cattle [26]. Regardless

of the epidemiological and physiological basis for risk of transmission from carriers, the per-

ceived risk restricts foreign trade of animals and animal products from endemic regions [27].

Several studies have reported the antigenic and genetic variants of FMDV in the virus popu-

lation recovered from persistently infected cattle and buffalo under experimental conditions

[12, 25, 28–31] or under natural field conditions [14, 17, 21, 32–36]. Although within-host

genetic variation is common during persistent infection, no consistent genetic changes associ-

ated with persistent infection have been identified across studies.

FMDV serotypes O, A, and Asia1 are endemic in India, and serotype O is responsible for

more than 80% of FMD outbreaks in the country [2]. Under the FMD Progressive Control

Program in India, cattle and Asian buffalo (Bubalus bubalis) are vaccinated every 6 months;

however outbreaks continue to occur throughout much of the country [37]. Additionally,

many viral strains, including the lineage O/ME-SA/Ind2001d, originated in the Indian sub-

continent and have spread to other countries in the Middle East and Southeast Asia [38, 39].

Furthermore, some strains of O/ME-SA/Ind2001d isolated in India were found to be antigeni-

cally divergent from the vaccine strain, highlighting the importance of vaccine matching and

continued monitoring of viruses circulating in the field [40].

The purpose of the current study was to investigate the genetic and antigenic variation of

FMDV serotype O/ME-SA/Ind2001d lineage isolated from samples collected sequentially over

a period of 13 months from persistently infected cattle and buffalo following a natural FMD

outbreak under field conditions on a dairy farm in India. The primary goal was to explore the
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within-host molecular evolution of persistent FMDV and the potential influence that viral

nucleotide variability has upon the emergence of antigenically variant viruses from persistently

infected cattle and buffaloes.

Materials and methods

Permissions and ethics

The field outbreak investigations described herein were conducted by federal staff of the Direc-

torate of Foot-and-Mouth Diseases (DFMD) within the Indian Council for Agricultural

Research (ICAR), Government of India (GOI) as part of their official duties. All cases

described herein occurred spontaneously in domestic livestock with no experimental inocula-

tion or treatment of live animals. No animals were anesthetized or euthanized for the purpose

of this study. Sample collection was performed as part of routine field outbreak investigations;

samples were subsequently compiled for the sake of the current investigation. As per local

standard of operating procedure, ethics approval was not required for the work presented

herein. Furthermore, no ethics committee exists with oversight of such activities.

Herd background, FMD outbreak, and case definitions

The herd and epidemiological aspects of the associated 2013–14 FMD outbreak have been

described in detail previously [41]. Briefly, the current study describes FMDVs derived from

samples from an FMD outbreak that occurred at a privately managed, modern dairy farm

located in Chattisgarh state, India. The farm was comprised of 4765 cross breed Holstein-Frie-

sian cows, heifers, and Murrah buffaloes. The herd was intensively managed, and the animals

were kept in pens which were in close proximity to each other. Animals were routinely vacci-

nated with a trivalent (Serotypes O IND R2/1975, A IND 40/2000, and Asia-1 IND 63/1972)

inactivated FMD vaccine four times per year. A presumptive clinical case of FMD was first

reported on 24th December 2013, characterised by fever, vesiculo-erosive lesions on the ton-

gue, and inter-digital lesions. Subsequently, the syndrome was definitively diagnosed as FMD

by conventional multiplex PCR (mPCR)[42] and antigen-ELISA at the central FMD labora-

tory, Mukteswar. Additional cases of FMD were recorded for 39 days, and the last case was

reported on the farm on 31st January 2014.

All animals were observed daily, and the presence of clinical signs of FMD were determined

by the farm’s attending veterinarian. Subsequent to the outbreak, and for the purposes of this

study, animals from which FMDV was recovered were classified as either convalescent or sub-

clinical according to the presence or absence of clinical signs of FMD during the outbreak.

Convalescent animals had clinical signs of FMD during the outbreak, however all signs of

FMD resolved in convalescent animals within 10 days of appearance. Subclinical animals did

not have clinical signs of FMD during the outbreak, but were later determined to have been

subclinically infected (neoteric subclinical infection) by detection of FMDV or FMDV RNA in

OPF. In order to investigate the infection dynamics of FMDV-persistence, OPF samples were

collected from 21 convalescent cattle (CC), 16 subclinical cattle (SC), 11 convalescent buffalo

(CB), and 6 subclinical buffalo (SB) at 2–3 month intervals for 13-months subsequent to the

outbreak. Some of the selected animals were sold during the sampling period, and not all

selected animals were available at every time point. The total number of cattle sampled at each

time point ranged from 27–29 (n = 37, total cattle sampled within the study), and the total

number of buffalo ranged from 6–15 (n = 17, total buffalo sampled within the study).
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Sample collection and processing

During the acute phase of the outbreak, tissue samples of vesicle epithelium from affected ani-

mals were collected and transported to the laboratory in 50% buffered glycerine (pH7.0).

These tissue samples were processed as 10% emulsion of homogenised suspension in PBS, and

the lysates were centrifuged at 3000g for 15 minutes. The supernatants were used for virus iso-

lation (VI), antigen-ELISA, and extraction of viral RNA for genome amplification. OPF was

collected using a probang cup [43] and samples were treated with trichlorotrifluoroethane

(TTE) to dissociate the FMDV-antibody complex as previously described [44]. All processed

OPF samples and clinical sample supernatants (approximately 300μl) were inoculated onto

LFBK-αVβ6 cell monolayers for virus isolation, and the remainder of the samples were stored

at -70˚C for further use. Substantial effort was exerted to standardize sample cold-chain and

processing protocols across batches in order to minimize artifactual effects upon detection of

FMDV and viral RNA.

FMDV RNA detection

Approximately 500μl of supernatant of clinical sample suspension or OPF prior to TTE

treatment was used for the extraction of total RNA using an RNeasy Mini Kit (QIAGEN,

Germany). The extracted RNA was quantified using Nanodrop spectrophotometer (Ther-

moScientific, USA) and reverse transcribed using MMLV reverse transcriptase enzyme

(Promega, USA) and oligo d(T)15 primer. To improve the sensitivity and specificity of

FMDV RNA detection, samples were analysed using both serotype-differentiating agarose

gel electrophoresis-based RT-mPCR [42] and SYBR green rRT-PCR [45], with results inter-

preted in parallel (samples were considered positive if they were positive on either test). The

RT-mPCR was originally developed and optimized to differentiate the three serotypes (O, A

and Asia1) of contemporary FMD viruses circulating in India, utilizing primers targeting

the VP1 region. The SYBR green rRT-PCR was developed as an adaptation of a previously

described qRT-PCR protocol [45]. The assay was performed similarly to the published pro-

tocol with the exception that the fluorogenic probe was replaced in the master mix by inclu-

sion of SYBR-green which was detected by rRT-PCR as indication of primer-specific

amplification.

Virus isolation, genome amplification and sequencing

Virus isolation was carried out using the LFBK-αVβ6 cell line [46] through serial cell passage.

Up to 8 serial passages in LFBK-αVβ6 were performed before considering the individual sam-

ples as VI-negative. However, all VI isolates included herein were recovered after the 3rd or 4th

passage. Supernatant from samples with cytopathic effect in LFBK-αVβ6 cells was clarified

and stored at -80˚C for subsequent use. For genome amplification and sequencing, the total

RNA was extracted from the low-passage infected cell culture supernatant (500 μl) using an

RNeasy Mini Kit (QIAGEN, Germany), and cDNA synthesis was carried out using an oligo d

(T)15 primer and MMLV reverse transcriptase (Promega, USA) enzyme. The structural protein

coding region (P1) was amplified and sequenced on an ABI 3130 DNA analyser (Applied Bio-

systems, USA) as previously described [40]. Multiple sequence reads were assembled using

EditSeq module (Lasergene 10, DNAStar Inc., USA) and analysed using MEGA 6.06 [47] soft-

ware. Sequences recovered in this study were submitted to GenBank (accession #MG893512 –

MG893552).
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Sequence analyses

The P1 sequences obtained in this study and related FMDV O/ME-SA strains obtained from

GenBank were aligned using Clustal W. A maximum likelihood phylogenetic tree was con-

structed using the GTR nucleotide substitution model and 10,000 bootstrap replicates imple-

mented in MEGA 7. The genetic distance between sequences was computed using the p-

distance implemented in MEGA7. For identification of codons under selection pressure,

sequences of both carrier and outbreak viruses obtained in this study were analysed by Single

Likelihood Ancestral Counting (SLAC), Fixed-Effects Likelihood (FEL), and Internal FEL

(IFEL) methods using the best fit nucleotide model estimated with HyPhy [48]. The sites

under episodic diversifying selection were detected using Mixed Effect Model of Evolution

(MEME)[48]. In order to trace virus movement, statistical parsimony analysis was carried out

using network estimation implemented in TCS v1.21software [49] with a cut-off of 90%. To

estimate the nucleotide substitution rate, the phylogeny was constructed using Bayesian meth-

ods implemented in BEAST 1.8.4 [50]. The evolutionary rate was calculated using the relaxed

uncorrelated lognormal clock and exponential population size model under Bayesian Markov

chain Monte Carlo method implemented in BEAST 1.8.4 [50].

Antigenic analyses

In order to determine the antigenic relationship (r1-value) between the field virus strains and

the vaccine virus strain, a two-dimensional virus neutralization assay (2D-VNT) was per-

formed as previously described [51] using 21-days post-(single) vaccination bovine vaccinate

serum (BVS) pool against the currently used FMDV vaccine strain O IND/R2/1975. BVS

against O IND R2/1975 was prepared following the established methodology described in the

OIE manual of diagnostic tests and vaccines for terrestrial animals and as explained earlier

[52]. Detection of cytopathic effect (CPE) on the LFBK-αVβ6 cell monolayer was used as an

indicator system in the neutralization assay. The serum titre was calculated from the regression

data as the log10 reciprocal serum dilution required for neutralization of 100TCID50 of virus

(both homologous and heterologous) in 50% of the wells. The one-way antigenic relationship

(r1-value) was calculated as the ratio between the neutralizing serum titre against the heterolo-

gous virus (field strain) to the neutralizing serum titre against the homologous virus (vaccine

strain). The test was repeated three times and the final r1-value was expressed as

mean ± standard deviation (s.d.). The r1-values in the range of 0.3–1.0 indicate that the field

virus is antigenically homologous to the vaccine strain and therefore the vaccine strain is likely

to confer protection against challenge with that specific field virus [53].

Statistical analysis

The dynamics of persistent infection in cattle in this herd have been reported elsewhere [41].

The proportion of carrier animals as determined by PCR and by VI was compared between

species and between asymptomatic and clinically affected animals at each time point using the

chi-squared test. Additionally, the proportion of carrier animals was compared between conse-

cutive time points using the chi-squared test. Statistical analyses were performed using R [54].

Results

Duration of persistent infection

FMDV RNA was detected in OPF samples from cattle and buffalo throughout the study. In

both cattle and buffalo, the proportion of carriers was not significantly different between con-

valescent (post-clinical) and subclinical animals (Fig 1). In carrier cattle, the proportion of
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FMDVRNA positive animals was 100% at 3 months post-outbreak, but fell significantly (χ2 =

6.58, df = 1, p = 0.01) to 72% at 5 months post-outbreak, and remained approximately 70% at

7- and 10-months post-outbreak. However, a large proportion of cattle apparently cleared the

infection between 10 and 13 months post-outbreak, as FMDV RNA was recovered from signif-

icantly fewer (7%;χ2 = 18.8, df = 1, p<0.0001) cattle at 13 months post-outbreak (Fig 1A). In

carrier buffalo, the proportion of FMDV RNA positive animals was 100% at 3 months post-

outbreak, and remained >90% from 5 to 10 months post-outbreak. Similar to the trend in cat-

tle, the proportion of FMDV RNA-positive buffalo fell significantly (χ2 = 5.76, df = 1, p = 0.02)

to 17% at 13 months post-outbreak (Fig 1B). Overall, the proportion of animals from which

FMDV RNA was detected tended to be higher in buffalo compared to cattle, however the dif-

ference was not significant.

Infectious FMDV was isolated from OPF samples from carrier cattle through 7 months

post-outbreak and from buffalo throughout the study (Fig 2). Similar to FMDV RNA detec-

tion, the proportion of carriers as determined by VI was not significantly different between

Fig 1. Proportion of convalescent (post-clinical), subclinical, and overall carrier cattle (A) and buffalo (B) from which FMDV RNA was detected in OPF.

Numbers indicate the total number of animals sampled at each sampling period.

https://doi.org/10.1371/journal.pone.0214832.g001

Fig 2. Proportion of convalescent, subclinical, and overall proportion of carrier cattle (A) and buffalo (B) from which infectious FMDV was isolated from OPF.

Numbers indicate the total number of animals sampled at each sampling period.

https://doi.org/10.1371/journal.pone.0214832.g002
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convalescent and subclinical animals. FMDV was isolated from 59% of carrier cattle at 3

months post-outbreak, however the proportion of VI-positive carrier cattle fell significantly

(χ2 = 12.82, df = 1, p = 0.0003) to 10% at 5 months post-outbreak. FMDV was isolated from

3% of carrier cattle at 7 months post-outbreak, and virus was not isolated from any carrier cat-

tle after 7 months post-outbreak (Fig 2A). In carrier buffalo, FMDV was isolated from 87% of

animals at 3 months post-outbreak. Similar to the trend in carrier cattle, the proportion of VI-

positive carrier buffalo fell to 40% at 5 months post-outbreak, however the decrease between

the 3- & 5-month time points was not significant. The proportion of VI-positive carrier buffalo

fell to 16% (n = 6) at 13 months post-outbreak (Fig 2B). The proportion of VI-positive animals

was higher in carrier buffalo compared to cattle, and the difference was significant at 7- and

10-months post-outbreak (χ2 = 8.91, df = 1, p = 0.003; χ2 = 5.46, df = 1, p = 0.02, respectively).

Phylogenetic analysis and genomic variation of FMDV isolates

FMDV was isolated from a total of 43 OPF samples, of which the FMDV P1capsid-coding

region sequence was successfully obtained from 37 samples (86%). An additional fourP1se-

quences were acquired directly from samples of vesicular epithelium collected during the clini-

cal phase of the outbreak during January 2014, for a total of 41 sequences obtained in the

current study. The 4 isolates collected during the clinical phase were identical to one another.

The 37 sequences recovered from OPF samples were collected during the carrier phase

from 27 different animals. Twenty-seven sequences were recovered from convalescent carrier

animals (10 sequences from 9 cattle, 17 sequences from 10 buffalo) and 10 sequences were

from subclinical carrier animals (6 sequences from 4 cattle, 4 sequences from 4 buffalo) which

had never had clinical signs of FMD. Multiple isolates were recovered from 8 animals.

In the maximum likelihood (ML) phylogenetic tree based on P1-coding region, all

sequences recovered in the current study were confirmed to align within sublineage O/

ME-SA/Ind2001d (Fig 3). Sequences recovered from carrier buffalo clustered separately from

sequences recovered from cattle. Additionally, one cattle-derived sequence (CC20213/AUG/

2014) clustered separately from all other isolates, but was more closely related to the other

sequences recovered in the current study than to the reference sequences.

When comparing viruses from carrier animals to the virus collected during the clinical

phase, nucleotide-divergence varied from 0.1% (March 2014, Animal CB1854) to 1.3% (May

2014, Animal CC12517) (Table 1). However, when comparing P1 sequences amongst carrier

viruses, a maximum nucleotide (nt) divergence of 2.4% was identified between sequences col-

lected in May 2014 (Animal CC12517) and November 2014 (Animal CB1964), and also

between sequences collected in May 2014 (Animal CB2224) and Aug 2014 (AnimalSB1932).

Overall, in the capsid coding region, out of 2208 nts, a total 304 sites (13.8%) were found to

be polymorphic, of which 208 sites had single nt polymorphism (68.4%) and 96 (31.6%) sites

had multiple variants. Only point mutations were observed, with no insertion or deletion. As

expected, of the total base changes, 86% were transitions and 14% were transversions. The

majority (76%) of mutations were synonymous (silent), however 24% of the base substitutions

resulted in amino acid (aa) changes in the carrier virus compared to the outbreak virus (Fig 4).

The capsid protein coding segments in carrier viruses had variations at 75 (10.2%) aa positions,

of which 66 (88%) positions were occupied alternately by two aa and 9 (12%) positions were

substituted by more than two aa (Table 2). Out of those 75 positions, 30 sites were located in

VP1, 23 sites in VP3, and 17 sites in VP2.

Among the 8 carriers from which multiple sequences were obtained, there were 25 nucleo-

tide substitution sites shared across at least 2 carriers, and a synonymous nucleotide substitu-

tion occurred at nucleotide position 1164 (in the VP3 coding region) in 5 carriers (Table 3).
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Fig 3. Phylogenetic tree estimated using the maximum likelihood method for theP1-capsid coding region of outbreak (acute) and carrier FMDV

isolates. Bootstrap values (>70%, out of 10,000 replicates) are shown near the nodes. Coloured outlines and text denote samples from the same animal.

https://doi.org/10.1371/journal.pone.0214832.g003
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These consistent changes across animals may be candidate markers of virus adaptation during

their persistent phase.

Selection pressure in the capsid coding region of viruses isolated from

persistently infected animals

The mean non-synonymous (dN) to synonymous (dS) value (ω) of the entire capsid coding

region was found to be 0.188, indicating purifying selection attributable to evolutionary con-

straints. Across the individual animals for which multiple sequences available, ω varied from

0.076 to 0.357 (Table 1), suggesting different selective pressure exerted on viral genomes were

differed between individuals. The SLAC, FEL, and IFEL methods identified two codons in

VP1 (138 and 148) and one codon each in VP2 (78) and VP3 (76) to be under positive selec-

tion with statistical significance (Table 4). Only codon 148 was within a known antigenic site,

the G-H loop of VP1. Additionally, codon 73 in VP3 was found to be under selection pressure

by SLAC and FEL. A total of 28 codons were found to experience episodic diversifying selec-

tion, of which 10 codons were in VP3, 9 were in VP1, and 8 were in VP2. Additionally, codon

61 in the highly conserved VP4 region was under episodic selection.

Table 1. Nucleotide divergence (%) in the capsid coding region of virus isolates from carrier animals compared to the virus isolate collected during the acute phase

of the outbreak in January 2014. The dN/dS ratio is reported for animals from which multiple virus isolates were recovered.

Category Animal I.D Mar’14 May’14 Aug’14 Nov’14 Feb’15 dN/dS

Convalescent Cattle 458 0.2 - - - - -

5430 0.3 - - - - -

6636 0.6 - - - - -

6666 0.4 - - - - -

12517 0.5 1.3 - - - 0.183

20213 0.9 - 0.8 - - 0.201

20453 0.6 - - - - -

20252 0.7 - - - - -

5173 0.7 - - - - -

Subclinical Cattle 3035 0.7 - - - - -

3512 0.6 - - - - -

3568 0.8 1.0 - - - 0.357

3595 0.5 0.7 - - - 0.069

Convalescent Buffalo 1760 0. 4 - - - - -

1816 - - 1.0 - - -

1854 0.1 0.7 0.5 - - 0.194

1908 0.3 - - - - -

16403 0.2 - - - 1.0 0.159

1937 - - 0.8 - - -

1964 0.4 0.6 - 1.2 - 0.142

2036 0.2 - - - - -

2067 - 0.5 - - - -

2224 0.2 1.0 - - - 0.076

Subclinical Buffalo 1765 - - 1.0 - - -

1932 - - 1.1 - - -

1961 - 0.6 - - - -

2017 - 0.7 - - - -

https://doi.org/10.1371/journal.pone.0214832.t001
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Statistical parsimony analysis

Multiple phylogenetic analyses were used to improve visualization and inferences of ancestral

relationships amongst the viral sequences obtained from individual animals and samples. The

root node in the parsimony analysis was formed by four sequences collected during the clinical

phase of the outbreak (Fig 5). Isolates recovered from cattle clustered separately from isolates

recovered from buffalo. In general, viruses from buffalo had more SNPs relative to the root

node compared to viruses from cattle. The nucleotide differences of carriers’ OPF viruses rela-

tive to the outbreak virus ranged from a minimum of 3 nt (Animal CB1854, March 2014) to

maximum of 28nt (Animal CC12517, May 2014). Viruses recovered from the same animal at

distinct timepoints generally were more genetically similar than viruses recovered from dis-

tinct hosts. However, there were exceptions to this trend including a genealogical relationship

between viruses isolated from the convalescent carrier buffalo Animal CB1854 in March2014

and two subclinical carrier buffalo in August 2014 (Animal SB1765 and Animal SB1932). An

additional noteworthy exception was a convalescent buffalo (Animal CB16403) which had a

virus that was similar to the cattle cluster in March 2014; however, the virus isolated from this

animal in Feb 2015 clustered with the other viruses derived from buffalo.

Fig 4. Synonymous (dS; top) and non-synonymous (dN; bottom) changes in the P1-capsid coding region of the genomes of the FMD viruses obtained from carrier

animals.

https://doi.org/10.1371/journal.pone.0214832.g004
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Table 2. Amino acid variations in the capsid coding region of carrier virus isolates compared to the outbreak virus collected in January 2014. Number of virus iso-

lates in which the changes occurred is in parentheses.

Amino acid position in the

capsid

Protein Acute phase Carrier phase Significance

Jan’ 2014 Mar’ 2014 May’ 2014 Aug’ 2014 Nov’2014 Feb’2015

Number of animals 4 20 9 6 1 1

41 VP4-41 N N(19)/D(1) N N N N

57 VP4-57 T T T(8)/A(1) T T T

59 VP4-59 T T T T A(1) T

61 VP4-61 N N N N(4)/S(2) N N Under selection pressure

155 VP2-70 V V(19)/A(1) V V V V Site 2

159 VP2-74 P P P P (5)/R(1) P P

162 VP2-77 G G (19)/Q(1) G(8)/Q(1) G G G Site 2, Under episodic

selection

163 VP2-78 C C(12)/Y(7)/R

(1)

C(7)/Y(2) Y(6) Y(1) C Under selection pressure

167 VP2-82 E E(18)/V(2) E E E E

175 VP2-90 V V V(8)/I(1) V V V

181 VP2-96 D D(19)/N(1) D D D D

219 VP2-

134

K K(18)/E(2) K K(4)/E(2) K K Site 2, Under selection

pressure

222 VP2-

137

L L(18)/R(1)/Q

(1)

L L L L Under episodic selection

223 VP2-

138

Y Y(18)/S(2) Y Y Y Y Under episodic selection

224 VP2-

139

Q Q(19)/P(1) Q Q Q Q

257 VP2-

172

K K(19)/R(1) K K K K

267 VP2-

182

M M(18)/V(2) M M M M

276 VP2-

191

T T(18)/N(2) T(8)/I(1) T(7)/N(1) T T Under episodic selection

277 VP2-

192

E E(19)/G(1) E E E E

279 VP2-

194

A A A(8)/P(1) A A A Under episodic selection

299 VP2-

214

F F(19)/L(1) F F F F

338 VP3-35 N N N/D(1) N N N

341 VP3-38 P P(19)/A(1) P P P P

363 VP3-60 D D(18)/G(2) D D D D

371 VP3-68 T T(19)/A(1) T(8)/A(1) T T T

372 VP3-69 D D D D(5)/G(1) D D

373 VP3-70 S S S(8)/P(1) S S S

376 VP3-73 T T(19)/M(1) T(8)/M(1) T(4)/M(1)/K

(1)

T T Under selection pressure

378 VP3-75 A A(13)/T(7) A(6)/T(3) A A A Under selection pressure

379 VP3-76 Q Q(19)/R(1) Q(8)/H(1) Q(5)/R(1) Q R(1) Under selection pressure

386 VP3-83 A A(19)/S(1) A A A A

419 VP3-

116

D D(19)/N(1) D D D D

426 VP3-

123

I I I I(4)/V(2) V(1) I Under episodic selection

(Continued)
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Table 2. (Continued)

Amino acid position in the

capsid

Protein Acute phase Carrier phase Significance

Jan’ 2014 Mar’ 2014 May’ 2014 Aug’ 2014 Nov’2014 Feb’2015

434 VP3-

131

E E(19)/D(1) E(7)/D(1)/A

(1)

E(3)/D(2)/A(1) E E Under selection pressure

437 VP3-

134

K K(18)/E(1)/N

(1)

E(8)/N(1) E E E Under episodic selection

468 VP3-

165

A A(19)/G(1) A A A A

469 VP3-

166

D D(19)/G(1) D D D D Under episodic selection

477 VP3-

174

A A(19)/V(1) A(8)/T(1) A(7)/V(1) A A Under episodic selection

481 VP3-

178

T T T T(5)/I(1) T T

490 VP3-

487

F F F F(5)/Y(1) F F

497 VP3-

194

A A(18)/G(2) A A A A Under episodic selection

498 VP3-

195

D D(18)/G(2) D D(5)/G(1) D D Under episodic selection

503 VP3-

200

V V V(8)/I(1) V V V

506 VP3-

203

A A A A A V(1)

510 VP3-

207

K K(19)/E(1) K K K K

528 VP1-5 G G(18)/R(2) G G G G Under episodic selection

536 VP1-13 T T T(7)/S(1)/A(1) T(5)/P(1) T T Under episodic selection

546 VP1-23 V V V V(5)/A(1) V V

553 VP1-30 T T(19)/P(1) T T T T

566 VP1-43 T T T(6)/I(3) T T T Site 3, Under selection

pressure

571 VP1-48 I I I(8)/T(1) I(5)/T(1) I I

577 VP1-54 M M M M M L(1)

582 VP1-59 H H H H(5)/Y(1) H H

608 VP1-85 N N(19)/S(1) N N(5)/S(1) N N

618 VP1-95 E E E(8)/V(1) E E E

648 VP1-

125

V V(19)/A(1) V V V V

656 VP1-

133

N N N(7)/D(1)/S

(1)

N(5)/S(1) N N Under episodic selection

661 VP1-

138

E E(19)/G(1) E(7)/G(1)/K

(1)

E(2)/K(4) E E Under selection pressure

662 VP1-

139

S S S(8)/N(1) S(5)/N(1) S S

664 VP1-

141

V V V(8)/A(1) V V V

665 VP1-

142

P P(19)/S(1) P P P P

666 VP1-

143

N N(18)/K(2) N(5)/K(3)/S

(1)

N K(1) K(1)

671 VP1-

148

L L(18)/R(2) L L L L Site 1, Under selection

pressure

(Continued)
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Evolutionary rate in the P1coding region of FMDV carrier isolates

Enforced strict and relaxed (Log-normal and Exponential) molecular clocks were used in

order to determine the evolutionary rate in the P1 segment of carrier viruses. The Bayes Factor

analysis favoured the relaxed log-normal clock. Using the relaxed log-normal clock model, the

mean nucleotide substitution was estimated at 1.816 x 10−2 substitution/site/year (s/s/y) with a

95% credibility interval of1.362–2.31 x 10−2 s/s/y. The coefficient of variation was 0.347, indi-

cating significant rate heterogeneity among branches, and supporting the use of the relaxed

clock model. The average mutation rate of codon positions 1+2 and 3 was estimated to be

0.519 and 1.963, respectively, indicating a higher contribution of synonymous mutations to

the mean evolutionary rate and suggesting the existence of strong constraints for fixation of

non-synonymous amino acid mutations due to the need to maintain the functional FMDV

capsid structure.

Antigenic variation in FMDV carrier virus isolates

The antigenic characteristics of outbreak and carrier-derived FMD viruses in relation to the

current in-use vaccine strain O/IND/R2/1975 was determined using 2D-VNT (Table 5). The

outbreak virus (C6670 and C5636) had an antigenic relationship value (r1-value) of 0.6, indi-

cating antigenic similarity between the outbreak and vaccine virus strains. In contrast to the

outbreak viruses, the antigenic relationships of the carrier viruses with the vaccine strain varied

from sub-optimum (0.14) to high (0.82), and varied within and among animals and across col-

lection times (Table 5). Three carrier-derived viruses collected from buffalo (CB2036, SB1932,

and SB2017) and three viruses (CC5173, CC6646 and SC3568) collected from cattle at 3

Table 2. (Continued)

Amino acid position in the

capsid

Protein Acute phase Carrier phase Significance

Jan’ 2014 Mar’ 2014 May’ 2014 Aug’ 2014 Nov’2014 Feb’2015

672 VP1-

149

Q Q(19)/R(1) Q Q Q Q Site 5

673 VP1-

150

V V(19)/A(1) V V V V

676 VP1-

153

Q Q(19)/R(1) Q(8)/R(1) Q(5)/R(1) Q Q Under selection pressure

678 VP1-

155

A A A(8)/T(1) A A A

679 VP1-

156

A A A(8)/S(1) A A A

681 VP1-

158

R R R(8)/S(1) R R R

695 VP1-

172

R R(19)/Q(1) R(6)/Q(3) R(5)/Q(1) R R Under selection pressure

699 VP1-

176

L L L(8)/M(1) L L L

720 VP1-

197

S S S(8)/T(1) S(5)/T(1) S S Under selection pressure

721 VP1-

198

E E(18)/G(2) E E E E Under episodic selection

728 VP1-

205

I I I(8)/F(1) I I I

732 VP1-

209

P P P(8)/A(1) P P P

https://doi.org/10.1371/journal.pone.0214832.t002
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months post outbreak had r1-values of<0.3, indicating poor antigenic match with the vaccine.

The remaining 18 isolates collected at 3 months post-outbreak from both convalescent and

subclinical cattle and buffalo had r1-values >0.3. The antigenic-relationship value tended to

decrease with increasing time subsequent to the outbreak suggesting lower vaccine matching

at later dates in at least 11 isolates. However, in four animals a virus collected at a later time

point had a higher r1-value than a virus collected earlier in the study (Table 5).

Discussion

Foot-and-mouth disease is an economic burden on endemic countries, primarily due to trade

restrictions imposed by FMD-free countries in response to the risk of transmission from

acutely infected animals and contaminated products. The risk associated with persistently

infected FMDV carriers remains controversial, yet trade policies effectively treat carriers as

infectious. In relation to the issue of infectiousness, there is also a potential risk that within-

host evolution of FMDV strains during persistent infection may result in new virus variants

which may subvert host immunity to cause new outbreaks. The current study characterized

antigenic and genetic variation of naturally occurring FMDV O/ME-SA/Ind2001d persistent

infection amongst vaccinated dairy cattle and buffalo in India. Furthermore, we demonstrated

direct evidence of decreased antigenic matching of FMDVs recovered during the carrier phase

under natural conditions.

In the current study, the majority of persistently infected cattle and buffalo cleared the

infection by 13 months post-infection with some variation due to host species and detection of

FMDV RNA vs. infectious virus. This study supports previous reports that most cattle clear

persistent infections by 12 months post infection [55, 56]. Interestingly, in the current study

we detected a significant decrease in the proportion of persistently infected animals, based on

FMDV RNA detection, between 10 and 13 months post-outbreak, which was similar to a pre-

vious report of an O/ME-SA/Ind2001d outbreak on two distinct dairy farms in India [16].

However, the decrease in the proportion of persistently infected animals was reported to be

more gradual for persistently infected animals under experimental conditions [15] and

another field study [17]. The significant decrease in the proportion of carrier animals between

10–13 months in this study may be due to differences in virus strains or host factors (vaccina-

tion status, husbandry, species) compared to previous studies. A previous experimental study

demonstrated viruses from distinct serotypes have differential durations of persistence in Afri-

can buffalo which correlated with virulence in tissue culture [57]. Alternatively, the decrease

noted in this study may be an artefact of sample handling or laboratory artefacts.

Similar to previous reports, there was no difference in the proportion of carriers or in the

duration of persistence between convalescent and sub-clinically infected animals [16, 56].

Additionally, the proportion of animals from which FMDV RNA was recovered was similar

between cattle and buffalo, however infectious FMDV was isolated from a higher proportion

Table 4. Amino acid sites identified to be under positive selection in different viral proteins (VP1-VP4) by differ-

ent site specific models (p< 0.25).

Method VP1 VP2 VP3 VP4

SLAC 138 and 148 78 73 and 76 -

FEL 138 and 148 78 73 and 76 -

IFEL 43, 138, 153, 172 and 197 78 and 134 68, 75, 76, 131 and 134 61

MEME 5, 13, 43, 133, 138, 148, 153,

172 and 198

77, 78, 82, 134, 137, 138, 191

and 194

73, 75, 76, 123, 131, 134, 166, 174,

194 and 195

61

https://doi.org/10.1371/journal.pone.0214832.t004
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of animals, and for a longer duration in buffalo compared to cattle. This may reflect differences

in host-virus interactions between cattle and buffalo that may enable longer survival in buffalo.

Alternatively, differences in secretory antibodies (avidity or quantity) between cattle and

Fig 5. Statistical parsimony analysis of P1-capsid coding regions of outbreak and carrier viruses. The analysis was implemented in TCS v 1.21.

Tick marks and numbers in parentheses represent the number of nucleotide changes between the putative ancestors and the virus isolates. Internal

nodes (squares) represent un-sampled intermediate sequences inferred by TCS. Coloured outlines and text denote samples from the same animal.

https://doi.org/10.1371/journal.pone.0214832.g005

Table 5. One way antigenic relationship (r1-value) of the outbreak and carrier virus isolates with the currently

used vaccine strain, O/IND/R2/1975, as determined by 2D-VNT assay. Values are expressed as mean± standard

deviation (s.d). Values<0.3 are in bold, indicating poor vaccine protection against that isolate.

Animal ID Date of virus isolation

Acute Phase (Jan’ 2014) March 2014 May 2014 Aug’ 2014 Nov’ 2014 Feb’ 2015

Clinical virus isolates
C6670 0.6±0.04

C5636 0.6±0.08

Carrier virus
CC12517 0.33±0.017 0.522±0.102

CC5143 0.78±0.091

CC20252 0.32±0.016

CC20213 0.36±0.050 0.41±0.061

CC5173 0.21±0.020

CC458 0.42±0.050

CC5430 0.6±0.111

CC20453 0.45±0.087

CC20216 0.42±0.071

CC6636 0.66±0.131

CC6646 0.26±0.034

CB16403 0.66±0.144 0.21±0.047

CB1964 0.41±0.051 0.383±0.060 0.396±0.064 0.173±0.05

CB2224 0.33±0.025 0.22±0.011

CB1908 0.33±0.038

CB1854 0.33±0.025 0.143±0.030 0.277±0.023

CB1760 0.42±0.058

CB6666 0.42±0.087

CB2036 0.16±0.011

CB1816 0.122±0.005 0.213±0.017

CB1973 0.11±0.017

CB2067 0.271±0.020

SC3595 0.49±0.102 0.295±0.007

SC3512 0.33±0.02

SC3568 0.23±0.015 0.819±0.095

SC3035 0.66±0.072

SB1932 0.229±0.030

SB1961 0.117±0.020

SB2017 0.248±0.025

SB1765 0.247±0.020

C, Clinically infected; CC, Convalescent cattle; CB, Convalescent buffalo; SC, Subclinical cattle; SB: Subclinical

buffalo.

https://doi.org/10.1371/journal.pone.0214832.t005
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buffalo may decrease the successful recovery of infectious virus from cattle samples. However,

the small sample sizes in this study preclude definitive interpretation of this finding. Interest-

ingly, FMDV RNA was recovered from a greater proportion of samples than virus isolates.

Previous studies have shown a higher sensitivity of PCR compared to VI [14, 58, 59], and the

results of the current study may reflect similar differences in sensitivity. However, other studies

have reported similar sensitivities for PCR and VI [60]. Overall, multiple biological and arte-

factual phenomena may contribute to the relative efficacies of viral detection by rRT-PCR and

VI. Additional studies of naturally infected herds are needed to further characterize FMDV

persistent infection under endemic conditions and differences between cattle and buffalo.

The viruses recovered in the current study aligned within the O/ME-SA/IND2001d subline-

age in maximum likelihood phylogenetic analyses. Interestingly, sequences from cattle-derived

isolates clustered separately from buffalo-derived isolates, suggesting the potential of host-

defined, species-specific selection pressure upon FMDV evolution. An alternative interpreta-

tion is that the differential clustering of cattle and buffalo derived viruses may reflect the spatial

separation of the two species in different pens within the same farm.

While classical phylogenetic analyses, such as maximum likelihood, cluster closely related

virus isolates together and statistically infer ancestral relationships, the putative origin of each

isolate and the genealogical relationships between the isolates cannot always be ascertained by

these methods. In order to complement the conventional phylogenetic analyses, we used statis-

tical parsimony analysis to further investigate relationships among sequences obtained in this

study. Unlike phylogenetic analyses, statistical parsimony can test whether some sequences

included in the analysis are ancestral to others, and in the current study all of the carrier-

derived viruses originated from the outbreak virus. Similar to the phylogenetic analysis, buf-

falo-derived isolates clustered separately from cattle-derived isolates in the parsimony analysis.

Interestingly, buffalo-derived isolates descended in a single lineage from the outbreak virus,

whereas cattle-derived viruses descended from the outbreak virus in 5 separate lineages, sug-

gesting differential selection pressures between host species. In general, viruses accumulated

more SNPs over successive time points, thereby diverging from the outbreak viruses at the

root node. Viruses collected from the same animal at successive time points tended to be most

closely related to each other, however the later samples were not directly descended from the

earlier samples. Although previous studies have characterized viral sequence changes relative

to variation in pairwise cross-neutralization for FMDVs of SAT1 and SAT2 serotypes [61], we

were not able to adapt that approach to the current analyses.

The mechanisms driving the within-host evolution cannot be definitively determined from

this study, but likely represent a combination of factors. The high divergence noted in some

isolates may be due to point mutation and/or emergence of sub-consensus (minority) FMDV

genotypes from the heterogeneous populations (quasispecies) in the carrier animals, as have

been described for FMDV and other picornaviruses [12, 29, 62,63]. Interestingly, three buffalo

(CB1964, CB2224, CB16403) from which multiple sequences were obtained had one sequence

located in a cluster distinct from the other(s), and these groupings were also supported by phy-

logenetic analyses. Because animals were co-habitating and sharing physical resources with

imperfect biosecurity, it is possible that some apparent evolutionary changes may represent

neoteric superinfection by viruses moving between animals within the herd, as has been

described in buffalo in Pakistan [14]. Overall, the statistical parsimony analysis suggested that

carrier isolates followed distinct routes of evolution in different FMDV-persistently infected

individuals and species. This may suggest that species-defined and/or individual animal-level

selective pressures may have determined the evolutionary paths.

The current study attempted to test the hypothesis that during natural persistent FMDV

infection, substitutions would occur at specific regions of the capsid coding region, reflecting
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viral mechanisms of immune escape and maintenance of persistence. Two codons under posi-

tive selection in this study were in VP1 (138 &148) and are located on the VP1 βG-βH loop,

while one codon was in VP2 (VP2-78) and is located close to antigenic site-2. Although one

site with a synonymous substitution was present in 5 out of 8 carrier animals, a consistent pat-

tern of amino acid changes amongst all carrier isolates was not detected. Previous studies have

addressed this subject with variable results. One study identified consistent change in the B–C

loop of VP2 during persistence in cattle [19], whereas another study identified a pattern of Q-

172-R substitution in VP1 [20]. Other studies have concluded that a consistent pattern of sub-

stitution does not occur during the carrier state [25]. These results suggest that viral determi-

nants may have some role, but are not likely to be solely responsible for determining persistent

FMD infection or for FMDV evolution within carrier animals. The selection pressure acting

on the viral genome varies among individual persistently infected animals, suggesting that

host factors are similarly important to the viral determinants, as has been suggested by some

authors [64, 65].

Few studies have investigated how antigenicity changes during persistent infection. In the

current study, the antigenic-relationship (r1-value) with the vaccine strain decreased over

time, often below the threshold of protection. This accentuates the finding of antigenic diver-

gence reported herein as it represents one of very few times where direct evidence is found of

decreasing antigenic matching during FMDV persistence. This contributes to understanding

the underlying evolutionary mechanisms for the emergence of new strains during viral persis-

tence. However, r1-value is not a perfect indicator of cross-protection as there are many exam-

ples in which vaccine protection in vivo did not correlate with vaccine matching performed in
vitro [66]. It is likely that characterization of the avidity and isotype of the antibodies induced

by vaccination with the currently used trivalent vaccine would provide additional insights

regarding the protective potential of this vaccine against the antigenically divergent FMD

viruses isolated from the persistently infected animals. Unfortunately, the previously described

avidity ELISA [67] could not be used in this study due to the lack of validation of this assay in

our laboratories. Despite the limitations of r1-value determinations, the decreasing trend in

the current study is concerning because of the potential for these viruses to cause new out-

breaks, even in vaccinated animals, if transmitted.

The evolutionary rate estimated in this study was similar to the rate reported for other sero-

type O carrier viruses (2.6 x 10−2 s/s/y;[25]). In contrast, the rate reported in this study was an

order of magnitude faster than the rate reported for O/ME-SA/Ind2001 outbreak isolates col-

lected in India between 2000–2013 (6.338 x 10-3s/s/y;[40]). Similarly, previous studies have

shown the rate of evolution of serotype C carrier viruses was an order of magnitude faster than

the rate reported for serotype C outbreak viruses collected over a period of six decades [62,

68]. The FMDV genome appears to be under higher selection pressure during persistent infec-

tion, resulting in the generation of genetic and antigenic variants. Yet, across animals, the ω
value varied from 0.076 to 0.357, indicating different extent of selection pressures acting on

viral genomes in different individuals. Interestingly, there did not appear to be a relationship

between selection pressure and duration of persistent infection in the small number of animals

in the current study.

Conclusions

The current study contributes to elucidation of within-host evolution of FMDV in the transi-

tion from acute to carrier phases and over the course of viral persistence. Whether an animal

had clinical FMD during the acute phase of infection did not affect within-host virus evolution

or the dynamics of persistent infection. Overall, the genetic variation of carrier viruses
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presented in this study is consistent with the complexity and dynamics of in vivo FMDV quasis-

pecies, and this study suggests different host species may exert differential influences which con-

tribute to within-host viral evolution. However, variation across viruses from distinct animals

precluded identification of specific mutations that define the carrier state. The antigenic-rela-

tionship of virus isolates to the vaccine strain tended to decrease during persistent infection,

indicating the potential of emergence of divergent antigenic strains from carrier animals. How-

ever, the probability of transmission of these viral variants from persistently infected animals to

susceptible animals, and their fitness to cause clinical FMD require further investigation. To our

knowledge, this is the first report on both genetic and antigenic variation of FMDV during

virus persistence in infected cattle and domestic Asian buffaloes under natural conditions.
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