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Unexplained genetic variation that causes complex diseases is often induced by gene-
gene interactions (GGIs). Gene-based methods are one of the current statistical
methodologies for discovering GGIs in case-control genome-wide association studies
that are not only powerful statistically, but also interpretable biologically. However, most
approaches include assumptions about the form of GGIs, which results in poor statistical
performance. As a result, we propose gene-based testing based on the maximal
neighborhood coefficient (MNC) called gene-based gene-gene interaction through a
maximal neighborhood coefficient (GBMNC). MNC is a metric for capturing a wide
range of relationships between two random vectors with arbitrary, but not necessarily
equal, dimensions. We established a statistic that leverages the difference in MNC in case
and in control samples as an indication of the existence of GGIs, based on the assumption
that the joint distribution of two genes in cases and controls should not be substantially
different if there is no interaction between them. We then used a permutation-based
statistical test to evaluate this statistic and calculate a statistical p-value to represent the
significance of the interaction. Experimental results using both simulation and real data
showed that our approach outperformed earlier methods for detecting GGIs.

Keywords: genome-wide association studies, qualitative traits, gene-gene interactions, maximal neighborhood
coefficient, gene-based testing

1 INTRODUCTION

Genome-wide association studies (GWAS) has been used to investigate the associations between
genetic variants and complex disorders with great success. Researchers have discovered more than
71,000 unique single nucleotide polymorphisms (SNPs) associated to diseases throughout the last
decade (Hindorff et al., 2009; Zhang et al., 2016; Zeng et al., 2017; Guo et al., 2018; Buniello et al.,
2019; Loos, 2020; Li et al., 2021). Traditional GWAS, on the other hand, concentrated on the
independent, additive, and cumulative effects of individual SNPs on specific diseases. The majority of
associated SNPs are common genetic variants with small effects that only explain a portion of
complex disease heritability. Many genes, environmental variables, and interactions play a crucial
role in the underlying genetic architecture of complex diseases (Cordell, 2009; Moore et al., 2010;
Jiang et al., 2018; Liu et al., 2018; Liu et al., 2019a; Zhang et al., 2019; Chen et al., 2020; Luo et al., 2020;
Liu et al., 2021; Shao et al., 2021; Su et al., 2021;Wang et al., 2021). As a result, genetic interactions are
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thought to enlighten studies into “missing heritability” (Manolio
et al., 2009; Fang et al., 2019; Young, 2019; Tang et al., 2020; Song
et al., 2021) and give important knowledge for constructing
topologies for complex disease-related pathway.

Genetic interaction was originally explored at the SNP level,
named epistasis. Methods (Li et al., 2015a; Ritchie and Van Steen,
2018; Lyu et al., 2020) can be classified into three categories based on
their search strategy: exhaustive methods, searching methods, and
machine learning-basedmethods, such as statistics based on entropy
(Dong et al., 2008) and odds-ratios (Emily, 2012); MDR (Ritchie
et al., 2003), BEAM (Zhang and Liu, 2007), BOOST (Wan et al.,
2010), Epi-GTBN (Guo et al., 2019), GenEpi (Chang et al., 2020),
and some accelerate methods (Nobre et al., 2021). For example, a
logistic regression analysis revealed a significant interaction between
the genes ERAP1 (rs27524) and HLA-C (rs10484554) in psoriasis
(p � 6.95 × 10−6), indicating that ERAP1 SNP was effective only
in individuals who had at least one copy of the HLA-C SNP risk
allele (Képíró et al., 2021). The statistical weakness of high-order
or pairwise tests, which come from enormous multiple testing
corrections over all pairs of SNPs, is one of the general problems
of these marker-based approaches. Instead, we explored the
interaction of two genes in a single gene-based interaction
detection by treating SNPs inside a gene as a group.

The effectiveness of gene-based methods in GWAS marginal
association studies should be extended to the study of gene-gene
interaction (GGIs) (Emily, 2018; Emily et al., 2020). This strategy
offers a number of possible benefits. For starters, it often has
substantially fewer genes than SNPs, which dramatically
decreases the number of pairwise testing. To discover GGIs in
pair of 20,000 genes, for example, ∼ 2 × 108 tests are necessary.
However, for three million SNPs in a marker-based interaction,
more than 5 × 1012 tests are required. Second, gene-based
methods are more powerful statistically because a gene carries
more information than individual SNP and genes interact in a
variety of ways (Liu et al., 2010; Li et al., 2011; Jiang et al., 2017; Su
et al., 2019; Hu et al., 2020; Hu et al., 2021a; Hu et al., 2021b; Guo
et al., 2021). Furthermore, these methods can include biological
prior knowledge (e.g., information about known gene association
within protein-protein interactions (PPIs) or pathways) (Wei
et al., 2017a; Wei et al., 2017b; Wei et al., 2018; Liu et al., 2019b;
Wei et al., 2019; Zeng et al., 2019; Cai et al., 2020; Zhai et al., 2020;
Zhu et al., 2020). Finally, gene-based outcomes stand out for their
better interpretability and crucial biological consequences.

Many statistical and computational approaches for detecting
gene-based GGIs have been established. Peng et al.(Peng et al.,
2010) introduced the canonical correlation-based U statistic (CCU).
They calculated canonical correlation of two genes in both cases and
controls. They next used CCU to calculate the difference in
correlation, which revealed the presence of GGIs between the
two genes. However, this strategy only considered linear
correlation in the study. CCU was then expanded to Kernelized
CCU (KCCU) (Yuan et al., 2012; Larson et al., 2013), where the
kernel discovered a nonlinear relationship. Emily (Emily, 2016)
recently introduced AGGrGATOr, a method that combines
p-values of interaction tests at the marker-level to assess how a
pair of genes interacted, which was a strategy that Ma et al. (Ma
et al., 2013) previously utilized to discover interactions under

quantitative traits. GBIGM is a non-parametric entropy-based
approach suggested by Li et al. (Li et al., 2015b).

In this paper, we propose a new approach called gene-based,
gene-gene interaction through a maximal neighborhood coefficient
(GBMNC), which uses the maximal neighborhood coefficient
(MNC) (Cheng et al., 2020) to identify gene-gene interaction of
complex diseases at the gene-level in case-control studies. MNC
measures a wide variety of dependence with no bias toward
relationship types between two random vectors of arbitrary, but
not necessarily equal, dimensions; this is superior to Pearson’s
correlation, which only consider linear correlations. We
introduced a statistic that uses the difference of MIC in cases
and controls as an indicator of occurrence of GGIs, bases on the
assumption that the joint distribution of two genes should not be
significantly different in case and in control samples if there is no
interaction between them (i.e. independent) under complex diseases.
In simulation studies, our method exhibited an outstanding
performance in recognizing the underlying GGIs at the gene
level under a variety of conditions. Its application using real data
sets showed accurate identification of GGIs.

2 MATERIALS AND METHODS

The statistical procedure for GBMNC is described in depth in this
section. We give different parameter settings for simulation studies
to evaluate the power to identify GGIs and the ability to control
type-I error. Then, we adopted a real-world Rheumatoid Arthritis
data set from theWTCCC (WellcomeTrust case Control Consortium)
database to evaluate out method’s effectiveness in a real situation.

2.1 GBMNC
2.1.1 Preliminaries and Notation
Here, we take genes, a couple of SNPs, as the basic unit. Suppose
that we have n random samples:

(G1,i, G2,i) ∈ Rp+q, i � 1, 2, . . . , n (1)

where

G1,i � (g1,i,1, g1,i,2, . . . , g1,i,p), G2,i � (g2,i,1, g2,i,2, . . . , g2,i,q), i
� 1, 2, . . . , n

and G1 and G2 represent two genes each with p and q SNPs,
independently. In the case-control studies, yi ∈ {0, 1} is a
categorical label where 0 is a control subject and one is a case
subject. gk,i,j ∈ {0, 1, 2} represents the copy number of the minor
alleles of SNP j in gene k for sample i.

In this work, to investigate whether there is a statistical
interaction between two genes in a qualitative phenotype, we
designed a statistic based on the maximal neighborhood
coefficient to characterize the GGI intensity. We applied a
permutation strategy to estimate the distribution of the statistic.
Our approach was based on the intuition that, if there was no
interaction between two genes, then, if they were independent of
the case set, they should be independent of the control set; if they
were dependent on the case set, they should be dependent on the
control set as well, and the “strength” of such dependence should
be the same for the case and control sets. Pearson’s correlation
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coefficient measures the degree of dependence between two
random variables. However, it can only measure linear
dependency and not nonlinear dependency, and it is not very
convenient for random variables that take a value inRn. Therefore,
we proposed to measure dependency between random variables by
the maximal neighborhood coefficient (MNC) instead.

2.1.2 Maximal Neighborhood Coefficient
MNC is an associationmeasure that decipher the potential complex
associations from neighborhood insight. It assumes that if a
relationship exists between two variables, the samples of each
variable will appear to have a similar neighborhood tendency to
approximate that relationship, and MNC can find those common
neighborhood structures by exploring the possible neighborhoods
of each variable. By introducing a k-NN granule to reconstruct
samples, and a novel neighborhood mutual information (NMI) to
measure the certainty information of one variable from another
under a fixed (kx, ky) neighborhood combination,MNC enables us
to detect more complex associations.

Let S � {(x1, y1), . . . , (xn, yn)} ∈ R2 be a finite set that is
sampled from a joint distribution (X,Y), and SX �
{x1, . . . , xn} and SY � {y1, . . . , yn} represents samples from
marginal variables X and Y, respectively. Given a designated
neighborhood combination (kx, ky) (a pairwise positive integer),
Nkx

X (x) � {xj1, . . . , xjkx} designed as the kx-NN granule of x,
where the subscript sequence j1 < j2 < . . . < jkx is obtained by
d(x, xji) � ‖x − xji‖2. All samples of kx-NN granules form a
cover of SX, that is ∪ n

i�1N
kx
X (xi) � USX. At the same time,

there exists a cover for SY, ∪ n
i�1N

ky
Y (yi) � SY. The cover of

samples S under (kx, ky) is recorded as Ckx,ky. Let S|Ckx,ky

represents the distribution of S on the cover Ckx,ky, and different
neighborhood combinations produce different distributions.

MNC is defined based on the neighborhood characteristic
matrix (NM) of a sample set S. Given a finite data set S and a
neighborhood combination (kx, ky), the element of NM of S is:

NM(S)kx,ky �
NMI(S

∣∣∣∣∣
Ckx,ky

)
log n

max(kx,ky)
(2)

NMI(S|Ckx,ky
) denotes the neighborhood mutual information of

distribution S|Ckx,ky
. The neighborhood mutual information of

(xi, yi) is defined as follow:

NMICkx,ky
(xi, yi) � −log n

∣∣∣∣∣Nkx
X (xi) ∩ N

ky
Y (yi)

∣∣∣∣∣
kxky

(3)

Based on the equation above, the neighborhood mutual
information of (X,Y) is defined as:

NMICkx,ky
(X,Y) � −1

n
∑
n

i�1
log

n
∣∣∣∣∣Nkx

X (xi) ∩ N
ky
Y (yi)

∣∣∣∣∣
kxky

(4)

With the definition of NM(S) in Eq. 2, NMC is defined as:

NMC(S) � max
1≤kxky ≤NB(n)

{NM(S)kx,ky} (5)

where NB(n) is the search range, and 1≤ kxky ≤O(nα) for
some 0< α< 1. It also naturally extends to the case of two
random vectors with arbitrary, but not necessarily equal, dimensions.

MNC Satisfies the Following Properties

1) Symmertry: MNC(X,Y) � MNC(Y,X);
2) Comparability: MNC ∈ [0, 1], MNC � 0 denotes that two

variables are statistically independent; MNC � 1 implies a
strong association between two variables.

3) Generality:MNC captures comprehensive range relationships.
4) Equitability: MNC is robust to noisy relationships. It provides

similar scores to the equally noisy relationships of different types.

2.1.3 Illustration of the GBMNC Workflow
Assume there are n1 control samples and n2 case samples in a
case-control study for a pair of genes such that G1 has p SNPs
and G2 has q SNPs. LetMNCn(G1, G2) be the sample association
score between G1 and G2. First, we calculate theMNCC

n1
(G1, G2)

for control samples and MNCD
n2
(G1, G2) for case samples.

Second, we design a statistic ΔMNC � |MNCC
n1
(G1,G2)−MNCD

n2
(G1 ,G2)|

MNCD
n2
(G1 ,G2)

to measure the difference inMNC between cases and controls.
ΔMNC represents how different the two joint distributions
(GC

1 , G
C
2 ) and (GD

1 , G
D
2 ) are. The larger the ΔMNC, the higher

the probability that G1 and G2 interact.
To get a p-value, we needed to estimate the distribution of

ΔMNC0 under the null hypothesis. Here, we used a non-
parametric strategy based on permutation: we shuffled the label
y randomlym times, calculated ΔMNC using the same procedure
above, and used the resulting empirical distribution as an estimate
for the distribution of ΔMNC under the null hypothesis. Let the
result of thesem permutations be ΔMNC1, . . . ,ΔMNCm, then an
estimated p-value for the null hypothesis is

p �
∣∣∣∣{i: ΔMNCi ≥ΔMNC0}∣∣∣∣

m
(6)

We summarized the process of GBMNC in the algorithm below
(Algorithm 1) and presented the overall workflow (Figure 1).

Algorithm 1. GBMNC

Data: Genotype G1, G2, Phenotype y, permutation times m
Result: significant p-value for interaction between G1, G2

1 Calculate MNCC
n1
(G1, G2) and MNCD

n2
(G1, G2) for both

(GC
1 , G

C
2 ) and (GD

1 , G
D
2 ) by Eq. 5;

2 Calculate the difference ΔMNC0 between MNCC
n1
(G1, G2)

and MNCD
n2
(G1, G2);

3 for i � 1 to m do
4 Randomly permute label y, and generate the new data set;
5 Repeat Steps 1 and 2;
6 end
7 Estimated p-value of ΔMNC0 is the number of ΔMNCi,
i � 1, . . . , m, which are larger than ΔMNC0, divided by m.

2.2 Simulation Study
To assess the performance of GBMNC to control type I error and
the power to detect GGIs, we compared GBMNC with KCCA
(Larson et al., 2013), GBIGM (Li et al., 2015b), and
AGGrEGATOr (Emily, 2016).
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2.2.1 Simulation With GAMETES
The goal of this simulation study was to evaluate the
performance of the GBMNC procedure to detect gene-gene
interaction. We set all simulated datasets to have 50 SNPs.
Among them, two SNPs were functional, and the remaining 48
SNPs were non-functional. The 50 SNPs formed five genes,
and each had 10 SNPs. The two functional SNPs were put into
the first and second genes. We chose the publicly available tool
GAMETES (Urbanowicz et al., 2012) to generate the simulated
genotype data. This tool was designed to generate pure and
strict epistasis models. Pure and strict epistasis models are the

most difficult disease-related patterns to identify. Such
associations can only be observed if all n-loci are included
in the disease model. This requirement makes these types of
models an attractive gold standard for simulation studies of
complex multi-locus effects.

Evaluation of Type-I error: The type-I error indicates the
ability of a method to reject the null hypothesis when it is true
(i.e., the false positive rate). We used GAMETES to generate the
custom disease model (Table 1) with one causal SNP pair. c
characterizes the baseline odds (i.e., the odds conditional on
genotype pair AABB). We ran the simulation 100 times with

FIGURE 1 | Illustration of the Gene-Based gene-gene interaction through a Maximal Neighborhood Coefficient (GBMNC) workflow for detection of gene-based,
gene-gene interaction.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 8012614

Guo et al. GBMNC for Gene-Gene Interaction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


each sample size n ∈ {1k, 2k, 3k, 4k, 5k} and c � 1. The
significance level α was set to be 0.05.

Evaluation of power of the test: The power of a test indicates the
probability that the method rejects the null hypothesis correctly
when the alternative hypothesis is true. In this simulation study,
we generated 100 data sets for each parameter settings. The power
under each parameter setting was expressed by the frequency, and
the null hypothesis of the data set was rejected correctly at the
significance level of α � 0.05.

1) To assess the impact of heritability h, which measured the
intensity of correlation between genotype and phenotype,
we chose h ∈ {0.01, 0.025, 0.05, 0.1, 0.2} and two different
minor allele frequencies MAF ∈ {0.2, 0.4} with population
prevalence set to 0.2 and sample size set at 4,000. Under
each parameter combination, five models were generated so
that we had a total of 100 models that followed Hardy-
Weinberg proportions. For a specified genetic constrain
combination, the 10 models were sorted roughly by the
ascending customized odds ratio (COR) using GAMETES
and labeled M1 to M5. COR is a metric of detectability that
was calculated directly from the genetic model. The higher
it is, the easier it is to detect GGIs. GAMETES generated the
penetrance tables for these 100 models in the absence of the
main effect. One hundred replicated data sets were
generated from each model with balanced cases and
controls, which resulted in 5,000 data sets in total in this
scenario.

2) To evaluate the influence of sample size, we set heritability to
be 0.025, MAF ∈ {0.2,0.4} and prevalence to be 0.2 with a
sample size of 10,000. Then, 100 data sets were generated by
random sampling from this large dataset for each of the
sample sizes n ∈ {1k, 2k, 3k, 4k, 5k}. In this scenario, we had
1,000 datasets in total.

For GBMNC, KCCU, AGGrEGATOr, and GBIGM, if
the number of data sets with a significance level less than α
is m1, then the power can be calculated by the following
formula:

power � m1

100
(7)

GBIGM and AGGrEGATOr methods are nonparametric
methods, so no parameters need to be specific. We only set
the ratio of the trimmed jackknife to 0.05 (ω � 0.05)
for KCCU.

2.3 EXPERIMENTS USING RHEUMATOID
ARTHRITIS DATA

To evaluate GBMNC’s ability to process real GGIs in a qualitative
data set, we analyzed the susceptibility of a series of pairs of genes
in Rheumatoid Arthritis (RA). RA is a chronic autoimmune
disease that causes pannus development and cartilage and
bone loss in synovial joints. It leads to progressive bone
deterioration and interferes with bone repair. In this work, we
used the WTCCC (2007) data set, which includes genotype data
from the British population obtained by the Affymetrix
GeneGhip 500 k. Our dataset was pre-processed in the
following ways:

1) We used pathway hsa05323 from the KEGG pathway database
to validate the GGIs in the RA. The WTCCC data set’s
genotyping coordinates can be found in UCSC hg18/NCBI
Build36. This pathway contained 90genes. Many of the genes
belonged to the protein combinations MHCII and V-ATPase.
Because numerous GGIs happened on their own, we only
chose representative genes from each protein combination
and then remove the others. Finally, 48genes remained,
resulting in a total of C2

48 � 1128 pairs of genes to be analyzed.
2) We collected the detailed gene information from the NCBI

Build36 annotation file, and for each gene, we inserted a 10 kb
buffer region both downstream and upstream of the originally
defined gene location. For each gene, all SNPs within the area
were chosen.

3) According to the quality control of GWAS, samples that
included gender that did not match the chromosome X
heterozygote rates were removed. SNPs were also removed
if any of the following requirements were met: the missing rate
in the sample was ≥ 10%,MAFwas ≤ 0.05, or the frequency of
control violated Hardy-Weinberg equilibrium (p< 0.0001).
Finally, 385 SNPs remained in 4,966 samples, which included
2,993 control subjects and 1973 case subjects.

3 RESULTS AND DISCUSSION

The experimental environment for all the following results was a
workstation with an Intel Xeon CPU E5-2,620 v2 at 2.10GHz,
96 GB of DDR3, and python3.6.

3.1 Simulation Study
3.1.1 Evaluation of Type-I Error
For type-I error, we varied the sample size from 1,000 to 5,000.
Except for GBIGMwith n � 1, 000, all methods tested had a type-
I error comparable to a significance level α � 0.05 (Table 2),
which implied that these methods controlled for type-I error for
various sample sizes quite well.

3.1.2 Evaluation of the Power of GBMNC
Impact of heritability: To evaluate the statistical power of our
GBMNC and the other three methods, we used 10 heritability-
MAF combinations, with a population prevalence of 0.2, a sample
size of 4,000, and heritability that varied from 0.01 to 0.2

TABLE 1 | Table of odds for the no effect model without interaction between a pair
of SNPs.

AA Aa Aa

BB c c c

Bb c c c

bb c c c
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(Table 3). The bold in Table 3 shows the best-performed method
in each model under a given heritability-MAF combination.
Notice that a larger value indicates better performance. On

average, GBMNC was the best performing algorithm in this
comparison. It largely outperformed the other methods, but
not for all the data sets; it was inferior to AGGrEGATOr for
some data sets. However, its performance was remarkably
consistent, and it was the top performer for most data sets.
AGGrEGATOr achieved the same performance when MAF
was 0.2 and heritability was >0.05.

The power of all the methods was significantly affected by
heritability (i.e., the effect size of interaction) (Table 4). A larger
heritability led to better performance for all methods under a
specific MAF. When heritability varied from 0.01 to 0.025,
GBMNC almost doubled its power for a given sample size of
4,000 with MAF � 0.2. Other methods also show a steady
upward trend (Table 4). The power also depended on the
MAF of the interacting SNPs (e.g., for the cases of h � 0.01,
the power of GBMNC under model M1-M5 ranged between
0.13–0.89 for MAF � 0.2, but it ranged between 0.66–0.96 for
MAF � 0.4 (Table 3)). The average power was 0.564 for MAF
� 0.2, which was much lower than 0.818 for MAF � 0.4
(Table 4).

It is worth noting that under the same combination of
habitability and MAF, GBMNC was more stable under models
with different COR compared with AGGrEGATOr (Figure 2).
KCCU detected the interaction of some simulated disease
models in our study, and it had a similar performance
pattern with AGGrEGATOr. However, AGGrEGATOr was
much more powerful in most of the simulated scenarios.
GBIGM had little power to detecting pure gene-gene
interaction,. This result replicated Emily's (Emily, 2016)
result of the simulation.

Impact of sample size: The sample size of the data set had a
considerable effect on power. Let the sample size be
n ∈ {1k, 2k, 3k, 4k, 5k}, h � 0.025, and MAF ∈ {0.2, 0.4}
(Table 5). As the sample size increased, the power of all
methods increased almost monotonically under different MAF
settings. With all methods, a larger sample size corresponded to
better performance.

In conclusion, in simulated studies, our results showed that
GBMNC detected gene-gene interaction effectively, in which a

TABLE 2 | Type-I error for KCCU, GBIGM, AGGrEGATOr, and GBMNC when
varying the sample size from 1,000 to 5,000.

Methods Sample size

1,000 2, 000 3,000 4,000 5, 000

KCCU 0.02 0.02 0.01 0.05 0.07
GBIGM 0.13 0.06 0.07 0.07 0.07
AGGrEGATOr 0.05 0.06 0.07 0.04 0.02
GBMNC 0.02 0.05 0.07 0.05 0.05

TABLE 3 | The statistical power of simulation studies for GBMNC, AGGrEGATOr,
KCCU and GBIGM under 10 heritability-MAF combinations, with
h ∈ {0.01, 0.025, 0.05, 0.1,0.2} and MAF ∈ {0.2, 0.4}. Each heritability-MAF
combination has five models. Bold font indicates the method that performed best
under each model.

MAF Heritability Model M1 M2 M3 M4 M5

Method

0.2 0.01 GBMNC 0.13 0.40 0.68 0.72 0.89
AGGrEGATOr 0.12 0.12 0.89 0.89 1
KCCU 0.15 0.09 0.29 0.43 0.62
GBIGM 0.09 0.11 0.13 0.11 0.08

0.025 GBMNC 0.95 0.75 1 0.96 1
AGGrEGATOr 1 0.27 1 0.37 1
KCCU 0.58 0.09 0.74 0.24 0.8
GBIGM 0.08 0.07 0.11 0.13 0.2

0.05 GBMNC 0.68 0.83 0.94 1 1
AGGrEGATOr 0.09 0.59 0.89 1 1
KCCU 0.13 0.57 0.65 0.84 0.85
GBIGM 0.18 0.08 0.22 0.17 0.19

0.1 GBMNC 1 1 1 1 1
AGGrEGATOr 1 1 1 1 1
KCCU 0.81 0.93 0.9 0.86 0.91
GBIGM 0.15 0.14 0.23 0.16 0.16

0.2 GBMNC 1 1 1 1 1
AGGrEGATOr 1 1 1 1 1
KCCU 0.89 0.97 0.94 0.89 0.97
GBIGM 0.19 0.31 0.18 0.22 0.21

0.4 0.01 GBMNC 0.75 0.66 0.82 0.90 0.96
AGGrEGATOr 0.71 0.09 0.1 0.94 0.96
KCCU 0.34 0.05 0.08 0.77 0.29
GBIGM 0.09 0.08 0.1 0.11 0.07

0.025 GBMNC 1 0.73 0.85 0.93 0.80
AGGrEGATOr 0.99 0.56 0.12 0.91 0.26
KCCU 0.58 0.24 0.08 0.24 0.11
GBIGM 0.15 0.12 0.14 0.11 0.09

0.05 GBMNC 1 1 1 0.68 0.86
AGGrEGATOr 1 0.97 0.91 0.35 0.42
KCCU 0.86 0.9 0.95 0.41 0.37
GBIGM 0.11 0.12 0.09 0.08 0.10

0.1 GBMNC 1 1 1 0.63 1
AGGrEGATOr 0.98 1 0.96 0.27 1
KCCU 0.62 1 0.95 0.41 1
GBIGM 0.12 0.19 0.18 0.26 0.20

0.2 GBMNC 1 1 1 1 1
AGGrEGATOr 0.93 1 0.99 1 0.80
KCCU 0.28 1 0.83 1 0.76
GBIGM 0.19 0.25 0.31 0.13 0.26

TABLE 4 | Average power for GBMNC, AGGrEGATOr, KCCU, and GBIGM under
10 heritability-MAF combinations, with heritability
∈ {0.01, 0.025,0.05, 0.1, 0.2} and MAF. ∈ {0.2, 0.4}

MAF Method GBMNC AGGrE-GATOr KCCU GBIGM

Heritability

0.2 0.01 0.564 0.604 0.316 0.104
0.025 0.932 0.728 0.490 0.118
0.05 0.890 0.714 0.608 0.168
0.1 1 1 0.882 0.168
0.2 1 1 0.932 0.222

0.4 0.01 0.818 0.560 0.306 0.090
0.025 0.862 0.568 0.250 0.122
0.05 0.908 0.730 0.698 0.100
0.1 0.926 0.842 0.796 0.190
0.2 1 0.944 0.774 0.228
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pair of SNPs was a causal factor by the purely and strictly epistasis
model without main effect, which can only be observed if all 2-
loci are included in the disease model. Compared with other

methods, GBMNC identified a broad range of epistatic signals
accurately.

3.2 EXPERIMENTS USING RHEUMATOID
ARTHRITIS DATA

RA is a chronic autoimmune disease where HLA genes, TNF
family, and TRAF1 are important genetic risk factors in the
development. Each unique gene pair of the hsa05323 pathway
was evaluated in the RA study, which resulted in C2

48 � 1128
total pairs for 48 genes. With a significance level α � 0.01 and
multiple testing adjustment, for KCCU and GIGBM, we
obtained 159 and 134 significant GGIs, respectively. Among
them, 30 and 65 had p-values equal to 0; hence we were unable to
rank them in the order of significance. AGGrGETOr did not
show any significant results. Following Emily (Emily, 2016), and
after removing the multiple testing correction, AGGrGETOr
exhibited 17 significant GGIs, which we ranked by their

FIGURE 2 | Illustration of the distribution of power of each method in each heritability-MAF combination with h ∈ {0.01, 0.025, 0.05, 0.1, 0.2} and MAF ∈ {0.2, 0.4}.

TABLE 5 | The statistical power of simulation studies for GBMNC, AGGrEGATOr,
KCCU, and GBIGM under models with h � 0.025, MAF ∈ {0.2, 0.4}, and
sample sizes that varied from 1k to 5k.

MAF Method GBMNC AGGrEGATOr KCCU GBIGM

Sample size

0.2 1,000 0.67 0.15 0.11 0.2
2000 0.83 0.18 0.38 0.16
3,000 1 0.20 0.55 0.23
4,000 1 0.31 0.76 0.21
5,000 1 0.29 0.87 0.12

0.4 1,000 0.68 0.16 0.13 0
2000 0.97 0.20 0.11 0.04
3,000 1 0.35 0.2 0.11
4,000 1 0.54 0.37 0.11
5,000 1 0.65 0.58 0.05
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p-values. We chose the top 10 gene pairs obtained by GBMNC
and by AGGrGETOr to analyze, which comprised
approximately 1% of the total interactions (Table 6).

We found that some of our findings were supported by prior
research (Xiao et al., 2008; Klocke et al., 2016; Cen et al., 2019).
For instance, our method detected a significant interaction
between IL17 and TNFSF13B. Studies (Xiao et al., 2008)
show that both B cells and T cells formed aggregates in the
synovium of inflamed joints and mediated the pathogenesis of
RA, and B-cell-activating factor (BAFF, also named TNFSF13B,
BLys) played a vital role in B-cell survival and maturation. After
activation and expansion, CD4+ T cells developed into different
T helper cell subsets with different cytokine profiles and distinct
effector functions. In addition to Th1 and Th2 cells, Th17 cells
were a third T helper cell and produce IL-17. Th17 cells can
recruit and activate inflammatory cells and they have been
recognized as a primary cause of bone destruction and
inflammation in autoimmune diseases. BAFF promoted Th17
cell proliferation and expansion preferentially (Lai Kwan Lam
et al., 2008). IL-17 was a key cytokine for BAFF-mediated
proinflammatory effects during collagen-induced arthritis
pathogenesis. Only one pair of potential interactions between
CD80 and CTSL was captured by both methods within the top
10 GGIs. However, there is not yet direct evidence to show the
interaction between CD80 and CTSL.

4 CONCLUSION

The study of detecting GGIs is of great importance in
understanding the pathogenesis of complex human diseases. In
this paper, we proposed a gene-based GGI detection method
called GBMNC based on amaximal neighborhood coefficient and
a permutation strategy for case-control studies in GWAS. The
method not only benefited from the ability of a maximal
neighborhood coefficient, which considered the neighborhood
structure of each sample and captured a wide range of
associations, but also from the robustness of our permutation-
based hypothesis testing scheme.

We designed a statistic to capture the different intensities of
interaction between two genes in both cases and controls, then
transformed the problem of GGI detection into a form of
hypothesis testing; our null hypothesis was there was no
significant difference in the relationship between the two genes
in the disease data and the control data. This hypothesis did not
limit the form of interaction between genes, and it enhanced the
method’s ability to detect different types of interactions. We
demonstrated the effectiveness of our method through a
simulation study and retrospective analysis of rheumatoid
arthritis. Under a large range of settings, GBMNC
outperformed previous methods in the power to detect GGIs.
The statistical power of our method increasedmonotonically with
the increase in the heritability and the MAF. The method was also
stable to sample size based on a test of false positive rates. MNC
did not restrict the dimension of two random vectors. Therefore,
it is possible to generalize the method for marker-based detection
of gene pairs that are identified as interactive. Investigating the
mechanism of gene-based interaction at the marker level might
point the way for further research. In summary, GBMNC is a
helpful addition to the current toolbox of statistical models to
elucidate GGIs in case-control studies.
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Gene1 Chr Gene2 Chr p-value

GBMNC AGGrEGATOr

TGF-β 2 1 CXCL8 4 0.0 1
CTLA4 2 GM-CSF 5 0.0 0.327
CD80 3 HLA-classII 6 0.0 0.37
GM-CSF 5 TRAP 19 0.0 0.01
TLR-4 9 FLT-1 13 0.0 0.069
IL-17 6 TNFSF13B 13 0.0 0.185
CXCL6 4 ICAM1 19 0.0 1
CD28 2 CXCL6 4 0.0 0.512
CTLA4 2 CXCL6 4 0.0 0.849
MMP-3 11 FLT-1 13 0.0 0.089
CD80 3 April 17 0.99 0.0007
CTSK 1 TNFSF13B 13 0.615 0.0008
JUN 1 IL-6 7 0.445 0.0019
CD80 3 CTSL 25 0.0 0.002
CXCL6 4 FLT-1 13 0.297 0.0021
CTLA4 2 FOS 37 0.727 0.0022
FLT-1 13 LFA-1 39 0.815 0.0033
CCL3 17 TRAP 19 0.564 0.0034
IL-18 11 TGF-β 3 14 0.693 0.004
IL-1 2 CXCL12 10 0.081 0.004
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