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Abstract

Computational analysis of promoters is hindered by the complexity of their architecture. In

less studied genomes with complex organization, false positive promoter predictions are

common. Accurate identification of transcription start sites and core promoter regions

remains an unsolved problem. In this paper, we present a comprehensive analysis of geno-

mic features associated with promoters and show that probabilistic integrative algorithms-

driven models allow accurate classification of DNA sequence into “promoters” and “non-pro-

moters” even in absence of the full-length cDNA sequences. These models may be built

upon the maps of the distributions of sequence polymorphisms, RNA sequencing reads on

genomic DNA, methylated nucleotides, transcription factor binding sites, as well as relative

frequencies of nucleotides and their combinations. Positional clustering of binding sites

shows that the cells of Oryza sativa utilize three distinct classes of transcription factors:

those that bind preferentially to the [-500,0] region (188 “promoter-specific” transcription fac-

tors), those that bind preferentially to the [0,500] region (282 “50 UTR-specific” TFs), and

207 of the “promiscuous” transcription factors with little or no location preference with

respect to TSS. For the most informative motifs, their positional preferences are conserved

between dicots and monocots.

Introduction

Core promoters are the 5’ regions adjacent to the transcriptional start site (TSS) and contain-

ing binding sites for transcription factors (TFBS). Computational analysis of the eukaryotic

promoters is hindered by their complex architecture [1–3]. Each gene contains one or more

TSS, and, respectively, one or more promoters, which initiate transcription of a gene. Depend-

ing on species, from 30% to 60% of eukaryotic genes contain the TATA motif approximately
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30 nucleotides upstream of TSS. Most commonly, TATA-containing core promoters are asso-

ciated with stress-related, tissue-specific and/or highly expressed genes [4]. Broadly expressed

genes frequently have TATA-less promoters with a relatively broad transcription start region

(TSR) replacing pronounced TSS [3, 5]. To predict the position of the TSR, characteristic pro-

moter initiation regions (Inr) or the downstream promoter elements (DPE) may be used [1,

2].

A majority of TSS prediction software tools use sophisticated algorithms, such as oligonu-

cleotide content-based neural network and linear discriminant approaches, while focusing on

specific sequence features of the promoter region (e.g. TATA-box or CA-motif) [6]. Genome

complexity affects quality of promoter predictions: for example, presence of several tissue-spe-

cific, alternative TSSs negatively affects the prediction accuracy. For the model plant Arabidop-
sis thaliana, modern algorithms identify TATA-containing promoters with sensitivities up to

95% and specificities up to 97% [2, 4, 5, 7–10]. ForHomo sapiens and Oryza sativa prediction

accuracies are substantially lower [10]. In case of even less studied genomes with complex

organization, false positive and false negative error rates can be large, with a spurious promoter

prediction occurring once per every 700–1000 nucleotides of the genome [11].

Even the best modern methods of promoter mapping, including genomic sequencing cou-

pled with full-length cDNA capture and ascertainment [4, 12, 13], CAGE [14, 15], 3PEAT[16],

or RAMPAGE [17] are incapable to predict TSS positions with 100% accuracy [5]. For exam-

ple, the mapping of CAGE tags onto existing human cDNA/mRNA sequences revealed that

less than 10% of these tags fall within 10 nucleotides from TSS [18]. To illustrate this, we

mapped RNA-Seq reads onto the regions TSS+/-1000 nt corresponding to 12 well-studied,

experimentally validated O. sativa promoters from Plant Prom DB [3, 19], the resultant plots

showed that the peaks of RNA-Seq coverage did not match the positions of known TSS, sup-

porting the idea that correct mapping of eukaryotic promoters possibly requires multiple

sources of data (Fig 1).

As me mentioned above, promoters contain transcription factor binding sites (TFBS) regu-

lating transcription. Two most commonly used techniques to predict eukaryotic promoter by

distribution of TFBS were proposed in 1995 by Kondrakhin and Kel [20] and by Prestridge

[21]. The method of Kondrakhin and Kel [20] pairs up the detection of TATA boxes with the

distribution of computed weight matrices of TFBS, improving the prediction accuracy com-

pared to using the TATA box alone. Prestridge [21] combined density ratios of all individual

TFBSs into a scoring profile, which was further augmented by the weighted TATA matrix.

This approach reported a relatively low false positive rate. Real-world applicability of both

tools, however, remains limited due to lack of species-specific TFBS models for training and

failure to pinpoint locations of individual TSSs.

In the last decade, several improvements in the promoter prediction process were made.

Troukhan [22] combined positional frequency of 50 EST matches onto genomic DNA with the

gene models. This approach, known as TSSer, is, in a nutshell, a deterministic method that pre-

dicts one transcription start site per locus. For Arabidopsis thaliana promoters, it achieves

remarkable accuracy. However, even the most reliable prediction of a single promoter per

gene cannot adequately reflect biological complexity underlying its regulation due to common

occurrence of alternative promoters, which are often tissue-specific or responsive to the

changes in architecture of chromatin [23]. In 2013, the TSSer approach was improved by

incorporation of a non-parametric maximum likelihood approach to be reborn as NPEST

algorithm [5], that allows prediction positions of alternative TSSs in the A. thaliana genome

with better accuracy than the sequences identified in the several “gold standard” databases,

such as TAIR [24, 25], Plant Prom DB [19] and Plant Promoter Database [26]. For example,

for the set of 15,875 Arabidopsis promoters derived by both TAIR and NPEST, 11,304 (71%)
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were predicted within 50 nucleotides of each other, and 7,192 (45%) within 10 nucleotides of

each other. Thirty percent of TAIR-predicted and 44% of NPEST-predicted promoters identi-

fied the “TATA” sequence within the interval [–40, –20] nucleotides upstream from the

respective TSS. At the TSS, nucleotide consensus scores (46% of T and 49% of C followed by

65% of A) were stronger for NPEST then for TAIR (43% of T and 35% of C followed by 53% of

A). When NPEST predictions were compared to experimentally confirmed promoters from

other databases, similar patterns of nucleotide consensus were observed.

Recently, many more types of experimental and computational observations highlighting

the TSS positions became available. For example, forty million single nucleotide polymor-

phisms (SNPs) from the 3,000 Rice Genomes Project (http://snp-seek.irri.org), the largest and

the most dense SNP collection for higher plants [27], were shared to facilitate an analysis of

Fig 1. RNA-Seq coverage near 12 randomly selected promoters with experimentally validated transcription start sites.

https://doi.org/10.1371/journal.pone.0187243.g001
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genetic variants across the Oryza sativa cultivars [28]. Observed clusters of reduced nucleotide

variability were shown to highlight functionally important genomic regions. Interestingly, a

sharp decline in SNP density was noted about 250 nucleotides upstream of TSS elements; this

decline reaches its minimum exactly at the TSS.

In plant genes with multiple promoters, precise mapping of TSSs requires incorporation of

diverse data types including tissue/stress specificity of each transcript. Unfortunately, most of

currently available techniques cannot incorporate a variety of available data, and also must

ignore alternative promoters. Therefore, accurate identification of TSS and core promoter

regions remains an open problem. Since evidences for location of TSS are imprecise, the best

approach for promoter production should embed probabilistic integrative algorithms. In this

paper, we present a comprehensive analysis of genomic features associated with the promoters

and show that probabilistic integrative algorithms-driven models allow accurate classification

of DNA sequence into “promoters” and “non-promoters” even in absence of full-length cDNA

sequences. These models may be built upon the maps of the distributions of SNPs, RNA

sequencing reads on genomic DNA, methylated nucleotides, TFBS as well as relative frequen-

cies of nucleotides and their combinations.

Results

Selection of the “gold standard” gene prediction models

To aid a selection of the best available rice genome annotation, Fgenesh and MSU mRNA-

based gene prediction models were compared. Fgenesh gene prediction set contains 18,389

high quality (50 full, with mRNA support) gene models, while the MSU gene prediction set

contains 20,367 high quality gene models [28, 29]. For every gene in both models, we extracted

a 1,000 nt long sequence centered at the TSS, and calculated distributions of genomic features

previously associated with the start of transcription: (1) frequency of dinucleotide CA [1, 30,

31]; (2) frequency of TATA [1, 4, 32]; (3) nucleotide consensus around TSS [12, 13, 33]; (4)

CG skew (CGskew ¼
#C� #G
#Cþ#G where #C and #G refers to the counts of nucleotides C and G in a

certain genomic window) [34]. Fig 2C and 2D shows that Fgenesh-annotated promoters have

a more pronounced nucleotide consensus as compared to the promoters annotated by MSU.

Fgenesh promoters also have higher frequency of the exact TATA motif at -30 (B), and more

CA dinucleotides at the position of TSS (A). Fig 2(F) shows peak of the CG skew at TSS, calcu-

lated in the window of 40 nt both annotations; Fgenesh-annotated CG skew peak is higher

than the MSU one. Based on the assumption that these features reliable reflect the quality of

promoter annotation, for further analysis the Fgenesh model was selected.

Distribution of transcription factor binding sites

The distributions of the transcription factor binding sites (TFBS) in promoters and the UTRs

of high-confidence rice genes in the regions of -1000 +1000 around TSS were investigated with

MATCH algorithm [35] incorporated in geneXplain platform (www.genexplain.com).

MATCH uses the TRANSFAC database [36] comprising 764 plant position weight matrices

(PWM) with a strict similarity score threshold of 0.95. MATCH scans the targets promoter

sequences with a sliding window equal to the length of the PWM and calculates a score for

each of the windows. The maximum value of the score (1.0) corresponds to the sequence that

fully fits the consensus of the given PWM. Score threshold of 0.95 allows very little mismatches

to the consensus, with few permitted mismatches limited to less conserved positions. In addi-

tion, the MATCH score considers the nucleotide position-specific entropy measures. In a
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Fig 2. Features of the nucleotide consensus around TSS. A top left) Frequency of CA, B top right) Frequency of

TATA motif, D middle left) Frequencies of nucleotides A, C, G, T around TSS for Fgenesh, E middle right) Frequencies

of A, C, G, T around TSS for MSU, F bottom) CG skew (CGskew ¼
#C� #G
#Cþ#G ), calculated in the window of 40 nt.

https://doi.org/10.1371/journal.pone.0187243.g002
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recent study, MATCH performed with accuracy superior to other motif-finding algorithms

[37].

In the Fgenesh-predicted rice promoters, MATCH search against the TRASNFAC database

resulted in mapping of 3.2 million potential TFBS corresponding to 667 plant PWMs, while 97

PWMs remained matchless, possibly due to their exclusive role in the dicots or to the binding

to distal promoters not analyzed in the present study (see S2 Table). Interestingly, 487 out of

667 TFBS (73%) were found in proximal promoters of Oryza sativa more than 1000 times; the

most frequent sites were that for the transcription factors ASR1, DOF56 and PBF. When the

frequencies of TFBS found in the proximal promoters were compared with the frequencies for

the same PWMs found in randomly shuffled sequences, the most significant promoter-specific

TFBS enrichments (twice or more) were observed for SPL12, SPL5, GBF1, ABI5, BZIP68,

LEC2, and GT1 transcription factors.

To account for dinucleotide statistics matching that of the Fgenesh rice promoter regions,

another set of randomly shuffled sequences was generated as described by Stepanova, Tiazhe-

lova [38]. Briefly, the 2000 nt regions [TSS-1000, TSS+1000] were divided onto non-overlap-

ping 100 nt windows, then the dinucleotide statistics were calculated for each window. For

each promoter, a 2000 nt long sequence with matching dinucleotide composition was gener-

ated and subjected to MATCH prediction of TFBS [35]. After selecting the motifs that occur at

least in 100 different rice promoters, Kolmogorov-Smirnov test was applied to find signifi-

cantly over-represented sequence motifs (S3 Table). Fig 3 shows examples of TFBS that occur

at frequencies that differ and do not differ significantly between real and simulated sequences.

The most pronounced differences (p-value < 0.002) were detected for the distributions of

binding sites for TCP15, LIM1, HBP1A, and TCP23. On the other hand, occurrences of bind-

ing sites for CMTA2, GATA1, SBF1, and WRKY48 in real and simulated sequences were not

different (p-value> 0.99999).

Positional specificity of TFBS distribution

A phenomenon of the positional preference in TF binding was previously described by Weir-

auch, Yang [39], who showed that positions of TFBS are not randomly distributed in respect

to the start of transcription (TSS); this observation holds across evolutionary kingdoms. To

illustrate this phenomenon in rice, we divided the [TSS-1000, TSS+1000] regions into 100 nt

long bins and calculated frequency histograms of TFBS occurrence in each bin; then we used

K-means algorithm to cluster these histograms, with value at each bin treated as a separate

dimension.

Positional clustering of TFBS demonstrates that the cells of Oryza sativa utilize three dis-

tinct classes of transcription factors: Class 1, which binds preferentially to the [-500,0] region

(“promoter-specific”, N = 188); Class 2, which binds preferentially to the [0,500] region (“50

UTR-specific”, N = 282); and Class 3, which includes predominantly “promiscuous” transcrip-

tion factors with weak or no location preference for respective TSS (N = 207), see S4 Table and

Fig 4. Note that some Class 3 TFs cannot be classified as promiscuous (Fig 5) as they are char-

acterized by regular patterns of positional distribution. around the translation start rather than

around the transcription start. Examples of the position frequency preference are shown in the

Fig 6.

To conduct the comparative gene ontology analysis of Class 1, 2 and 3 transcription factors

(Table 1), the chi-square “Goodness of Fit” tests were used: w2
df¼2
¼
P

i¼1;2;3

ðOi � EiÞ
2

Ei
, where Oi

and Ei correspond to observed and expected numbers of genes in ith category.

Class 1 TFs of the rice are enriched in the following GO terms: “sequence-specific DNA

binding”, “protein dimerization activity”, “systemic acquired resistance, salicylic acid mediated
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Fig 3. Examples of observed and expected occurrences of TFBS in rice promoters. Different: TCP15,

LIM1, HBP1A, TCP23, ARALY493022, AT1G26610, TFIIAL, BZIP910, CBF1, DREB1F, STY1. Observations

agree with expectations: CMTA2, GATA1, SBF1, WRKY48.

https://doi.org/10.1371/journal.pone.0187243.g003
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signaling pathway”, “regulation of transcription from RNA polymerase II promoter”,

“response to bacterium”, “jasmonic acid mediated signaling pathway”, “carpel development”,

“protein binding”, “negative regulation of defense response”, “protein targeting to membrane”,

“regulation of plant-type hypersensitive response”, “plant ovule development”, “response to

ozone”. Class 2 TFs are enriched in GO terms “DNA binding”, “ethylene-activated signaling

Fig 4. Positional specificity of TFBS distribution.

https://doi.org/10.1371/journal.pone.0187243.g004

Fig 5. The distribution pattern for MADSB binding sites highlight the start codon (ATG) rather than the respective TSS.

https://doi.org/10.1371/journal.pone.0187243.g005
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pathway”, “response to water deprivation”. Class 3 TFs are enriched in “cellular response to

nitrogen levels”.

To compare expression specificity of Class 1 and Class 2 transcription factors, we used the

difference of proportions test (Table 2): Z ¼ p1 � p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞð 1

N1
þ 1
N2
Þ

p , where p ¼ p1N1þp2N2

N1þN2
. Genes encoding

the Class 1 TFs are predominantly expressed in the petals, the sepals and the embryos of plants,

while mRNAs encoding Class 2 TFs are overrepresented in the roots. This may explain previ-

ous observations of significant association of TATA motifs with expression in plant roots

Fig 6. Frequency distributions of TFBS may have different patterns around the start of transcription (position 0 on the

horizontal axis). X-axis shows the distance from TSS, Y-axis reflects the frequency of motif in each window. Frequencies of

ARALY493022_04 TFBS (Class 1) are plotted on the left panel, of RAP26_03 TFBS (Class 2) on the middle panel, and of MYB111_02

(Class 3) on the right panel.

https://doi.org/10.1371/journal.pone.0187243.g006

Table 1. GO categories that are significantly different between three TF classes.

GO Class 1 Class 2 Class 3 P-value

sequence-specific DNA binding 43 22 61 7.78E-06

protein dimerization activity 21 4 18 0.000438

systemic acquired resistance, salicylic acid mediated signaling pathway 15 2 6 0.000504

regulation of transcription from RNA polymerase II promoter 5 2 16 0.000558

response to bacterium 14 3 4 0.000955

jasmonic acid mediated signaling pathway 15 4 5 0.001897

carpel development 6 1 13 0.002606

protein binding 51 31 35 0.002904

negative regulation of defense response 11 1 5 0.003011

DNA binding 90 146 85 0.007339

protein targeting to membrane 14 4 7 0.010643

regulation of plant-type hypersensitive response 14 4 7 0.010643

ethylene-activated signaling pathway 10 20 4 0.012518

response to water deprivation 48 76 38 0.016138

plant ovule development 12 4 15 0.017373

Nucleus 76 126 75 0.017489

response to ozone 9 4 14 0.033868

cellular response to nitrogen levels 13 11 23 0.044478

Total number of genes with GO categories for Class 1, 2 and 3 were 130, 164, and 144, respectively. P-values were calculated using the chi-square

“Goodness of Fit” procedure.

https://doi.org/10.1371/journal.pone.0187243.t001
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[4, 40]: possibly, most root-specific transcription factors bind to the 50 UTR region rather than

the region upstream of TSS.

Fig 6 shows frequency profiles for TFBSs of ARALY493022_04 (Class 1, left panel),

RAP26_03 (Class 2, middle panel), and MYB111_02 (Class 3, right panel). ARALY493022 is

basic helix-loop-helix factor, with GGGCCC consensus sequence. Presence of GGGCCC in the

region upstream of TSS is associated with the elevated level of gene expression [4, 39, 41, 42].

RAP2.6 is a defense-related, ethylene response transcription factor which recognizes the GCC-

box and characterized by high affinity to DNA sequence GCGCCGCCG [43]. Ali, Abbas [44]

experimentally showed that RAP2.6 works both in tissue-specific and stress-specific manner.

Under normal conditions, expression of RAP26 is elevated in roots and stems, while being sig-

nificantly reduced when plant is infected with pathogenic nematodes, such asH. schachtii. To

suppress resistance responses, nematodes downregulate expression of RAP2.6 in host cells.

MYB111 is involved in the regulation of several genes of the flavonoid biosynthesis pathway in

cotyledons and leaves [45, 46]; it confers tolerance to UV-B [47]. Its binding site MYB111_02

has consensus G[G/T]TAGGT[A/G] [43]. MYB111 is an example of TFs with relatively weak

position specificity related to TSS. The TFBS motifs occur no very often; they usually provide

condition-specific regulation of genes. Fig 6 demonstrates utility of Class 1 and Class 2 TFBS

for TSS prediction, while the mapping of the Class 3 TFBS does not convey additional posi-

tional information about the TSS.

According to the Kolmogorov-Smirnov test, three classes of TFs differ in the significance of

over-representation of their TFBS in promoters and in the randomly shuffled sequences:

thirty-seven percent of the Class 1 TFs with motifs located predominantly upstream of TSS

were significantly overrepresented (p-values <0.05), In the Class 2 TFs with TFBS located in 50

UTRs, overrepresentation was confirmed for 20% of the PWMs. The TFBS for Class 3 TFs

were distributed evenly. For the latter group, significant over-representation was detected for

15% of class members (S2 Table).

In summary, three classes of TFBS differ in their position specificity, percentages of PWMS

significantly over-represented in real promoters, functional classification of their downstream

genes, and the patterns of their gene expression.

Evolutionary conservation of TFBS position information content

We have analyzed evolutionary conservation of the TFBS position information content (a

measure of unevenness of the motif distribution along promoter regions, see Method section)

Table 2. Expression specificity of TF from Class 1 and 2.

Expression pattern Class 1 (N = 99) Class 2 (N = 134) Z-score

Root 66 114 -3.31344

Pollen 57 60 1.93163

Carpel 72 77 2.39883

Seed 70 74 2.40454

Leaf lamina base 61 61 2.43144

Cauline leaf 64 65 2.4497

Collective leaf structure 80 87 2.65976

Petal 72 74 2.73045

Plant embryo 78 81 2.97259

Sepal 76 76 3.17706

Z-score is calculated using the difference of proportions test.

https://doi.org/10.1371/journal.pone.0187243.t002
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in monocots Oryza sativa and Zea mays, and in the dicot Arabidopsis thaliana (Fig 7). Follow-

ing correlations between these measures were identified:

Icorn ¼ 2:575339þ 0:402007�Irice

Multiple R2 = 0.7504, Adjusted R2 = 0.75, F-statistic: 1819 on 1 and 605 DF, p-value:< 2.2E-16

Iarabidopsis ¼ 1:69125þ 0:60706� Irice

Multiple R2 = 0.6512, Adjusted R2 = 0.6506, F-statistic: 1083 on 1 and 590 DF, p-value: < 2.2E-

16.

Correlation of the TFBS position information content in two monocots (rice and corn)

were higher than that for the rice and a dicot plant Arabidopsis. By extracting TFBS with more

than 10,000 matches in each of three plant genomes, a list of 46 “common” informative TFBS

was compiled. Each of these TFBS was classified into either “promoter-specific” or “50 UTR-

specific” category in each species. Between rice and corn, 42 of 46 “common” TFBS are consis-

tent in their position preference (see S7 Table). Between rice and arabidopsis, the agreement is

seemingly higher, with 45 of 46 TFBS of the common set having the same positional preference

(see Supplemental Data). We hypothesize that this discrepancy is due to lower reliability of the

TSS map in corn genome as compared to arabidopsis and rice genomes (Fig 8). Importantly,

this phenomenon may lead to a systematic “shifting” of the TFBS peaks from promoters to 50

UTRs and vice versa. Fortunately, incorrect prediction of TSS in corn does not affect the infor-

mation content of a TFBS, and correlation coefficient of motif information content between

two grasses (rice and corn) is 0.87, which is above the correlation between rice and arabidopsis

(Fig 7). In summary, positional preference of the most informative motifs remains conserved

between dicots and monocots.

Fig 7. Relationship between information content of TFBS positions in rice, corn and Arabidopsis. Each point corresponds to one

transcription factor; X axis shows information content in rice, Y axis–information content in corn and Arabidopsis.

https://doi.org/10.1371/journal.pone.0187243.g007
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Identification of similar TFBS

Since TRANSFAC database tends to accumulate all published motifs, some of collected motifs

appear to be redundant. For example, several PWMs may be independently built and reported

Fig 8. Assessment of promoter prediction quality in Arabidopsis (left) and corn (right). Arabidopsis genome shows more pronounced

consensus at TSS, with higher frequency of TATA motif at -30 and CA at TSS.

https://doi.org/10.1371/journal.pone.0187243.g008
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for the same transcription factor (Fig 9). Also, transcription factors of the same protein family

may recognize highly similar motifs, which will be reflected by similarities of respective PWMs.

Fig 9 shows TFBS logo plots for a group of transcription factors with highly similar motifs.

Although regulatory functions of these may vary, for a practical use in promoter prediction,

these motifs should be clustered into a non-redundant set based on similarity of their PWMs.

By clustering 764 plant PWMs, a non-redundant set of 376 sequence motifs was obtained,

among which, forty-six were found informative with the scores above 0.0138 (see S1 Table).

Nucleotide variants resulting in the TFBS loss and gain

Core promoters and 50 UTR regions located within 200 bp around the TSS are both protected

against accumulation of nucleotide variants (Fig 10). This protective effect is due to selection

constraints, which prevents disruption on regulatory elements located near TSS by neutral or

near-neutral genomic variants. Cross-analysis of comprehensive collection of plant TFBS [37]

and an extensive dataset of the genomic variants detected in various rice cultivars [27] allowed

us to classify regulatory elements of these plants according to their tolerance to the mutations

(see S5 Table).

To achieve that, we considered distribution of SNPs and their effects on loss and gain of

TFBS. For each nucleotide change, we have calculated Δ = |q − q�| for the TFBS scores before

(q) and after (q�) nucleotide change, and compared its values to empirically determined

thresholds. Calculations of the scores q and q� were done according to the MATCH scoring

formula (see Materials and Methods). If Δ� Δ0, the site was considered as “lost” or “gained”

depending which score value was larger, q or q�.

Frequencies of site losses and site gains for the promoters and for the random subset of

18,389 intergenic sequences, each 2,000 nt in length, were compared. We hypothesized that

functionally important promoter motifs will have less variation causing the loss of sites. For

each TF, we calculated the ratio of the site losses in intergenic sequences to the site losses in

promoters. All entries were than ranked according to these ratios, which reflected relative

“suppression” of the site losses by SNPs (Table 3). Relative suppressions of the site gains were

Fig 9. An example of five distinct TFBS entries in the TRANSFAC database with very similar position weight matrices (PWMs).

https://doi.org/10.1371/journal.pone.0187243.g009
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calculated in a similar fashion (see Table 4). The binding sites for ABF (CACGTGGC) and CBF4

transcription factors were the most protected from the site loss. In abscisic acid signaling, ABF

factors govern osmotic stress response through modulation of the gene expression down-

stream of SnRK2 kinases, while CBF4 regulates adaptation to drought. For several important

transcription factors, such as MADS8 (involved in the control of flowering time), GT-1 and

GATA-1 (response to light), we observed that variation was avoided in positions where nucle-

otide change can lead to the site gain. Additional data and the results of the analysis of SNPs in

TFBS could be seen in the Table 3, Table 4, and S5 Table.

The binding sites for AT2G20350 and ARF1 transcription factors were the most “protected”

from the site loss. AT2G20350 factors regulate activity of ethylene-activated signaling pathway.

The plant hormone ethylene is involved in many aspects of the plant life cycle, including seed

germination, root hair development, root nodulation, flower senescence, abscission, and fruit

ripening (Johnson and Ecker, 1998). ARF1 is a member of the auxin response factor family,

involved in hyperosmotic salinity response. For several important transcription factors, such

as WRKY23 (involved in hyperosmotic salinity response and response to auxin), FUS3 (plays a

role in embryonic development ending in seed dormancy and response to auxin stimulus), we

observed that variation was avoided in positions where nucleotide change can lead to the site

gain.

Distribution of RNA-Seq reads

Predictably, an analysis of mapped RNA-Seq reads near TSS [-1000; +1000] showed that, on

average, coverage peaks are observed immediately downstream of TSS (Fig 11). However,

some genes lack a peak of RNS-Seq reads at their TSS. Notably, only 26% of rice genes display

a maximum of the coverage in the range [-50, +250], and only 60% of genes display this maxi-

mum in the range [-50, +550].

Fig 10. Frequency of SNPs located near the TSS in rice.

https://doi.org/10.1371/journal.pone.0187243.g010
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R-loop forming sequences (RLFS)

Three-stranded nucleic acid R-loop structure is formed between nascent RNA transcript and

DNA template [48]. Length of the R-loop sequence varies between 150 to 650 nt. R-loops aid

in the prevention of methylation within promoters [49–51] and are associated with initiation

of transcription and other important gene-level features [48]. In particular, R-loops accumu-

late at the G-rich 50-UTR regions immediately downstream of the CpG-non-methylated

human promoters [50]. To map the R-loop forming structures in the area [TSS-1000, TSS+-

1000], we used the QmRRFS tool [48, 52, 53]. QmRRFS partitions R-loops into three segments,

the RIZ (DNA region of initiation of R-loops containing at least three contiguous guanines),

Table 3. Suppression of site loss caused by nucleotide variants in promoters.

ID Frequency intergenic/ Frequency promoters #Promoter Sites #Intergenic Sites P-values

P$AT2G20350_01 1.856 1909 3660 6.15E-112

P$ARF1_01 1.814 856 1604 3.30E-47

P$DREBIII4_01 1.677 870 1507 2.78E-35

P$AT2G41690_01 1.648 1072 1825 5.37E-40

P$CBF1_03 1.540 2803 4459 8.89E-74

P$DREB1F_01 1.534 4873 7720 4.52E-124

P$ORA47_01 1.529 4129 6521 8.35E-104

P$RAP210_01 1.527 4519 7128 1.11E-112

P$DEAR3_01 1.526 4525 7134 1.51E-112

P$RAP210_02 1.526 4525 7134 1.51E-112

P$ERF019_01 1.526 4199 6620 1.36E-104

P$RAP21_01 1.526 4236 6675 3.17E-105

P$AT1G71520_01 1.525 4242 6682 3.57E-105

P$DREB1B_01 1.449 2544 3808 1.16E-48

P$HSF3_01 1.423 1262 1855 1.08E-22

P$AT4G16610_01 1.374 8852 12563 7.08E-118

P$AT4G16750_01 1.347 1175 1635 2.62E-15

P$AT2G44940_01 1.338 1231 1701 2.99E-15

P$MADS17_01 1.307 7134 9628 1.37E-66

“Frequency intergenic”/“Frequency promoters” is the ratio between frequencies of site loss due to SNPs located in intergenic regions and the site loss due to

SNPs located in promoters.

https://doi.org/10.1371/journal.pone.0187243.t003

Table 4. Suppression of site gain caused by nucleotide variation in promoters.

ID Frequency intergenic/ Frequency promoters #Promoter Sites #Intergenic Sites P-values

P$WRKY23_01 1.376 1691 2403 2.59E-24

P$FUS3_Q2 1.331 2249 3091 2.07E-25

P$BHLH112_01 1.319 1813 2471 1.14E-19

P$MYB46_02 1.290 1015 1352 4.37E-10

P$WRKY_Q2 1.286 10925 14507 1.56E-88

P$TGA2_Q2 1.275 6140 8084 3.08E-47

P$CDC5_01 1.269 3653 4787 8.44E-28

P$MADS4_01 1.266 1948 2548 1.89E-15

Column “Frequency intergenic”/“Frequency promoters” contains the ratio of the frequency of site gain due to SNPs located in intergenic regions to the

frequency of the site gain due to SNPs located in promoters.

https://doi.org/10.1371/journal.pone.0187243.t004
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the linker (a spacer up to 50 nt between RIZ and REZ), and the REZ (G-rich region supporting

extension of R-loop, up to 2000 nt long). In agreement with Ginno, Lott [50], QmRRFS-driven

analysis showed that 22% of rice genes are associated with at least one R-loop in the area [TSS-

1000, TSS+1000], with the predominant localization in 50-UTR. The observed distribution of

RLFS was unimodal, with the peak of the distribution located at the position around 200 nt

downstream from the TSS; over a half of RLFS (52%) were found in the 50-UTR [TSS, TSS

+400] (S6 Table). Notable, this peak coincides with the region where polymerase typically

pauses after the initiation of transcription [48, 52, 53].

DNA methylation

In the intergenic regions and within functional classes of genes and their promoters, the pat-

terns of DNA methylation predictably differ [54, 55]. The most pronounced effect was

observed for the methylated CpGs (see Fig 12). Intergenic level of CpG methylation was at

0.27, with sharp decline starting around 600 bp upstream of TSS to about 50% of that in inter-

genic region level at the position of -170, then proceeds to its minimum (0.01) at 8 bp upstream

from the TSS.

Combining the characteristic features of TSS into promoter classifier

We used 18,389 “promoter” (positives) and 18,389 “non-promoter” (negatives) sequences. To

train the model, we used 14,711 positives and negatives; and the remaining 3,678 positives and

negatives were used for testing. The binary classifier interrogates the candidate sequence and

reports whether the sequence is “promoter” or “non-promoter”. The best combination of fea-

tures was: composition of DNA sequence, GC-skew value and presence/absence of the CA-

motif in every position. It achieved the best accuracy (0.9995) and has the Matthews correla-

tion coefficient of 0.9989 (see Table 5). Other features also improve the classification accuracy

Fig 11. RNA-Seq coverage near the transcription start site.

https://doi.org/10.1371/journal.pone.0187243.g011
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in comparison with the DNA sequence alone, however, not performing as well as the combina-

tion of DNA sequence, GC-skew and CA-motif distribution.

Discussion

In this work, we have investigated several features of promoter area, identified characteristic

patterns of their distribution and assessed utility of these features for identification of TSS loca-

tion. Accuracy of TSS identification affects the overall quality of regulatory region analysis. To

date, large amounts of the “mapped” TSS are, in fact, defined only approximately. A significant

fraction of promoters has multiple alternative TSS, many of which are not yet annotated.

These features make prediction of exact positions of TSS a very complex problem. Further

work toward exact mapping of all TSS positions using various promoter characteristics in mul-

tiple species is warranted. It is essential to find and annotate tissue- and condition-specific

transcription start sites and associate them with alternative splice form, gene regulatory net-

work, and protein function.

Intelligent integration of multiple types of genomic information (DNA composition, regu-

latory elements, DNA methylation, RNA-Seq coverage data, SNP distribution etc.) may

improve annotation of tissue- and developmental stage-specific genes that are often misidenti-

fied due to their atypical sequence composition in grasses [54–56]. We showed that the region

containing promoter-UTR boundaries could be defined using the following pronounced

trends: (1) drop in SNP density, (2) evolutionary conserved peaks and valleys of the positions

of regulatory elements, (3) peak of RNA-Seq coverage immediately downstream from the TSS,

(4) peak of CG skew, (5) drop in DNA methylation density in CpG, CHH and CHG contexts,

where H denotes A, C or T nucleotide. Integration of multiple noisy features of promoter

regions can result in 99% classification accuracy. Features identified as important by deep

Fig 12. Methylation around transcription start site in rice in different sequence contexts. Red–CG, green—CHG, blue–CHH, where H

denotes A, C or T nucleotide.

https://doi.org/10.1371/journal.pone.0187243.g012
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learning based classification can now be used to build a scoring function for promoter

prediction.

In our work, we focused on the 2000 nucleotide long region around rice TSS, supported by

experimental evidence. In rice, the median length of 50 UTR is 120 nt; with less than 1.2% of 50

UTRs being larger than 1000 nt [28]. Therefore, for the vast majority of loci, the considered

regions covered both transcription and translation start sites, being sufficient for description

and classification of rice promoters.

Analysis of SNPs in the context of TFBS in promoter and non-promoter region indicated

that TFBS differ by their tolerance to nucleotide variation. It is of note that the binding sites

for AT2G20350 and ARF1 transcription factors were the most “protected” from the site loss.

Both of these factors are involved in plant hormone signaling [57]. We conclude that sites for

these transcription factors are “protected” in evolution from being lost due to their importance

for regulation of plant lifecycle. It was interesting to observe that for several transcription fac-

tors nucleotide variations were avoided in positions where nucleotide change can lead to the

site gain. Among such factors were WRKY23 and FUS3, involved in gene regulation in

response to the plant hormone auxin. We propose that spurious generation of novel sites for

these transcription factors may significantly alter cellular timing. We conclude that TRANS-

FAC analysis may results in functional observations as it provided clear evidence of interplay

between SNPs and TF binding sites in rice genome.

Materials and methods

Fgenesh++ rice gene prediction

Fgenesh++ (Find genes using Hidden Markov Models) [58–60] is a HMM-based ab initio
gene prediction program [61]. We used the rice chromosomes (version MSU 7, [29]) to make

the initial gene prediction set, applying the Fgenesh gene finder with generic parameters for

monocot plants. From this set, we selected a subset of predicted genes that encode highly

homologous proteins (using BLAST with E-value cut-off 1.0E-10) to known plant proteins

from the NCBI non-redundant (NR) database. Based on this subset, we computed gene-find-

ing parameters, optimized for the rice genome, and executed the Fgenesh++ pipeline to anno-

tate the genes in the genomic scaffolds. The Fgenesh++ pipeline used all available supporting

Table 5. Promoter classification accuracy.

Features TP TN FP FN Accuracy Sensitivity Specificity CC

DNA sequence 3424 3030 648 254 0. 8774 0. 9309 0. 8238 0.7591

DNA sequence + CG skew 3635 3653 25 43 0.9907 0.9883 0.9932 0.9832

DNA sequence + CG skew + frequency of CA motif 3674 3678 0 4 0.9994 0.9989 1.0 0.9989

DNA sequence + CG skew + RNA-Seq coverage 3658 3666 12 20 0.9956 0.9945 0.9967 0.9913

DNA sequence + CG skew + frequency of TATA motif 3653 3608 70 25 0.9870 0.9932 0.9810 0.9742

DNA sequence + CG skew + DNA methylation 3657 3563 115 21 0.9815 0.9942 0.9687 0.9633

DNA sequence + all TFBS 3241 3386 292 437 0.9009 0.8812 0.9206 0.8024

DNA sequence + all TFBS +CG skew 3619 3668 10 59 0.9906 0.9839 0.9973 0.9813

DNA sequence + selected TFBS+CG skew 3628 3674 4 50 0.9927 0.9864 0.9989 0.9854

DNA sequence + SNP 3430 3138 540 248 0.8929 0.9326 0.8532 0.7882

DNA sequence + SNP+CG skew 3348 3296 382 330 0.9032 0.9103 0.8962 0.8065

DNA sequence + CG skew+

RNA-Seq coverage +selected TFBS

3653 3663 15 25 0.9946 0.9932 0.9959 0.9891

DNA sequence + CG skew + frequency of CA motif + RNA-Seq 3665 3638 40 13 0.9928 0.9965 0.9891 0.9856

https://doi.org/10.1371/journal.pone.0187243.t005
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data, such as known transcripts and homologous protein sequences. NR plant and, specifically,

rice transcripts were mapped to the rice genomic sequences, therefore identifying a set of

potential splice sites. Plant proteins were mapped to the rice genomic contigs, and the high

scoring matches were selected to generate protein-supported gene predictions, so that only the

highly homologous proteins were used in gene identification.

Amino acid sequences from predicted rice genes were then compared to the protein

sequences from plant NR database using the ’bl2seq’ routine, and the similarity was significant

if it had a BLAST percent identity� 50, BLAST score� 100, coverage of predicted protein�

80% and coverage of homologous protein� 80%. BLAST analysis of the predicted sequences

was also carried out against the O. sativa mRNA dataset, using an identify cutoff of>90%. Pre-

dictions that have both NR plant RefSeq and O. sativa mRNA support, as well as the 50 UTR

longer than 20 nucleotides and shorter than 1000 were selected for the analysis.

GFF file with Fgenesh++ gene prediction is available as a Supplemental Data file.

MSU rice gene models

The current MSUv7 annotation (http://rice.plantbiology.msu.edu) of rice genome contains

55,986 predicted genes and 66,338 gene models [29]. Upon exclusion of pseudogenes, trans-

posable elements, and genes with atypical lengths of 50 UTR (below 20 nt or above 1000 nt

long), a high-confidence set contains 20,367 expressed protein-coding rice genes.

Arabidopsis gene and promoter models

Genome annotation files for TAIR 10 version and sequences for 3000 nucleotides upstream

from ATG were obtained from The Arabidopsis Information Resource (TAIR) [24, 62]. The

upstream sequences were truncated based on the position of the nearest upstream locus.

290,085 EST sequences were obtained from NCBI and TAIR and mapped onto the 27,199

upstream sequences using nucleotide BLAST + (minimum identity percent: 95%; maximum

query start of alignment: 5; only plus strand alignments were used). Using the text search, we

removed ESTs annotated as 30 or partial. NPEST [5] algorithm was used and resulted in pre-

diction of 17,452 transcription start sites for 16,520 protein-coding loci.

Corn gene and promoter models

Genome annotation of maize (B73, 6a) contains 40,602 predicted protein-coding genes [63].

We excluded genes with atypical lengths of 50 UTR (below 20 nt or above 1000 nt long), genes

without full-length mRNA support, without valid start and stop codon, or no PFAM annota-

tion. This filtering resulted in 16,180 putative corn TSS.

Positional information content of transcription factor binding sites

We selected TFBS that occur at least 10,000 times in promoters of a given species. In rice, it

amounted to 487, in Arabidopsis -559, and in corn—171 TFBS. To calculate the information

content of each TFBS, we divided the region around the start of transcription (TSS-1000, TSS

+1000) into 100 nt long bins, and calculated the observed frequency of TFBS matches in every

window as a ratio of matches within the window to the total number of matches fo ¼ m
T . The

expected frequency is calculated as fe ¼ 1

Number of windows. The information content (a.k.a. Shan-

non’s entropy) is defined as I ¼
P

windowsfelogðfef0Þ. The binding sites were ranked from highest

to lowest information content.
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RNA-Seq data

We used following publicly available rice RNA-Seq datasets: SRR034580, SRR034581,

SRR034582, SRR034583, SRR034584, SRR034585, SRR034586, SRR034587, SRR034588,

SRR034589, SRR034590, SRR034591, SRR034592, SRR034593, SRR034594, SRR034595,

SRR034596, SRR034597, SRR034598, SRR034599, SRR042529, SRR074125, SRR074126,

SRR074127, SRR074128, SRR074129, SRR074130, SRR074131, SRR074132, SRR074133,

SRR074134, SRR074135, SRR074136, SRR074137, SRR074139, SRR074140, SRR074142,

SRR074143, SRR074144, SRR074145, SRR074146, SRR074147, SRR074149, SRR074150.

The datasets were processed using the following protocol:

1. Duplicates were removed using tool clumpify (http://jgi.doe.gov/data-and-tools/bbtools/bb-

tools-user-guide/clumpify-guide/) allowing for up to two errors per read.

2. Quality trimmed using trimmomatic [64] with minimum read length = 16, minimum qual-

ity 28 (sliding window of length 10)

3. Aligned to the MSU 7 rice genome usingHisat2 [65] aligner.

Summary statistics is shown in the Table 6.

Identification of transcription factor binding sites

The prediction of TF binding sites is done using the MATCH tool, which is based on the usage

of information vector-based PWM model. This model calculates thematrix similarity score (q)

defined in [35]. This model is a common additive model, which uses a transformed matrix

instead of an initial matrix, where each column of the transformed matrix is determined with

the help of weighting the corresponding initial column by information content. The matrix

similarity score q is calculated according to the following formula:

q ¼
PL

i¼1
IðiÞf ðbi; iÞ �

PL
i¼1
IðiÞf minðiÞ

PL
i¼1
IðiÞf maxðiÞ �

PL
i¼1
IðiÞf minðiÞ

here, L is the length of the weight matrix; bi is the nucleotide that is observed in the position i
of the sequence of TF binding site; f(bi,i) is the frequency of nucleotide bi in the position i of

the weight matrix; fmin(i) is the frequency of the nucleotide which is the rarest in the weight

matrix in the given matrix position i; fmax(i) is the highest frequency the given matrix position

i. The information content I(i) in the position i is defined as followed:

IðiÞ ¼
X

B2fA;C;G;Tg

f ðB; iÞlog2ð4f ðB; iÞÞ

It describes conservation of the position i of the weight matrix. Multiplication of the nucleotide

frequency by the information content imposes penalty on consensus mismatches in highly

conserved regions of the matrix. We have recently demonstrated that this strategy is superior

to the common alternative approaches of computing the TFBS scores [37].

Site loss and gain. We analyzed distribution of SNPs and their effect on TF binding site

loss and gain. The effect of a SNP on TF binding sites was computed as the follows. For each

Table 6. RNA-Seq dataset quality.

Experiments Reads Read length Quality Aligned

SRR034580-SRR034599 ~5.5 M 35 Poor 67–72%

SRR042529 8.5M 36 Good 84%

SRR074125-SRR074150 2–5M 26 Good ~1.5% (!)

https://doi.org/10.1371/journal.pone.0187243.t006
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SNP and for each PWM model we computed two matrix similarity scores (see above): q and q�

corresponding to two nucleotides in the SNP–the reference and alternative nucleotides.

Next, we calculated Δ = |q − q�|, and compared its value to the empirically determined

threshold Δ0. If Δ� Δ0, the site was considered as “lost” or “gained” depending on sign of the

difference q − q�.
We then calculated frequencies of site loss and site gain for all considered SNPs to identify

which transcription factor binding sites (TFBS) are significantly enriched by the effect of

nucleotide changes in SNPs analyzed. As a background, we considered random nucleotide

changes in random genomic positions. We denote study and background sets briefly as “Yes”
and “No” sets (the “Yes” set is the set of TFBS sequences overlapping SNPs with either the ref-

erence nucleotide or alternative nucleotide; the “No” set is the set created by random nucleo-

tide substitutions in random genomic positions). The algorithm for TFBS enrichment analysis,

called F-Match, has been described in Kel, Konovalova [66] and Koschmann, Bhar [67].

Briefly, the procedure finds a critical value (a threshold) for the differences between scores q

and q� (the threshold Δ0) of each PWM in the library that maximizes the “Yes/No” ratio RYN as

defined in Eq (1) under the constraint of statistical significance:

RYN ¼
#SitesYes=#SitesNo
#SeqYes=#SeqNo

ð1Þ

In Eq (1), #Sites and #Seq are the sites and sequences counted in “Yes” and “No” sets. A high

“Yes/No” ratio indicates strong enrichment of binding sites for a given PWM in the “Yes”
sequences. The statistical significance is computed as follows:

PðX � xÞ ¼
PN

n¼x

N

n

 !

pnð1 � pÞN� n ð2Þ

p ¼
#SeqYes

ð#SeqYes þ#SeqNoÞ

N ¼ #SitesYes þ#SitesNo

n ¼ #SitesYes

The Yes/No ratio and P-value is computed separately for the site gain and for the site loss.

If “Yes/No” ratio >1 and a P-value < 0.01 for a given PWM we consider this as an indication

of an enrichment of SNPs by the sites for the given PWM. We can say that sites of this PWM

are frequently effected by the SNPs and, therefore, the gene regulation by the respective TFs is

significantly altered by the considered SNPs.

Matrix clustering. Many matrices in the TRANSFAC database are highly similar, up to

the point being undistinguishable. To lower the complexity of the training data, we performed

hierarchical clustering and used only one matrix from each cluster for promoter classification.

The distance between two motifs is calculated as sum of squared differences between all matrix

elements. If matrices were not the same size, we slide the shorter matrix over the longer one

and take minimal distance. The cut-off for merging clusters was determined empirically by

considering the sequence logos of matrices to be merged at each step and deciding which

matrices we consider duplicates.
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Classification of promoter regions

There are many network architectures and the task is to choose a suitable one for a given

research problem. We used Convolutional Neural Networks (CNN) architecture for building

promoter recognition models developed by Umarov and Solovyev [10]. The software consists of

several modules. In the learnCNN.py modules the CNN model was implemented using Keras—
a minimalist, highly modular neural networks library, written in Python. It uses the Theano
library as a backend and utilizes GPU for fast neural network training. Adam optimizer was

used for training with categorical cross-entropy as a loss function. Our CNN architecture (Fig

13) consists of one convolutional layer with 200 filters of length 21. After the convolutional

layer, there is a standard Max-Pooling layer. The output from the Max-Pooling layer is fed into

a standard fully connected ReLU layer with 128 neurons. Pooling size was equal to 2. The ReLU

layer is connected to the output layer with sigmoid activation, where neurons correspond to

promoter and non-promoter classes. The batch size used for training was 16.

Input of the network consisted of nucleotide sequences where each nucleotide is encoded

by a four-dimensional vector A (1,0,0,0), T (0,1,0,0), G (0,0,1,0) and C (0,0,0,1) and other

dimensions filled by other promoter features such as: GC-skew, DNA methylation, SNP, pres-

ence of CA motif, presence of TATA motifs, TFBS. The output is a two-dimensional vector:

“promoter” (1, 0) and “non-promoter” (0, 1) prediction. learnCNN.py learns parameters of

the CNN model and outputs the accuracy of promoter prediction for the test set of sequences.

It also writes the computed CNN Model into a file, which can be used later in programs for

promoter identification in each sequence. We used 70% of these examples for learning, 10%

for validation (to find an optimal number of learning epochs) and 20% for testing.

We have extracted 18,389 sequences around transcription start site determined by full-

length mRNA. Sequence [TSS-199, TSS+50], containing 200 nucleotides from promoter and

50 nucleotides from 5’ UTR, was designated as the “promoter” region, and sequence [TSS

+751, TSS+1000], from the coding part of the gene, as “non-promoter”.

Quality of prediction was assessed using the following measures: True Positives (TP), True

Negatives (TN), False Positive (FP), False Negative (FN), Accuracy, Sensitivity, Specificity,

Matthews correlation coefficient (CC):

Accuracy ¼
TPþ TN

TPþ TN þ FP þ FN

Sensitivity ¼
TP

TPþ FN

Specificity ¼
TN

TN þ FP

Fig 13. Basic CNN architecture that was used in building promoter models implemented in the learnCNN.

py program [3, 10].

https://doi.org/10.1371/journal.pone.0187243.g013

Nucleotide patterns aiding in prediction of eukaryotic promoters

PLOS ONE | https://doi.org/10.1371/journal.pone.0187243 November 15, 2017 22 / 28

https://doi.org/10.1371/journal.pone.0187243.g013
https://doi.org/10.1371/journal.pone.0187243


CC ¼
TP� TN þ FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p �
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