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Abstract

Background

Quantitative assessments of the severity of bleeding in patients with bleeds within the gastro-

intestinal tract (GIB) are generally limited to blood tests like the hematocrit. The varied and

irregular nature of the data collected during such observations makes it difficult in retrospec-

tive data analysis to characterize the complete course of bleeding. We intend to quantify the

rate of blood loss over the course of an ICU stay, facilitating more precise analysis of retro-

spective data, and to use this quantification to examine questions about the effects of GIB.

Methods and findings

A population of 2,445 intensive care admissions across 2,266 patients with a diagnosis of

GIB was studied. Using statistical techniques for smoothing data and accepted medical

approaches for calculating blood loss, we are able to convert collections of individual labora-

tory readings that are difficult to understand into a simple, interpretable overview of the

patient’s bleeding status over time. To demonstrate this method, we compare patients’ stan-

dard vital signs while bleeding heavily to times when they are not bleeding, finding a 3.0 ±
0.5% increase in heart rate, a 1.3 ± 0.4% decrease in systolic blood pressure and a 0.9 ±
0.5% decrease in diastolic blood pressure. After considering the effect of bleeding on stan-

dard vital signs, we demonstrate that patients with upper GIB have significantly elevated

blood urea nitrogen levels while bleeding heavily, with a mean increase of 11.7 ± 7.2%,

while patients with lower GIB do not, with a mean increase of 4.2 ± 6.6%.

Conclusions

This study introduces a novel method of processing retrospective laboratory data to charac-

terize the course of bleeds within the gastrointestinal tract. This method is used to examine

the direct effects of bleeding on a patient and can be deployed in future studies of bleeding

using retrospective data.
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Introduction

Patients with or suspected to have bleeds within the gastrointestinal tract (GIB) are monitored

via blood tests such as the hematocrit, along with physical observation, and frequently confir-

mation via endoscopy. Qualitative assessments are generally blunt and may be subjective and

inaccurate, and endoscopic confirmation may be delayed and may provide little granular

information about the state of the patient over the hours or days of potential bleeding leading

up to the endoscopy. As such, when considering quantitative data, laboratory values provide

the most complete data to characterize the course of a GIB. Such values, however, are recorded

at irregular intervals and may not be directly interpretable as measures of the severity of bleed-

ing. It was therefore our aim to develop techniques for processing this data into a form that is

more useful for GIB research.

Using a database of intensive care unit (ICU) patients with a diagnosed GI bleed, we used

established statistical methods for smoothing and interpolating data to generate a continuous

estimate of the hematocrit level for each patient over their entire ICU stay. We then used ana-

lytical methods developed in the anesthesiology literature to convert the hematocrit level into

a continuous estimate of blood loss. This form of data facilitates simple characterization of the

severity of bleeding at any moment during a patient’s admission, rather than relying on blunt

rules of thumb for interpreting hematocrit readings over time.

To demonstrate the legitimacy of this technique, we studied the physiological effects of GI

bleeding by comparing individual patients’ vital signs while bleeding to parallel measurements

while not bleeding. We first assessed changes to standard vital signs assuming that changes in

heart rate and blood pressure correlated to active bleeding or provided biological support for

our predictions. We then performed an exploratory analysis of the effect of GI bleeding on

blood urea nitrogen (BUN) levels. Elevated BUN has been shown to be associated with ICU

admission among patients presenting with upper GI bleeds [1], but its value as a predictor of

outcomes has had conflicting results [2, 3]. Using our quantified estimate of bleeding rate we

can investigate the relationship between BUN and severity of bleeding. Similarly, in light of

research showing creatinine level at admission is a risk factor for GIB [4] we can investigate

the relationship between creatinine and GIB.

Another measure of the severity of bleeding is the classification system provided by The

Advanced Trauma Life Support (ATLS) course [5], which separates hypovolemic shock into

four classes. These classes represent percentages of blood lost, with classes I through IV indi-

cating less than 15%, 15−30%, 30−40%, and greater than 40%, respectively. Assignment of

patients into classes is done via heart rate, blood pressure, pulse pressure, respiratory rate,

mental status, and urine output. The conditions for each class are summarized in Table 1. We

also compared our estimates of blood loss to the ATLS classifications.

Table 1. The ATLS classification of hypovolemic shock.

Class I Class II Class III Class IV

Blood loss (%) < 15 15−30 30−40 > 40

Heart rate < 100 100−120 120−140 > 140

Blood pressure Normal Normal Decreased Greatly decreased

Pulse pressure Normal or increased Decreased Decreased Decreased

Respiratory rate 14−20 20−30 30−40 > 35

Mental status Slightly anxious Mildly anxious Anxious, confused Confused, lethargic

Urine output (mL/hr) > 30 20−30 5−15 Minimal

https://doi.org/10.1371/journal.pone.0212040.t001
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Methods

Data collection and study population

The Medical Information Mart for Intensive Care (MIMIC) III database [6, 7] contains dei-

dentified data for critical care patients at Beth Israel Deaconess Medical Center between 2001

and 2012. It includes a variety of information for each patient, including diagnosis codes and

time-stamped laboratory and vital sign measurements. Using the MIMIC III database version

1.4, admissions with a billing diagnosis for GI bleed were identified, using the ICD 9 codes

578.0, 578.1, and 578.9. A total of 2,451 admissions were identified, involving 2,272 patients.

Patients under 18 years old at the time of admission (n = 6) were excluded from analysis, leav-

ing a population of 2,445 admissions comprised of 2,266 patients.

Overview of approach

We performed a smoothing operation on hematocrit readings to generate an estimate of the

hematocrit level at all times during each admission rather than only the times when readings

were actually recorded while also mitigating the noise in such readings. This continuous esti-

mate of hematocrit level was then used to generate an estimate of blood loss rate to allow direct

interpretation of the patient’s bleeding status at any time during the admission. We confirmed

our approach by checking that the physiologic responses to estimated bleeding rates aligned

with expected responses to bleeding, then analyzed the response of BUN and creatinine to esti-

mated bleeding as illustrative examples of the kind of exploratory analysis made possible by

this method. Finally we compared our method to a gold standard classification of bleeding in a

somewhat different context to highlight the similarities and differences.

Hematocrit smoothing

All available hematocrit readings were gathered, and a cubic smoothing spline was fit to

these data points for each admission. These fits were computed using Python 3.6 [8] with the

package SciPy [9]. A smoothing spline approximates a set of values by generating a piecewise

polynomial function which has equal slope and curvature on either side of each transition

point between polynomial sections. These transition points are called “knots”, and as more

knots are included in the fit the shape is allowed to fluctuate more dramatically and thus the

fit becomes less smooth. The algorithm used for fitting a cubic smoothing spline [10–12]

includes one parameter, which controls the balance between accurately representing the

individual data points and having a smoother resulting function. Specifically, given data

points (xi, yi) to approximate, and resulting smoothing function f, the parameter s imposes

the restriction
X

i

ðyi � f ðxiÞÞ
2
� s;

and the number of knots is increased until this condition is satisfied. If s = 0 then f will

exactly match all data points, becoming an interpolation, and if s =1 no knots will be used

and f will be a simple cubic function. Via qualitative visual examination of the resulting fits

on several admissions with various values for s, we selected the value s = 0.2no, where no is

the number of observed hematocrit readings for the admission.

The computed smoothing splines cover the time period between the first and last hemato-

crit readings of the admission. For any time between admission and discharge outside that

window the hematocrit level was considered to be unknown. We also defined the hematocrit
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as unknown for any time where the smoothing spline estimate was either negative or above

100%.

Blood loss estimation

Using the smoothing spline estimates of hematocrit, a continuous estimated rate of blood loss

was computed for each admission. This computation is based on the work of Bourke and

Smith [13], and their theoretical blood dilution equation. Let H be the hematocrit level, dH be

the rate of change of the hematocrit level, V be the estimated blood volume, and dL be the rate

of blood loss. Then the equation is

dH
H
¼

dL
V
:

This theoretical formula has been used to estimate blood loss during surgery, though often in a

simplified form to aid calculations [14, 15]. To compute the blood loss from the estimated

hematocrit, the differential equation can be rearranged as

dL ¼ V
dH
H
:

In applying this equation, we used the smoothing spline estimate of hematocrit level for H,

and computed the derivative of the smoothing spline estimate to use as dH. Blood volume was

estimated for each admission using available patient information as follows: if height and

weight were recorded for the admission then the Nadler [16] formula is used, if only weight is

available then average blood volumes of 75 mL/kg for men and 65 mL/kg for women are used,

with the average weight for the gender in the studied patient population used if no weight is

recorded for a particular patient.

Physiological and laboratory reactions

Using these continuous estimates of blood loss rate, every minute of each admission, from the

admission time to discharge, was classified by whether the patient is bleeding (dL> 0 mL/

min) or not bleeding (dL� 0 mL/min). Those where the patient is bleeding were further cate-

gorized as follows: very light (0−0.1 mL/min), light (0.1−0.5 mL/min), heavy (0.5−5.0 mL/

min), and very heavy (> 5.0 mL/min). Any minute for which there was no estimated hemato-

crit level because it was either outside the window of time with hematocrit readings or the esti-

mated level was invalid was classified as “unknown”.

Time-stamped recorded measurements of heart rate, blood pressure (systolic and diastolic),

oxygen saturation, temperature, and respiration rate were gathered for each admission. Mea-

surements were aligned with the blood loss classifications described above so each could be

associated with the patient’s blood loss status at that moment in time. For any cases where a

single minute had multiple measurements the values were averaged together. For each patient,

the average value when the patient was in each of the defined bleeding states was computed.

The relative difference, in percentage terms, between each of the states and the non-bleeding

state was computed for each patient. The mean of these differences across patients was com-

puted, and a student’s t-test was performed to assess whether the mean was nonzero, with p-

value of 0.05 as the threshold for significance.

An identical analysis was performed on blood urea nitrogen (BUN) and creatinine mea-

surements, in the former case including only patients whose admitting diagnosis was delin-

eated specifically a lower or upper GIB, with the analysis performed separately for upper and

lower.
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Comparison to ATLS classification

For each admission with an estimated blood loss, we gathered all values of the components of

the ATLS classification recorded during the admission. Following [17], we converted the sub-

jective ATLS criteria into numerical cutoffs. For systolic blood pressure we treated� 110

mmHG as class I,� 100 mmHG as class II, < 100 mmHG as class III, and< 90 mmHG as

class I. For mental status, we used the Glasgow Coma Scale [18], treating “slightly anxious”

and “mildly anxious” as a GCS of 15, “anxious, confused” as a GCS of 12−14 and “confused,

lethargic” as a GCS of less than 12. We computed pulse pressure as diastolic subtracted

from systolic blood pressure and treated values� 40 mmHG as “normal or increased” and

values< 40 mmHG as “decreased”. Because urine output was not recorded consistently for all

admissions it is not included in this analysis.

For every time during each admission where all five of these components were recorded, an

ATLS classification was computed. First this was done strictly following the definitions given

above, with a particular class being assigned if and only if the recorded values were all consis-

tent with a given class. Because it has been shown many trauma patients do not fall into any

class [17, 19] when using this method, we then assigned classes according to which class agreed

with the most components. For example, if heart rate, pulse pressure, and respiratory rate all

fell within the ranges allowed in class II, but blood pressure and mental status did not, the mea-

surement would be assigned class II. For both methods of calculating ATLS classification, the

median estimated rate of blood loss was computed at the time of classification.

Results

Blood loss estimation

See Fig 1 for examples of the estimated rate of blood loss over the course of an admission.

Physiological reactions

Heart rate was significantly higher for all categories other than very light bleeds, with a mean

increase of 1.7 ± 0.4% for any bleed relative to not bleeding. The increase was 3.0 ± 0.5% for

heavy bleeds and 5.0 ± 1.4% for very heavy bleeds. Full results are summarized in Table 2.

Both systolic and diastolic blood pressure were significantly lower for heavy bleeds, and

the difference in systolic blood pressure is also significant for very heavy bleeds. The mean dif-

ference for heavy bleeds was larger for systolic blood pressure at -1.3 ± 0.4% compared to

-0.9 ± 0.5% for diastolic blood pressure. Results are summarized in Table 3 for systolic blood

pressure and Table 4 for diastolic blood pressure. In both cases the largest observed mean dif-

ference was that blood pressure was significantly lower for periods with unknown bleeding sta-

tus, though fewer patients were in this category than all of the bleeding categories except for

very heavy bleeds. Further breakdown of unknown bleeding status indicates that the effect is

primarily driven by blood pressure measurements after the final hematocrit reading, but dia-

stolic blood pressure is significantly higher before the first hematocrit reading. Neither blood

pressure is significantly different than the baseline during periods of time where the estimation

technique used in this paper fails to produce a valid estimate because the smoothing estimates

an invalid hematocrit level. Such gaps contain blood pressure data for 64 admissions of the

2269 admissions used to define the reference group.

Other vital signs demonstrate similar patterns, with respiration rate significantly increased

while bleeding, temperature slightly but significantly increased while bleeding, and oxygen sat-

uration significantly increased during heavy and very heavy bleeding. Full results can be found

in S1, S2 and S3 Tables, respectively.
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Table 2. Effect of bleeding on heart rate.

Bleeding Mean Difference (%) Admission Count Measurements per Admission p-value

None Reference 2269 84.7 -

Very Light 0.0 ± 0.4 1889 20.0 0.9209

Light 0.7 ± 0.4 2062 42.7 0.0010

Heavy 3.0 ± 0.5 1881 36.3 < 0.0001

Very Heavy 5.0 ± 1.4 460 11.1 < 0.0001

Any Bleed 1.7 ± 0.4 2172 90.9 < 0.0001

Unknown 2.4 ± 1.2 760 20.3 0.0001

https://doi.org/10.1371/journal.pone.0212040.t002

Fig 1. Blood loss estimation examples. Smoothed hematocrit estimates (top) and blood loss rates (bottom). Blue points represent hematocrit

readings. Left and right panels are two different admissions. Negative blood loss rate is set to zero.

https://doi.org/10.1371/journal.pone.0212040.g001

Table 3. Effect of bleeding on systolic blood pressure.

Bleeding Mean Difference (%) Admission Count Measurements per Admission p-value

None Reference 2269 75.7 -

Very Light 0.2 ± 0.4 1876 18.9 0.2276

Light 0.2 ± 0.4 2057 38.9 0.2643

Heavy −1.3 ± 0.4 1881 34.2 < 0.0001

Very Heavy −2.8 ± 1.2 458 9.8 < 0.0001

Any Bleed −0.3 ± 0.3 2173 84.1 0.0840

Unknown −5.8 ± 1.2 754 16.6 < 0.0001

https://doi.org/10.1371/journal.pone.0212040.t003
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BUN

For admissions where the admitting diagnosis was an upper GI bleed (n = 315), the BUN was

significantly higher for heavy bleeds, but not any other category of bleed. The mean increase in

BUN during heavy bleeds was 11.7 ± 7.2%. Results are summarized in Table 5.

In patients admitted with a lower GI bleed (n = 251), BUN was significantly lower for very

light bleeds, with a mean difference of -7.3 ± 5.9% relative to the baseline. Heavy and very

heavy bleeds were not associated with a significant difference in BUN. Results are summarized

in Table 6.

Creatinine

Creatinine was significantly higher for any bleed, with a mean difference of 7.2 ± 5.2%. This

increase even larger for heavy bleeds at 12.3 ± 7.7% and also significant for very heavy bleeds

and when bleeding status was unknown, primarily after the last hematocrit reading. Full

results are in Table 7.

Table 4. Effect of bleeding on diastolic blood pressure.

Bleeding Mean Difference (%) Admission Count Measurements per Admission p-value

None Reference 2269 75.7 -

Very Light 0.1 ± 0.5 1876 18.9 0.06892

Light −0.3 ± 0.5 2057 38.9 0.2656

Heavy −0.9 ± 0.5 1881 34.2 0.0009

Very Heavy −1.0 ± 1.4 458 9.8 0.1602

Any Bleed −0.3 ± 0.4 2173 84.0 0.0756

Unknown −3.8 ± 1.3 753 16.7 < 0.0001

https://doi.org/10.1371/journal.pone.0212040.t004

Table 5. Effect of bleeding on BUN in patients admitted for upper GI bleed.

Bleeding Mean Difference (%) Admission Count Measurements per Admission p-value

None Reference 291 4.8 -

Very Light −1.4 ± 6.5 122 2.2 0.6655

Light 1.7 ± 6.0 188 2.9 0.5729

Heavy 11.7 ± 7.2 179 2.1 0.0016

Very Heavy 3.8 ± 19.1 34 1.3 0.6941

Any Bleed 3.3 ± 4.8 261 4.6 0.1826

Unknown −0.1 ± 20.9 7 2.0 0.9886

https://doi.org/10.1371/journal.pone.0212040.t005

Table 6. Effect of bleeding on BUN in patients admitted for lower GI bleed.

Bleeding Mean Difference (%) Admission Count Measurements per Admission p-value

None Reference 234 4.6 -

Very Light −7.3 ± 5.9 94 2.3 0.0169

Light −3.9 ± 4.8 155 2.6 0.1150

Heavy 4.2 ± 6.6 160 2.0 0.2132

Very Heavy 14.0 ± 24.7 22 1.3 0.2529

Any Bleed −1.3 ± 4.5 219 4.3 0.5712

Unknown −4.3 ± 21.9 12 1.3 0.6726

https://doi.org/10.1371/journal.pone.0212040.t006
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Comparison to ATLS classification

A total of 1,240 admissions had at least one time when the five components of the ATLS classi-

fication were observed. There were a total of 52, 537 observations, and 47, 016 (89%) did not

correspond to an exact ATLS class. Among the 5, 521 which could be classified, 5, 438 (98%)

were class I, with 79, 2, and 2 observations in classes II, III, and IV, respectively. For class I the

median [interquartile range] instantaneous estimated rate of blood loss was −0.03 [−0.43, 0.31]

mL/min, for class II −0.03 [−0.39, 0.44], for class III 1.24 [0.76, 1.71], and for class IV −0.06

[−0.07, −0.05]. For those observations that could not be classified the estimated rate of blood

loss was 0.03 [−0.29, 0.35].

Using the alternate method of computing ATLS classes, all observations were placed into

one of the four classes. Of the 52, 537 total, 41, 793 (80%) were class I, 8, 172 (16%) were class

II, 1, 452 (3%) were class III, and 1, 120 (2%) were class IV. For class I the median instanta-

neous estimated rate of blood loss was 0.02 [−0.21, 0.33] mL/min, for class II 0.05 [−0.29,

0.40], for class III 0.10 [−0.26, 0.48], and for class IV 0.04 [−0.36, 0.49].

Discussion

We present a technique for quantifying the rate of blood loss during the course of a hospital

stay based on a patient’s measured hematocrit levels. By combining a standard blood test for

monitoring the status of bleeding patients with standard statistical techniques for smoothing

data and with accepted medical approaches for calculating blood loss, we are able to convert

messy collections of individual laboratory readings into a simple, interpretable overview of the

patient’s state over time. This estimate allows us to retroactively analyze the effects of bleeding

in an intuitive way, which we demonstrate by first examining standard vital signs. We see that

while patients are bleeding their heart rate is significantly higher than when they are not bleed-

ing, and when they are bleeding heavily their blood pressure is significantly lower, aligning

with standard expectations [20]. These findings provide some limited evidence that our esti-

mation technique accurately reflects bleeding status.

We note, however, that the observed effects of bleeding are very small on average, even

though they are generally significant, at least for heavy bleeds. One potential reason for this is

that some patients may have idiosyncratic reactions to bleeding [21], affecting population aver-

ages. Another likely factor is the instantaneous nature of the comparisons being performed: we

classify each minute of a hospital stay by the estimated bleeding status at that exact moment,

ignoring the patient’s state at times before and after. Many physiologic responses will not take

effect instantaneously or return to a normal state immediately when bleeding stops, so vital

signs should be expected to be different for a patient who is currently bleeding lightly but was

bleeding heavily for the previous 6 hours than for a patient who just began bleeding lightly

after not bleeding for hours. Future studies could use the complete estimated course of

Table 7. Effect of bleeding on creatinine.

Bleeding Mean Difference (%) Admission Count Measurements per Admission p-value

None Reference 1827 5.3 -

Very Light 1.0 ± 1.7 692 2.7 0.2797

Light 4.7 ± 6.4 1060 3.8 0.1507

Heavy 12.3 ± 7.7 1094 3.2 0.0018

Very Heavy 5.3 ± 4.3 229 1.5 0.0160

Any Bleed 7.2 ± 5.2 1477 6.3 0.0066

Unknown 8.0 ± 7.0 177 1.2 0.0248

https://doi.org/10.1371/journal.pone.0212040.t007
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bleeding to define more complex patient states than our simple “present state” categories,

which we select for ease of understanding and to avoid splitting the data into unrepresenta-

tively small pieces. We consider the simpler comparisons a useful measure of the directional

effect of bleeding, and the relative differences between those effects for different levels of bleed-

ing, but do not consider them to be accurate measures of the quantitative effect of bleeding

generally.

One area in which the existence and direction of an effect is of particular interest is the

BUN. We show that BUN is significantly elevated during heavy bleeding for patients admitted

with upper GI bleeds but is not significantly different for lighter bleeds. For lower GI bleeds,

no severity of bleeding showed a significant increase in BUN, with lighter bleeds in fact show-

ing a significant decrease. Prior studies had reported conflicting results regarding the validity

of BUN as a predictor of active upper GI bleeding, perhaps because of the time delays between

BUN reading and determination of active GI bleeding by endoscopy which was likely many

hours later.

Comparisons of our approach to the ATLS gold standard classification of hypovolemic

shock demonstrate that there are major differences between the two methods, with all ATLS

classes demonstrating similar instantaneous estimated bleeding behavior. We believe the pri-

mary reason for this lack of correlation is that the two classification methods are intended for

fundamentally different tasks, and will primarily be applied in different settings. ATLS classifi-

cation is intended for trauma patients and attempts to quantify the amount of blood that has

been lost by characterizing the physiological response to that loss of blood. In contrast, our

estimated blood loss attempts to quantify how much blood is being lost at a particular moment

in time, regardless of how much has been lost before that time. It is intended to quantify the

patient’s state over an extended period of time, which likely includes periods of bleeding inter-

spersed with periods of minimal or no bleeding. Just as alternatives to ATLS classification have

been suggested [22] in the context of shock in trauma patients it is likely that alternative and

improved methods exist for the estimation of instantaneous blood loss. We believe, however,

that the method proposed here is more appropriate in this context than adaptations of the

methods for classifying the severity of shock in trauma patients.

This study is limited by using only patients from a single site, and by focusing solely on ICU

patients, who may not be representative of broader patient populations of interest. However,

the primary technique introduced here to generate continuous blood loss estimates from

hematocrit levels is not dependent on the patient population and may be applied to any patient

or group of patients for whom sufficient hematocrit measurements are available.

A limitation of the method used in this study is that it relies only on hematocrit readings

and does not account for factors other than blood loss which might affect the hematocrit, such

as urinary losses, fluid replacement, and transfusions. Developing a complete and accurate

physical model of the interaction between hematocrit and bleeding is implausible even if com-

plete information about these factors were available, which it often is not. We believe that the

imperfect and simplified model used in this study is sufficiently informative to be useful in

contexts where a continuous characterization of bleeding is required.

We also note that this technique could be generalized into a framework of approaches to

convert hematocrit readings into continuous estimates of blood loss. The smoothing spline

portion of our technique can be replaced with any appropriate technique for smoothing and

interpolating data, including techniques that draw on data from multiple patients to learn

plausible shapes rather than relying on simple cubic splines. More complex approaches could

also be better tailored to avoid the “unknown” regions resulting from the simplicity of the

smoothing splines model, at the expense of harder computations and potentially more reliance

on the availability of representative data to train such a method. The simpler approach taken
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here is easier to compute and understand, and also has the advantage of providing an analyti-

cally computable derivative to use when calculating blood loss from hematocrit, avoiding reli-

ance on numerical derivatives or an additional layer of smoothing to generate a differentiable

estimate.

While we believe the BUN correlation with upper GIB is of interest, the blood loss estimates

used to generate them may be used for a wide variety of more complex analyses. One setting

for which they are particularly well suited is that of personalized, real-time identification and

prediction of GI bleeds. In this setting, it is valuable to have continuous estimates of bleeding

so that precise times can be associated with events such as the start of bleeding or a significant

increase in the rate of bleeding. By providing tools to make GI bleeding data easier to quantify

and interpret, we hope to facilitate future research making it easier to understand and predict.
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