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Objectives: Recent studies suggest that asthma may have a protective effect on COVID-
19.We aimed to investigate the causality between asthma and two COVID-19 outcomes
and explore the mechanisms underlining this connection.

Methods: Summary results of GWAS were used for the analyses, including asthma
(88,486 cases and 447,859 controls), COVID-19 hospitalization (6,406 hospitalized
COVID-19 cases and 902,088 controls), and COVID-19 infection (14,134 COVID-19
cases and 1,284,876 controls). The Mendelian randomization (MR) analysis was
performed to evaluate the causal effects of asthma on the two COVID-19 outcomes. A
cross-trait meta-analysis was conducted to analyze genetic variants within two loci shared
by COVID-19 hospitalization and asthma.

Results: Asthma is associated with decreased risk both for COVID-19 hospitalization
(odds ratio (OR): 0.70, 95% confidence interval (CI): 0.70-0.99) and for COVID-19 infection
(OR: 0.83, 95%CI: 0.51-0.95). Asthma and COVID-19 share two genome-wide significant
genes, including ABO at the 9q34.2 region and OAS2 at the 12q24.13 region. The meta-
analysis revealed that ABO and ATXN2 contain variants with pleiotropic effects on both
COVID-19 and asthma.

Conclusion: In conclusion, our results suggest that genetic liability to asthma is
associated with decreased susceptibility to SARS-CoV-2 and to severe COVID-19
disease, which may be due to the protective effects of ongoing inflammation and,
possibly, related compensatory responses against COVID-19 in its early stage.

Keywords: asthma, COVID-19, Mendelian randomization, inflammation, OAS2, ABO, ATXN2
INTRODUCTION

The COVID-19 pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infections caused a public health crisis worldwide. By the end of March 2021, the COVID-19 pandemic
has incurred 128 million infections worldwide, including close to three million deaths, with a mortality
rate of 2.2%, according to Johns Hopkins Coronavirus Resource Center (https://coronavirus.jhu.edu/
map.html). Although the majority of infected persons experience mild no obvious symptoms,
approximately 10-20% of people with COVID-19 infection need hospitalization (1, 2). In hospitalized
patients, comorbid hypertension, obesity, and diabetes are common (1, 2).
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There is substantial variability in terms of symptoms, severity,
and prognosis of the disease. Infected individuals with older age
or medical complications are more likely to develop severe
symptoms, with some young and seemingly healthy individuals
also having serious outcomes. Host genetics is considered to play
an essential role in an individual’s propensity to contract
infectious diseases (3). Other medical conditions may exert an
influence on an individual’s susceptibility to COVID-19 both by
disease-driven conditioning of the immune system, and by
shared genetic variations, which may either predispose to
comorbid conditions or aid in resisting disease phenotype.

As COVID-19 disease is known to affect both upper and lower
airways, it is not surprising that the links between SARS-CoV-2
severity and pre-existing lung inflammation were soon uncovered.
In particular, in lung epithelium cell datasets from SARS-CoV-2
infection and idiopathic pulmonary fibrosis, transcriptomic
analyses pinpointed a set of shared pathways and hub genes (4).
Similarly made observations genetically connected SARS-CoV-2
withpulmonary arterial hypertension (5).

It is commonly accepted that asthmatics and patients with
respiratory allergies have increased susceptibility and severity for
viral infections (6). Therefore, asthma was initially considered as a
risk factor for COVID-19, and a higher prevalence of asthma in
COVID-19 hospitalized patients has been reported (7). Asthma
was reported to be associated with a higher risk of morbidity in
COVID-19 patients (8). However, some studies reported that the
prevalence of asthma in patients with COVID-19 is lower than
expected (9, 10), suggesting that having asthma may exert a
protective effect (11). Some evidence indicates that asthma is not
associated with outcomes of COVID-19 (12–14). Until now, the
relationship between COVID-19 and asthma remains controversial
and is under active debate (15–18). The associations reported by
observational studies may suffer from limited support for causality.
Therefore, there is an urgent need to determine their association
using more fundamental evidence and to elucidate the mechanisms
underlying the association between COVID-19 and asthma.

Mendelian randomization (MR) is an analytic framework that
utilizes genetic variants as instrumental variables to test the
causative association between an exposure and an outcome
(19), which has been widely used in recent studies (20–22). In
particular, previous MR analyses have reported causal risk
factors for a severe course of COVID-19, including body mass
index and smoking intensity (23–25). In this study, summary-
level Genome-Wide Association Studies (GWAS) data were
utilized to test for putative causal associations between asthma
and two COVID-19 outcomes. Furthermore, we annotated the
COVID-19 GWAS results by performing functional analyses for
the discovered genes. These asthma-related findings may shed
more insight into the COVID-19 pathophysiology.
METHODS

Study Design and Participants
Two-sample MR was employed to investigate causal relationships
between asthma and COVID-19 outcomes in the summary-level
Frontiers in Immunology | www.frontiersin.org 2
GWAS datasets. The asthma GWAS dataset included 88,486 cases
and 447,859 controls (97.2% of the participants were of European
origins) (26). Two datasets were obtained from the COVID-19 Host
Genetic Initiative GWAS meta-analyses round 4 (Release Date:
October 20, 2020) (27), with outcomes including either COVID-19
hospitalization (6,406 hospitalized COVID-19 cases and 902,088
controls), or COVID-19 infection (14,134 COVID-19 cases and
1,284,876 controls). COVID-19 infection reflects the overall
susceptibility to the disease, whereas COVID-19 hospitalization
cases represent the relative severity of the disease. In both the
COVID-19 datasets, all the participants were of European origins.

MR Analysis and Genetic
Correlation Estimation
Causality was tested using inverse variance-weighted (IVW)
analysis (28). To evaluate the sensitivity, we further test the causal
effect using the MR-Egger regression (29) and the weighted median
method (30). The intercept from theMR-Egger model was used as a
measure of directional pleiotropy. All the above analyses, and the
heterogeneity analysis, were conducted using TwoSampleMR v0.5.5
(31). Single-nucleotide polymorphisms (SNPs) associated with
asthma at genome-wide significance (P < 5.0E-8) were selected as
instrumental variants and further pruned using a clumping r2 cutoff
of 0.01. The genetic correlations of asthma with COVID-19
outcomes were calculated using linkage disequilibrium (LD) score
regression (32). Statistical significance of the analyses was accepted
when P values were < 0.05.

Annotation of the COVID-19 and Asthma
GWAS Results
Functional mapping and annotation (FUMA) software was used
to map SNPs to genes and identify LD-independent genomic
regions (33). All genes located within 10 kb vicinity of each variant
were mapped. Independent significant SNPs (IndSigSNPs) were
extracted when their P-value were genome-wide significant (P ≤
5.0E-08) and independent of each other (r2 < 0.6). Lead SNPs were
identified as a subset of the independent significant SNPs that were
in LD with each other at r2 < 0.1 within a 500 Kb window.
Genomic risk loci were identified by merging lead SNPs located at
a distance of less than 500 kb from each other. Clumping
procedures were carried out in accordance with the European
1000 Genomes Project phase 3 reference panel. Due to extensive
LD, the entire major histocompatibility complex (MHC) locus was
merged into one region (chr6:25-35Mb). Regional association
results of the loci were plotted using LocusZoom (34).

Cross-Trait Meta-Analysis of COVID-19
Hospitalization and Asthma
We conducted a cross-trait meta-analysis to identified pleiotropic
genetic variants shared by asthma and COVID-19 hospitalization.
ASSET is an agnostic approach that performs cross-trait
meta-analysis by allowing a subset of the input GWASs to
have no effect on a given SNP (35). This technique identifies
the strongest association signal by exhaustive exploration of all
possible subsets of GWAS and their inputs within a fixed-
effect framework.
March 2022 | Volume 13 | Article 705379
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Tissue Specificity and Pathway
Enrichment Analyses
Tissue specificity of the genome-wide genes was measured
against each of the differentially expressed gene (DEG) sets
from GTEx v8 (36) using the hypergeometric test (33). For
each genome-wide gene, enrichment in canonical pathways was
evaluated using FUMA (33). All analyses were done using R
v4.0.3 or Python v3.7. A detailed description of the methods is
provided in the Supplementary File.

Gene Overlap Analysis for COVID-19
and Asthma
To identify overlapped risk genes between COVID-19 and
asthma, we retrieved genome-wide risk genes for two traits
from GWAS-catalog (https://www.ebi.ac.uk/gwas/). For
COVID-19, we combined the results from GWAS-catalog and
the genes identified in our present study.
Frontiers in Immunology | www.frontiersin.org 3
RESULTS

MR Analysis and Genetic Correlation
Estimation
As shown in Table 1 and Figure 1, our MR analysis unequivocally
indicated that asthma is associated with decreased risk for either
COVID-19 infection (OR: 0.83, 95%CI: 0.70-0.99, P = 0.037) or
hospitalization (OR: 0.70, 95%CI: 0.51-0.95, P = 0.023). The
sensitivity analyses suggested that the directions of causal effect
estimates across the methods were the same. Tests of MR-Egger
regression did not support the directional pleiotropy of the genetic
instrumental variables for both the causal associations (MR-Egger
intercept < 0.001, P > 0.05). The heterogeneity test did not support
the existence of heterogeneity in the MR analysis (all P > 0.05).
There were no genetic correlations between asthma and
COVID-19 hospitalization (r = -0.03, P = 0.631) or COVID-19
infection (r = 0.11, P = 0.120).
TABLE 1 | Causal effects of asthma on the COVID-19 outcomes.

Exposure Outcome Method nSNP b se OR [95%CI] P Egger_intercept P_pleiotropy

Asthma COVID-19 hospitalization IVW 214 -0.359 0.158 0.70 [0.51-0.95] 0.023 3.75E-04 0.96
Asthma COVID-19 hospitalization Weighted median 214 -0.392 0.223 0.68 [0.44-1.05] 0.079 3.75E-04 0.96
Asthma COVID-19 hospitalization MR Egger 214 -0.383 0.481 0.68 [0.27-1.75] 0.427 3.75E-04 0.96
Asthma COVID-19 infection IVW 216 -0.186 0.089 0.83 [0.70-0.99] 0.037 4.71E-04 0.91
Asthma COVID-19 infection Weighted median 216 -0.048 0.131 0.95 [0.74-1.23] 0.711 4.71E-04 0.91
Asthma COVID-19 infection MR Egger 216 -0.215 0.27 0.81 [0.47-1.37] 0.427 4.71E-04 0.91
March
 2022 | Volume 13 |
IVW, inverse variance weighted.
FIGURE 1 | Causal effects of asthma on COVID-19 outcomes, including hospitalization and infection. IVW, inverse variance weighted; MR, Mendelian randomization.
The lines denote effect sizes (b).
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Annotation of the COVID-19 and Asthma
GWAS Results
A total of six and four genomic loci were associated with
COVID-19 hospitalization and with infection, respectively
(Table 2 and Figure 2). All the four loci implicated in
COVID-19 infection overlapped with the six loci associated
with COVID-19 hospitalization. For both datasets, the 3p21.31
locus had the largest amount of signals within protein-
coding genes.

A total of 19 and 10 protein-coding genes were detected
for COVID-19 hospitalization and infection, respectively
(Table 2). All the 10 coding genes implicated in COVID-19
infection overlapped with the gene set for the COVID-19
hospitalization. Therefore, the present study revealed a total of
19 genome-wide risk genes for COVID-19, including ABO,
CCR1, CCR2, CCR3, CCR9, CCRL2, CXCR6, DPP9, FYCO1,
IFNAR2, LIMD1, LTF, LZTFL1, OAS1, OAS2, OAS3, SLC6A20,
VSTM2A, and XCR1.

For asthma, a total of 169 genomic loci were associated
with the illness. Interestingly, two loci were overlapped with
those of COVID-19 hospitalization, including the 9q34.2 locus
and the 12q24.13 locus (Table 2 and Figure 2). The ABO gene
within the 9q34.2 locus was implicated in both asthma and
COVID-19.
Cross-Trait Meta-Analysis of COVID-19
Hospitalization and Asthma
The cross-trait meta-analysis identified 63 significant
associations (P < 5E-8), including two SNPs shared by
COVID-19 and asthma (Figure 3 and Supplementary
Table 1). The rs1381383189 within ABO was implicated in
both the traits in the same direction (3.00E-08), while
rs35350651 within ATXN2 was implicated in both the traits in
the opposite directions (2.33E-09).
Frontiers in Immunology | www.frontiersin.org 4
Tissue Specificity and Pathway
Enrichment Analyses
Gene-based tissue enrichment analysis showed that the set of 19
genes of COVID-19 was upregulated in the spleen, lung, and
blood (Supplementary Figure 1A). SNP-based tissue
enrichment analysis of asthma showed that the GWAS hits of
asthma were over-represented in blood, spleen, lung, and small
intestine (Supplementary Figure 1B). The pathway enrichment
analysis highlighted multiple pathways, including cytokine
interaction with their receptors, chemokine and interferon
signaling, human oligoadenylate synthetase (OAS) antiviral
response, G protein-coupled receptor signaling, and natural
k i l l er T pathway (Figure 4) . These pathways are
predominantly involved in the inflammatory function.

Overlapped Genome-Wide Risk Genes
Between COVID-19 and Asthma
In the GWAS catalog, there were 19 and 1,293 genes for COVID-
19 and asthma, respectively. After merging with the 27 genes
extracted in this study, a set of 34 risk genes for COVID-19 was
formed. Overlap analysis revealed that two protein-coding genes
were shared between the two conditions, namely, ABO
and OAS2.
DISCUSSION

Our study shows that asthma has a protective effect on the risk of
COVID-19 infection and hospitalization, representing a
surprising departure from other common respiratory viral
outbreaks. Notably, COVID-19 progression relies on the over-
activation of innate immunity and ‘cytokine storms ’.
Predominantly allergic immune responses, which are
characteristic of asthma, may mediate the protective effect of
TABLE 2 | Genomic loci influencing the COVID-19 outcomes and asthma.

Trait Loci SNP CHR Start-end A1/A2 OR [95%CI] P Coding Genes

COVID-19 infection 1 rs34326463 3 45835417-46279150 A/G 1.32 [1.25-1.39] 7.37E-27 SLC6A20;LZTFL1;CCR9;
FYCO1;CXCR6;XCR1;CCR3

COVID-19 infection 2 rs8176719 9 136132908-136149500 -/C 1.12 [1.08-1.16] 5.36E-10 ABO
COVID-19 infection 3 NA 19 4715016-4726931 C/A 1.10 [1.07-1.14] 9.73E-09 DPP9
COVID-19 infection 4 NA 21 34589235-34635053 C/G 1.10 [1.06-1.13] 9.03E-09 IFNAR2
COVID-19 hospitalization 1 rs35081325 3 45665765-46482683 A/T 1.82 [1.68-1.96] 6.89E-52 LIMD1;SLC6A20;LZTFL1;CCR9;

FYCO1;CXCR6;XCR1;CCR3;
CCR1;CCR2;CCRL2;LTF

COVID-19 hospitalization 2 rs622568 7 54623875-54672096 A/C 1.26 [1.18-1.34] 3.34E-12 VSTM2A
COVID-19 hospitalization 3 rs950088295 9 136132908-136149500 G/A 0.84 [0.79-0.89] 3.00E-09 ABO
COVID-19 hospitalization 4 NA 12 102990430-113444024 C/A 0.80 [0.74-0.86] 4.04E-10 OAS1;OAS2;OAS3
COVID-19 hospitalization 5 NA 19 4715016-4726931 C/A 1.23 [1.17-1.29] 1.85E-15 DPP9
COVID-19 hospitalization 6 rs13050728 21 34589235-34635053 T/C 0.83 [0.79-0.88] 2.76E-12 IFNAR2
Asthma 91 rs782134971 9 45835417-46279150 -/AAACTGCC 1.01 [1.01-1.02] 2.96E-08 ABO
Asthma 117 rs653178 12 111826477:112928596 T/C 1.01 [1.01-1.02] 1.04E-10 SH2B3;ATXN2;BRAP;ACAD10;

NAA25;TRAFD1;HECTD4;PTPN11;
MAPKAPK5;TMEM116
March 2
CHR, chromosome; BP, base position; NA, not available.
022 | Volume 13 | Article 705379
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asthma against COVID-19. The receptor-binding domain of
SARS-CoV-2 spike protein docks to Angiotensin-Converting
Enzyme 2 (ACE2), which is encoded by the gene reported as
less active in asthma patients, thus, possibly limiting the entry of
Frontiers in Immunology | www.frontiersin.org 5
the virus into the epithelium of the asthmatic’ airways (37). The
expression levels of ACE2 negatively correlate with the levels of
Th2 cytokines in airway epithelial cells (IL-4, IL-5, and IL-13) and
with total amounts of IgE (37, 38). In asthma, the predominance of
FIGURE 2 | Manhattan plot of GWAS results of the COVID-19 outcomes and asthma. The x-axis is chromosomal position of SNPs and the y-axis is the significance
of the SNPs (-log10P). Each horizontal dashed line denotes genome-wide significance level of 5E-8. Dashed green rectangles indicate the two overlapped genomic
loci between COVID-19 hospitalization and asthma.
March 2022 | Volume 13 | Article 705379
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Th2 response may alleviate the viral-induced release of interferons,
and downregulate the cytokine storm which is typical for
advanced COVID-19, thus, preventing hospitalization.

On the other hand, both the asthma treatments, namely, inhaled
corticosteroids (39), and the cross-reactivity to T cell epitopes of
common airborne allergens (40) may directly decrease the risk of
contracting SARS-CoV-2 infection either by alleviating
inflammation or by providing pre-existing immunity.

In this paper, we identified a set of 19 protein-coding risk
genes associated with COVID-19 susceptibility and severity.
These genes are located within six genomic loci, with
Frontiers in Immunology | www.frontiersin.org 6
chromosome 3p21.31 displaying the peak association across
the two COVID-19 datasets and encompassing a cluster of
chemokine receptor genes. Thus, our study supports the
3p21.31 locus as the most critical among COVID-19-related
regions, which has been identified and highlighted by previous
GWASs and functional analyses (41–43).

Our study revealed loci within the 9q34.2 and the 12q24.13
region as influencing both asthma and COVID-19 hospitalization.
The ABO gene is the single gene within the 9q34.2 locus. Previously
GWASs have identified it as a risk gene for critical illness of
COVID-19 (41, 42) and asthma (26), while the present study
FIGURE 3 | Two overlapped loci between COVID-19 hospitalization and asthma. Left is the 9q34.2 locus and right is the 12q24.13 locus in hg19. The linkage
disequilibrium information is from phase 3 of the 1000 Genomes Project. The dashed line represents the threshold for genome-wide significance (P < 5.0E-08).
March 2022 | Volume 13 | Article 705379
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suggests its involvement of COVID-19 infection and hospitalization
as well. In previous studies, blood group A was associated with an
increased risk for severe COVID-19 (OR = 1.45), while blood group
O was shown to confer a protective effect (OR = 0.65) (42).
Epidemiological studies reported a similar risk pattern for
contracting COVID-19 (44, 45). Interestingly, ABO was also
highlighted as a genome-wide gene for asthma by Han et al. (26),
with blood group O being specifically reported as a risk factor for
asthma in a recent review (46). Therefore, the effects incurred by the
blood types on both diseases seem genuine.

Chromosome 12q24.13 contains a cluster of genes for the
oligoadenylate synthase family (OAS1, OAS2, and OAS3). These
enzymes synthesize 2’,5’-oligoadenylates (2-5As), which aid in
degrading viral RNAs and inhibiting viral replication by
activating latent RNase L (47). The association of OAS2 with
asthma was reported in an earlier GWAS (48). Moreover, one
study showed that expression levels of OAS2 correlate with
reticular basement membrane thickness (49). Notably, OAS2
was recently suggested as one of the hub genes for coordinating
innate immune responses in COVID-19 and a potential to-be-
augmented target for the treatments of this illness (50). In
particular, inhibitors of endogenous phosphodiesterase 12
(PDE-12) enzyme, which cleaves the host 2-5As, were
proposed for this purpose (51).

Our meta-analysis supports that the effects of variation within
the ABO and ATXN2 genes are shared between COVID-19 and
asthma. Since ATXN2 has been associated with asthma at the
genome-wide level, our meta-analysis suggests ATXN2 may be a
novel risk gene for COVID-19. Ataxin-2, which is encoded by the
ATXN2 gene, is a multifunctional protein of the rough
endoplasmic reticulum and plasma membrane (52), where it
modulates mTOR signals by participating in its translational
regulation by associating with polyribosomes (53). In stressed
cells, ataxin-2 also is involved in the formation of stress granules,
Frontiers in Immunology | www.frontiersin.org 7
where untranslated mRNAs are translationally inhibited (54, 55).
Notably, stress granules attract certain viral proteins, including that
of positive-strand RNA viruses SARS-CoV-2 (56) and Zika (57). In
fact, induced disassembly of the stress granules is required for the
production of viral particles (58). While the role of ataxin-2 in
supporting the replication of SARS-CoV-2 is yet to be investigated,
Zika (ZIKV) decreases its viral production in response to ataxin-2
depletion (57). Moreover, the N protein of SARS-CoV-2 (56, 59)
and ataxin-2 (60) both aid in the formation of high-density
protein/RNA condensates through their intrinsically disordered
regions, possibly competing with each other.

The role of ataxin-2 in immunity is less clear. Previous studies
have connected the genetic variation in the SH2B3/ATXN2
region with CD4+ T cells counts (61), and a variety of
autoimmune conditions, including alopecia areata (62) and
sarcoidosis (63).

Functional analyses showed that the set of 19 genome-wide
risk genes for COVID-19 is expressed at a high level in the
spleen, lung, and blood, supporting the involvement of the local
immune responses in course of the COVID-19. Interestingly,
GWAS hits of asthma were also enriched in three tissues
mentioned above, and in the small intestine. Pathway analysis
supports that the severity-related set of 19 genes predominately
participates in cytokine and chemokine signaling, consistent with
their enrichment in gene sets associated with several immune-
related conditions. Our results strengthen the proposed
viewpoint that COVID-19 progression depends on over-
activated innate immunity and resultant ‘cytokine storm’.

The strengths of this study include the MR design, which is
known to help avoid the causality pitfalls of traditional
observational epidemiological studies. All or the vast majority
of the participants were of European ancestry, reducing the
potential population heterogeneity. Several limitations should
be acknowledged, including pleiotropy as a potential source of
FIGURE 4 | Canonical pathway analyses of the set of COVID-19 risk genes.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Baranova et al. Asthma and COVID-19
bias capable of undermining the validity of an MR study. In the
present study, both COVID-19 and asthma datasets contained
samples from the UK biobank; this sample overlap may
contribute to pleiotropy. However, the pleiotropy test revealed
no indication of directional pleiotropy in the MR analysis.

In conclusion, our results suggest that genetic liability to
asthma is associated with decreased risk for COVID-19 infection
and hospitalization. This phenomenon may be due to the
protective effects of ongoing inflammatory responses against
the early stages of COVID-19.
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