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Purpose: To quantitatively evaluate the inter-annotator variability of clinicians
tracing the contours of anatomical layers of the iridocorneal angle on digital gonio
photographs, thus providing a baseline for the validation of automated analysis
algorithms.

Methods: Using a software annotation tool on a common set of 20 images, five experi-
enced ophthalmologists highlighted the contours of five anatomical layers of interest:
iris root (IR), ciliary body band (CBB), scleral spur (SS), trabecular meshwork (TM), and
cornea (C). Inter-annotator variability was assessed by (1) comparing the number of
times ophthalmologists delineated each layer in the dataset; (2) quantifying how the
consensus area for each layer (i.e., the intersection area of observers’delineations) varied
with the consensus threshold; and (3) calculating agreement among annotators using
average per-layer precision, sensitivity, and Dice score.

Results: The SS showed the largest difference in annotation frequency (31%) and the
minimum overall agreement in terms of consensus size (∼28% of the labeled pixels).
The average annotator’s per-layer statistics showed consistent patterns, with lower
agreement on the CBB and SS (average Dice score ranges of 0.61–0.7 and 0.73–0.78,
respectively) and better agreement on the IR, TM, and C (average Dice score ranges of
0.97–0.98, 0.84–0.9, and 0.93–0.96, respectively).

Conclusions: There was considerable inter-annotator variation in identifying contours
of some anatomical layers in digital gonio photographs. Our pilot indicates that agree-
ment was best on IR, TM, and C but poorer for CBB and SS.

Translational Relevance: This study provides a comprehensive description of inter-
annotator agreement on digital gonio photographs segmentation as a baseline for
validating deep learning models for automated gonioscopy.

Introduction

Gonioscopy1 enables visual inspection of the irido-
corneal angle (ICA), the anatomical region in the
anterior chamber of the eye where aqueous humor
drainage occurs through the trabecular meshwork,

regulating intraocular eye pressure. If aqueous outflow
is diminished, intraocular eye pressure may rise,
thus increasing the risk of developing glaucoma,2
an irreversible optic neuropathy and one of the
main causes of blindness worldwide.3 Common types
of glaucoma include open-angle glaucoma, where
aqueous outflow is hampered by increased resistance
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through the trabecular meshwork, and angle-closure
glaucoma, where outflow resistance occurs due to
appositional or synechial contact between the iris
and the trabecular meshwork. Although, worldwide,
open-angle glaucoma is more common, angle-closure
glaucoma is responsible for a disproportionate number
of patients with severe vision loss.4 Gonioscopy is thus
fundamental to assessing the status of the ICA and
identifying eyes with, or at risk of, angle closure.5,6

The current clinical standard technique for
gonioscopy is a slit-lamp–assisted examination using
a contact lens, which requires significant time, patient
cooperation, and operator expertise. The result is
that gonioscopy is often performed less frequently
than recommended7 and is seldom practiced by
optometrists in primary-care settings, with impli-
cations for identifying those at risk of angle closure.
Gonioscopy is subject to considerable interobserver
variability, and it is also difficult to obtain images
for the patient record, thus reducing the ability to
verify diagnosis and detect changes over time, such as
increasing peripheral anterior synechiae.

Anterior-segment ocular coherence tomography
allows the acquisition of cross-sectional images of the
ICA region; it requires less experience and causes less
discomfort to patients. However, it does not provide a
direct, complete visualization of the ICA interface and
does not allow the observer to see peripheral anterior
synechiae or evaluate trabecular meshwork pigmenta-
tion, which is a significant ICA feature.

The recent availability of new semi-automatic
imaging devices8,9 for gonioscopy has the potential
to address current limitations and offers an unprece-
dented opportunity for the development of automated
image analysis software, such as machine and deep
learning algorithms, to support assisted diagnoses or to
present augmented data to clinicians10 (Cappellari L, et
al. IOVS. 2020;61:ARVO E-Abstract 1620). Crucially,
reliable ground truth (i.e., image annotations) must
be generated in order to tune and validate automatic
systems.

In general, annotations, such as anatomical layer
contours, are approximations of properties of the real
structures that are impossible to obtain directly. It is
well known11–13 that inter-annotator variability affects
annotations consistency and, in turn, protocols for
validation and overall performance assessment.Model-
ing annotation variability is an established and funda-
mental requisite for software validation.

We present, to the best of our knowledge, the
first inter-annotator variability study on manual delin-
eations of ICA layers in digital gonio photographs.

Promising results have been obtained recently with
deep learning for automatic angle closure classifica-
tion in digital gonio photographs based on the visibil-

ity of the pigmented trabecular meshwork.14 We argue
that the assessment of other clinically relevant features
could benefit from a local, rather than global, charac-
terization of the ICA anatomy (i.e., a pixel-wise classi-
fication or segmentation). A precise delineation of ICA
layers could be advantageous, for example, for measur-
ing synechial closure extension and its changes over
time or segmenting the trabecular meshwork to allow
automatic pigmentation grading (e.g., prior to laser
trabeculoplasty). Moreover, auto-alignment and auto-
tracking systems based on layers segmentation could
improve examinations in remote and virtual clinics,
which are currently gaining importance due to the
COVID-19 pandemic.

Methods

Data Acquisition

Digital gonio photographs (1280 × 960 pixels
RGB) of the ICA interface were acquired using a
NIDEK GS-1 semi-automatic gonioscope (NIDEK
Co., Ltd., Gamagori, Japan) at three European clini-
cal sites located inGenova, Italy; Lisbon, Portugal; and
Dundee, United Kingdom. The NIDEK GS-1 takes
multiple color images of the ICA to cover the entire
360° of the interface at different focal planes with
limited depth of field. Each image covers a 22.5° wide
sector.

Data were acquired with patients’ agreement and in
accordance with the General Data Protection Regula-
tion. Acquisition conditions may vary according to
physicians’ discretion but without upsetting image
quality for the purposes of our analysis.

After anonymizing the data at the source, 20 sector
images were selected from 18 eyes of 17 patients and
were used to study inter-annotator variability. For each
sector considered, the image with the focus on the edge
of the ICA (i.e., on the ciliary body band or the scleral
spur if the angle sector was open or on the iris–cornea
interface if it was closed) was selected to provide the
sharpest (highest contrast) visualization of the layer
interfaces. The limited depth of field implies that the
inner portion of the iris and the outer portion of the
cornea may appear blurred. A vignette is also visible
in most images, whereby the image periphery appears
darker than its center.

Image selection was not based on acquisition condi-
tions or the patient’s diagnosis (e.g., ocular hyperten-
sion, glaucoma) but only on local layers morphology,
as this study aimed to assess inter-annotator variabil-
ity on descriptive image features and not to relate
these features to diagnosis. A clinical stratification of
patients is, thus, not relevant and is not provided.
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Rather, the images selected are representative for
a range of variations of the ICA features observed
in clinical practice, such as iris color and trabec-
ular meshwork pigmentation, and include relevant
local variations of layers interfaces, such as apposi-
tional angle closure and anterior synechiae. More in
detail, the images include six light and 14 dark irises
(where blue or green eyes were considered light and
brown eyes were considered dark); five highly and 11
slightly pigmented trabecularmeshworks in non-closed
angle sectors (where slightly pigmented corresponds to
Scheie’s pigmentation grades none, 1, and 2, and highly
pigmented corresponds to Scheie’s grades 3 and 4);
four angle-closure images defined as appositional irido-
corneal contact in at least 50% of the sector (Scheie’s
grade 4); and four images showing anterior synechiae.

Data Annotation Protocol

A comprehensive annotation protocol was designed
in collaboration with the ophthalmologists participat-
ing in this study. The interdisciplinary team ensured
that the information provided by the annotations was
both clinically meaningful and useful to potentially
train and validate automatic deep learning systems
ranging from layer detection to semantic segmentation
purposes.

Here, “to annotate” means to trace the contours
of the layers visible in the image and assign them the
correct label. The annotation tool we selected was the
VGG Image Annotator 2.0.8.15 Image regions were
highlighted using polygonal shapes, and labels were
selected from a list of available entries.

Figure 1 shows an example of annotated sector
image.

Figure 1. An example of annotated sector image. IR, iris root;
CBB, ciliary body band; SS, scleral spur; TM, trabecular meshwork;
C, cornea. (Gonio photograph courtesy of C.E. Traverso, MD, Clinica
Oculistica Di.N.O.G.M.I., Ospedale San Martino, Genoa, Italy.)

The annotation protocol stipulates to annotate only
the sharpest (in-focus) and well-lit image areas; to
not trace the contours of target layers that were not
clearly identifiable with respect to neighboring one;
and to trace layer–layer interfaces as precisely as possi-
ble. Although this protocol means the annotations are
suitable for validating automatic segmentation systems,
it does not necessarily reflect what is commonly done
by ophthalmologists in clinical practice; for example,
tracing contours of ICA layers is not usually required.

Five ophthalmologists from four clinical institu-
tions in Genoa, Italy; Lisbon, Portugal; Dundee,
United Kingdom; and Los Angeles, California, USA,
provided annotations. They were trained individually
in the use of the annotation tool and protocol, in
person whenever possible and through web meetings,
digital documentation, and online support otherwise.
Annotators could access the entire exam acquisition
for every sector image selected to take advantage of
all of the information available. When they performed
the annotations, SP and JG were, respectively, year 4
and 7 specialty trainees with experience in gonioscopy;
YS was a clinical study investigator with 5 years of
experience in an image reading center; CAC was a
glaucoma specialist with 5 years of clinical experience
in glaucoma management; and LAP was head of the
Glaucoma Section, with more than 10 years of clinical
experience in tertiary referral centers.

Annotations Characteristics

Annotations consisted of a set of non-overlapping
polygonal contours enclosing the best-lit and sharpest
area of each ICA layer considered in this study: iris root
(IR), ciliary body band (CBB), scleral spur (SS), trabec-
ular meshwork (TM), and cornea (C).

Image characteristics and protocol guidelines had
important consequences on the annotations. For
example, even if layers are present over the whole
image, vignetting and blur might result in annotators
ignoring the image periphery. This means that a degree
of subjectivity was always present, such as in locat-
ing the transition between in-focus and blurred regions
of the iris or the transition between well-lit and dark
regions within the trabecular meshwork. Moreover,
annotators might choose not to annotate part of an
image if they did not feel sufficiently confident (e.g.,
if they judged the region too poor from a qualita-
tive point of view). This did not necessarily indicate
disagreement with the other annotators, and these
premises resulted in part of each image being left un-
annotated (labeled NA). Each clinician annotated at
least one anatomical layer in every image.
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Figure 2. Original gonio photograph (left) and an annotation (right). Points 1 and 2 highlight two pixels in the iris root. Point 2 has been
excluded from the annotation, given the subjective estimation of the transition between the well-lit and dark image regions. (Gonio photo-
graph courtesy of C.E. Traverso, MD, Clinica Oculistica Di.N.O.G.M.I., Ospedale San Martino, Genoa, Italy.)

In our analysis, inter-annotator variability only
accounted for annotated image regions and was never
affected by un-annotated areas. This ensured that
variability measures reflected only differences in clini-
cal considerations made with confidence.

An example of digital gonio photograph and an
annotation thereof is shown in Figure 2. All of the
image pixels within a delineation were labeled as
pertaining to that layer. The two pixels highlighted in
the figure belong to the same ICA layer (iris root), but
the point labeled “2” in the image was not included in
the annotated region, given the (subjectively) estimated
border between well-lit and dark regions.

This is a departure from many inter-annotator
variability studies for segmentation systems in medical
image analysis,16,17 which typically expect the entire
contour of targets to be identifiable. These character-
istics mean that standard analysis methods, such as
consensus, and comparison metrics, such as the Dice
score, required adapting in order to be used consis-
tently.

Inter-Annotator Variability Analysis

Inter-annotator variability was analyzed in three
experiments, reported below.

Layer-Wise Annotation Frequency
Layer-wise annotation frequency refers to the

number of times each clinician delineated the contours
of each structure, as a measure of their confidence at
recognizing and locating ICA layers in digital gonio
photographs. Annotators were instructed to trace
contours only when they judged them to be clearly
visible. Occasionally, some layers were not visible at
all; for example, the scleral spur was not visible in the

case of angle closure. For this experiment, we were
only interested in the existence of a layer annotation,
not in its geometry; hence, two annotators could be
equally confident in delineating a specific layer even
if the two actual contours differed. This methodology
was designed to provide insight into the variability in
experts’ confidence in identifying ICA layers from local
image features of digital gonio photographs.

Layer Consensus As a Function of the Number of
Agreeing Annotators

This analysis examined consensus by the number
of pixels agreed to be part of a given layer by a
minimum number of annotators. Its size was plotted
as a function of the minimum number of agreeing
annotators (consensus threshold). The purpose was to
obtain an indication of which layers were annotated
with high and low consistency among the annotators
in terms of location and size.

In the literature,11 the consensus of multiple annota-
tions of the same image is usually computed as the
subset of pixels labeled in the same way by at least n
(consensus threshold) annotators, with all of the other
pixels considered as background.

We adapted this concept for our study to deal
correctly with the un-annotated areas (i.e., not
background), defining a three-category label for each
layer pixel, as follows:

1. Consensus region (label 1)—The set of pixels
annotated as the given layer by at least n
observers.

2. Disagreement region (label –1)—The set of pixels
annotated as the given layer by k annotators,
with 1 ≤ k < n, and differently (i.e., belonging to
another layer) by at least one.
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Figure 3. Original RGB image (top left) and the five scleral spur consensus maps as the consensus threshold varies. Label 1 is the consen-
sus region, –1 is the disagreement region, and 0 is the ignored region. (Gonio photograph courtesy of C.E. Traverso, MD, Clinica Oculistica
Di.N.O.G.M.I., Ospedale San Martino, Genoa, Italy.)

3. Ignored region (label 0)—The set of pixels
annotated as the given layer by k annotators, with
k < n, and left un-annotated by the others; this
region is ignored when computing consensus size
variations, as its variability does not necessarily
reflect changes of the actual agreement level.

It follows that NA image regions do not affect
consensus computation according to our experimental
design.

An example of how the consensus region varied
with the consensus threshold is shown in Figure 3.
The extent of disagreement increased with the consen-
sus threshold value, as expected. In the ideal case of
perfect agreement among all the annotators, the agree-
ment region size would not change varying the thresh-
old.

After generating five consensus maps for each target
layer, one per threshold value (when the threshold
equaled 1 it led to the union of annotated pixels,
and when it equaled 5 it led to their intersection), we
studied how the consensus size decreased as the thresh-
old increased.

Average Per-Layer Agreement Analysis
This analysis compared agreement between pairs of

annotators, with one annotator chosen as reference for
each pair.

Each comparison yielded a 5 × 5 confusion matrix,
given that there were five target classes. Un-annotated
regions were excluded from the computation so that

intersections between areas that were annotated by one
annotator but not by the other one did not affect the
results.

Layer-wise precision, sensitivity, and Dice scores of
each annotator were calculated as follows:

1. Precision—TP/(TP + FP), where TP is the true
positives and FP is the false positives.

2. Sensitivity—TP/(TP+ FN), where FN is the false
negatives.

3. Dice score—2 × (precision × sensitiv-
ity)/(precision + sensitivity)

Average values and standard deviations of each
annotator were computed as an overall measure of
inter-annotator agreement.

Results

Layer-Wise Annotation Frequency

Figure 4 shows the per-layer annotation frequency
of each annotator, a measure of how confidently they
identified and traced contours. Note that the fixed
sequence of the layers provides expectations about
what layers are present in a given location, but segmen-
tation (contours) depends on local image features.

The iris root was the only region segmented by
all participants the same number of times (i.e., most
consistently). This can be explained by considering that
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Figure 4. Plot of per-layer annotation frequencies for each annota-
tor.

the boundary between the iris and the next visible layer
is usually sharp and thus well identifiable, but this may
not be true for other layers. The relative segmentation
frequency measured for the remaining layers varied, up
to a maximum percent difference of 31% for the scleral
spur (annotator 2 vs. annotators 1 and 3).

Only one participant (annotator 3) provided the
observed maximum number of annotations for all of
the layers.

Layer Consensus As a Function of the
Number of Agreeing Annotators

Figure 5 shows how the area of the consensus region
for each layer, normalized to (0, 1), decreased as the

Figure5. Plot of the ratiobetween consensuspixels andannotated
pixels against the consensus threshold (minimum number of
annotators agreeing).

consensus threshold (minimum number of annota-
tors agreeing) increased. As previously mentioned,
a consensus variation only occurred if the consen-
sus threshold exceeded the actual number of agree-
ing annotators for a given pixel and at least one of
them disagreed. This ensured that we only consid-
ered actual pixel-wise classification differences and
not the subjective choice to not annotate an image
region.

The plot suggests that the consensus levels on some
layers were low; for example, the minimum average
agreement was only about 28% of the annotated pixels
for the scleral spur.

It is also worth noticing that, although the consen-
sus for the cornea and iris root converged to an almost
stable percentage for high consensus threshold values,
the consensus for the trabecularmeshwork, scleral spur,
and ciliary body band kept decreasing approximately
linearly (for thresholds ≥ 2).

Average Per-Layer Agreement Analysis

We compared the ground truth provided by every
pair of participants, generating a set of 5× 5 confusion
matrices, given that five was the number of ICA layers
considered.

The cell Ci,j of a confusion matrix gives the number
of pixels that belong to the intersection between the
annotation of target i by the first annotator and the
annotation of target j by the second annotator, taken
as reference. Perfect agreement would result in a diago-
nal confusion matrix.

We computed three layer-wise metrics of inter-
annotator agreement from each confusion matrix:
precision, sensitivity, and Dice score. We then
computed per-annotator mean values and standard
deviations.

The annotators’mean precision and standard devia-
tion values for each layer are reported in Figure 6.
The ciliary body band and scleral spur overall show
the lowest mean precision values and/or the highest
standard deviations.

Figure 7 shows the mean sensitivity values and
standard deviations. As in the case of precision, the
maximum overall variability occurred for the ciliary
body band and scleral spur. Comparing Figures 6 and 7
gives us an insight into the differences between annota-
tions from different clinicians. For a specific annotator
and target, good precision but low sensitivity suggests
that, compared with contours traced by others, the
area delineated was thinner but centered on average,
thus generating a prevalence of false-negative classi-
fications (e.g., for annotator 1, ciliary body band).
Good sensitivity but lower precision suggests that the
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Figure 6. Annotators’ average precision (plot points) and standard deviation (whiskers) when annotating each layer.

Figure 7. Annotators’ average sensitivity (plot points) and standard deviation (whiskers) when annotating each layer.

delineated area was larger but centered on average,
generating a prevalence of false-positive classifications
(e.g., for annotator 5, ciliary body band). Low preci-
sion and sensitivity suggest that the delineated area was
displaced from the average (e.g., for annotator 2, scleral
spur).

Figure 8 shows the mean Dice scores and corre-
sponding standard deviation values, providing a
quantitative metric to compare annotations from
different clinicians.

The graphs show a common pattern: good agree-
ment on the iris root, trabecular meshwork, and cornea
(with average Dice score ranges of 0.97–0.98, 0.84–0.9,
and 0.93–0.96, respectively) and lower agreement on
the ciliary body band and scleral spur (with average
Dice score ranges of 0.61–0.7 and 0.73–0.78, respec-
tively).

Figure 9 shows two examples of annotations
that led to low values of per-layer agreement
metrics. Figure 9a compares annotator 3 and
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Figure 8. Annotators’ average Dice score (plot points) and standard deviation (whiskers) when annotating each layer.

Figure 9. Visual representation of cases that led to low agreement metric values. (a) Low-precision CBB annotation and low Dice score SS
annotation. (b) Low-sensitivity TM annotation. (Gonio photographs courtesy of C.E. Traverso, MD, Clinica Oculistica Di.N.O.G.M.I., Ospedale
San Martino, Genoa, Italy).

annotator 1. The ciliary body band annotation
provided by annotator 3 included that of annota-
tor 1, but it was larger and generated false positives
in regions annotated differently by annotator 1 and,
in turn, a low precision score. In the same compari-
son, the two scleral spur annotations cover different
regions of the image, thus returning a low Dice

score (low sensitivity and low precision). Figure 9b
compares annotator 5 with annotator 3. The trabec-
ular meshwork annotation of annotator 5 included
that of annotator 3 but it was thinner, which caused
false negatives in part of the region annotated as
cornea by annotator 5, thus returning a low sensitivity
score.
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Discussion

Well-designed data annotations are a crucial
component of the development of reliable machine
learning algorithms. When annotations from
different experts are available, modeling their variabil-
ity is important to interpret algorithm performance
correctly, especially in the field of medical data analy-
sis, where it is often impossible to obtain objective
ground truth.

In this work, to the best of our knowledge, we have
presented the first inter-observer variability study on
segmentations of clinically relevant anatomical layers
in digital images of the ICA.

The data annotation protocol and the study itself
have been designed to support the development of
deep learning algorithms to perform automated gonio
photographs processing, with a particular focus on
deep learning for semantic segmentation of layers
interfaces. Automatic systems for layer segmentation
could assist with the assessment of local image features,
such as synechial closure extension and its changes over
time, which would not be possible without pixel-wise
annotations of image data.

From the analysis of the annotations provided
by five experienced ophthalmologists we obtained
a detailed, quantitative description of the inter-
annotator variability that can be summarized in the
following points:

1. Providing contours of ICA structures in digital
gonio photographs is challenging due to target
feature variability (e.g., pigmentation, color
shades) and image quality (e.g., illumination,
sharpness, focus). This led to differences in
the number of times the participants felt suffi-
ciently confident to delineate target structures
even where their presence was expected from
anatomical knowledge.

2. The consensus area of per-layer segmentation
regions, defined as the number of pixels labeled
the same by a minimum number of annotators,
was much smaller for the scleral spur and ciliary
body band compared with other layers (only
about 28% and 41% of the pixels annotated as
such by at least one expert). This result is particu-
larly relevant because the scleral spur is an impor-
tant marker to classify an ICA as fully open.

3. The average values of agreement metrics showed
a common pattern among annotators. High
agreement values were found for structures with
boundaries better characterized in terms of
visual features of the images (e.g., contrast,

color, texture)—namely, the iris root, trabecular
meshwork, and cornea. Low agreement values
were found for the ciliary body band and scleral
spur regions.

Our findings suggest that inter-annotator variability
is generally lower in appositional angle-closure images
than in open-angle images. The configuration of visible
layers (i.e., iris root and cornea) in appositional angle-
closure images is simpler, and only the direct irido-
corneal interface is a possible source of variability. In
our digital gonio photographs, the iridocorneal inter-
face in appositional angle-closure images is a sharp
boundary and was generally delineated consistently by
annotators. For this reason, we do not expect that the
inclusion of more appositional angle closure images in
the dataset would increase the overall inter-annotator
variability.

The current study has some limitations, in particular
the limited numbers of images and ophthalmologists
involved, although many papers in the literature of
ophthalmic image analysis report experiments involv-
ing up to only three or four annotators. The reason for
this is that generating annotations is time consuming,
and clinical time is at a premium.

Nevertheless, our results provide important infor-
mation on inter-annotator variability at delineat-
ing anatomical layers of the ICA in digital gonio
photographs, at least in two ways. First, they provide a
quantitative context for interpreting values of assess-
ment measures obtained when validating automatic
systems. Second, they give a first insight into the
consensus of clinicians analyzing digital gonio
photographs, which seems clearly dependent on
specific layers. Given the variability of annotations
by different experts, training and validating systems
for automated gonioscopy with data acquired from
several annotators seems strongly advisable to improve
generalization. Estimating output uncertainty is neces-
sary to highlight image features that are more difficult
to classify (and possibly linked to increased inter-
annotator variability), thus improving interpretability
and ultimately clinicians’ trust in these algorithms.

Larger studies are advisable to firm up our conclu-
sions to obtain truly reliable validation of artificial
intelligence and machine learning applications for
computer-aided analysis of gonioscopic images in the
framework of evaluation of risk factors associatedwith
glaucoma development, categorization of the disease,
and support for the choice of treatments.

In particular, automated algorithms for gonio
photograph segmentation may help improve
gonioscopy repeatability and provide an efficient
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baseline processing method for the automatic extrac-
tion of clinical parameters.
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