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SUMMARY
Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection

software development, there is still no single piece of commercial software that works well in practice when applied to early mouse

embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/

C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim

was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major

cascadedmodules: detection, segmentation, and cell position classification. An extensive evaluation ofMINS on both 2D and 3D images,

and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will

allow MINS to be implemented for routine single-cell-level image analyses.
INTRODUCTION

Imaging of optically sectioned nuclei provides an unprec-

edented opportunity to observe the details of fate specifi-

cation, tissue patterning, and morphogenetic events at

single-cell resolution in space and time. Imaging is

now recognized as the requisite tool for acquiring infor-

mation to investigate how individual cells behave, as

well as the determination of mRNA or protein localiza-

tion or levels within individual cells. To this end, fluo-

rescent labeling techniques, using genetically encoded

fluorescent reporters or dye-coupled immunodetection,

can reveal the sites and levels of expression of certain

genes or proteins during biological processes. The avail-

ability of nuclear-localized fluorescent reporters, such as

human histone H2B-green fluorescent protein (GFP)

fusion proteins enables 3D time-lapse (i.e., 4D) live imag-

ing at single-cell resolution (Hadjantonakis and Papaioan-

nou, 2004; Kanda et al., 1998; Nowotschin et al., 2009)

(Figures 1A–1C). However, to begin to probe intrinsic

characteristics and cellular behaviors represented within

image data requires the extraction of quantitatively mean-

ingful information. To do this, one should perform a

detailed image data analysis, identifying each cell by

virtue of a single universally present descriptor (usually

the nucleus), obtaining quantitative measurements of

fluorescence for each nuclear volume, and eventually

being able of identifying the position and division of cells
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and connecting them over time for cell tracking and line-

age tracing.

Automated nuclear segmentation of cells grown in cul-

ture and in early embryos is a necessary first step for a

variety of image analysis applications in mammalian sys-

tems. First, automated segmentation can facilitate efficient

and accurate identification (ID) of individual cells, espe-

cially in a context of an emergent complex tissue organiza-

tion; for example, during tissue morphogenesis. This issue

is exemplified by studies on early, or preimplantation,

stages of mammalian embryo development, which result

in the formation of a blastocyst. Mouse blastocyst develop-

ment offers a relatively simple but relevantmodel for inves-

tigating the coordination of cell lineage commitment and

morphogenesis (Schrode et al., 2013). The blastocyst is

also a unique stage of development when stem cells repre-

senting each of the constituent lineages can be derived,

propagated, differentiated, and interconverted ex vivo.

Embryonic stem (ES) cells are well known as representative

of the pluripotent epiblast (EPI) and are characterized by

their ability to generate all somatic and germline lineages

in vivo and, most likely, in vitro. Likewise, trophectoderm

(TE) stem cells represent the trophoblast, and extraembry-

onic endoderm stem (XEN) cells represent the primitive

endoderm (PrE) (Artus and Hadjantonakis, 2012). Given

the ease of in vitro culture of preimplantation embryos,

their small size (<120 mm), and limited cell number (up to

140 cells), they provide an attractivemodel for live imaging
ors
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the coupling of cell lineage commitment and morphogen-

esis and can serve as a proof of principle for studies on

larger, more developmentally advanced and complex

mammalian embryos.

With the increasing level complexity and detail of ana-

lyses performed on mammalian preimplantation embryos,

it is becoming routine to stage embryos based on total cell

numbers rather than solely by embryonic day (E). For

example, the blastocyst is a descriptor of a stage having a

distinctive morphology, with an outer TE epithelial layer

that encapsulates an inner cell mass (ICM) and a fluid-filled

cavity (Figure 1D). In themouse, the blastocyst stage covers

an approximately 36 hr period, from E3.0 at the initiation

of cavitation until the time of embryo implantation into

the maternal uterus, which occurs at around E4.5 (Rossant

and Tam, 2009; Schrode et al., 2013). During this time,

mouse embryos more than triple their cell number, as

they go from around 32 cells to over 140 cells. The blasto-

cyst stage designation is, therefore, quite broad. Indeed, it is

now known that critical molecular changes take place

between early blastocyst (32-cell) and late blastocyst

(>80-cell) stages (Figure 1D) (Schrode et al., 2013). One

of the arguments made against determining total cell

numbers in individual embryos has been the relative inef-

ficiency of this measurement, in terms of effective auto-

mated segmentation and/or the large amount of effort

required for manual and semiautomated manually cor-

rected segmentation using generic image analysis software.

Thus, a simple universal tool able to perform this task

would be highly desirable, not only for studies on preim-

plantation mouse embryos but also for analyzing early

embryos frommore complex later stages or tissue samples,

as well as other mammalian systems, including the human

(Kuijk et al., 2012; Niakan and Eggan, 2013; Roode et al.,

2012). Since much information on preimplantation-stage

mammalian embryos is gathered using optical sectioning,

most frequently by confocal imaging, it is inherently 3D

and is, therefore, amenable to nuclear segmentation for

cell number calculations.

Additionally, robust segmentation is requisite for proper

quantitative analysis of individual cells within popula-

tions. Immunostaining using antibodies directed against

factors present in early embryos or fluorescent mRNA

in situ hybridization experiments reveal the site of expres-

sion of any given protein or gene but also, when combined

with quantitative analysis, allow the determination of

levels of expression within individual cells (G. Chia Le

bin, S.M.-D., S. Leitch, X.L., W. Mansfield, N. Grabole,

H. Niwa, A.K.H., and J. Nichols, unpublished data; Muñoz

Descalzo et al., 2012). This is of particular importance

in various contexts. For example, in preimplantation

mammalian embryos, it is known that the levels of expres-

sion of certain transcription factors can dictate the lineage
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choice in any given cell (Guo et al., 2010; Ohnishi et al.,

2014); however, biochemical analyses—for example,

western blots—are limited due to the small size of embryo

and small amount of material routinely available.

Finally, nuclear segmentation is the first step toward the

tracking of individual cells in situ in populations and facil-

itates the quantitative analysis of cell cohorts over time as

development progresses (Kang et al., 2013b; Nowotschin

et al., 2009). Automated nuclear segmentation, subsequent

tracking of nuclei, and the detection of cell division or cell

death and subsequent fluorescence intensity quantitation

are requisite for understanding the dynamic and heteroge-

neous populations that emerge within stem cell cultures

and in situ in embryos (Artus et al., 2013; Kang et al.,

2013a).

Nuclear segmentation, therefore, comprises the first

stage of any analysis involving the ID of individual cells

on static or time-lapse 2D or 3D data generated after immu-

nostaining or time-lapse movies of transgenic reporters

(Kang et al., 2013b). In segmented images, the set of pixels

belonging to each individual nucleus within a cohort of

cells in culture or within an embryo or a tissue can be iden-

tified (Roeder et al., 2012). Most software available with

commercial microscope systems (for example, Zeiss ZEN,

Leica LAS, or Perkin-Elmer Volocity) usually include stan-

dard plug-ins that allow the user to perform basic quantita-

tive analyses. In addition, commercial software specifically

designed for image analysis (for example, Bitplane’s Imaris

or VSG’s Amira) usually provide a user-friendly platform

suitable for more comprehensive data analysis. Although

these latter programs are designed for 2D/3D/4D analysis,

their application to complex biological samples with

high or irregular cell densities, such as mouse ES cell

colonies or mouse embryos, usually requires various

parameters to be optimized, and such analyses are often

not straightforward to perform. As a consequence, generic

programs cannot be considered for simple automated use

and cannot be applied for routine medium- to high-

throughput analyses of multiple samples. For this reason,

manual segmentation is still favored in many situations,

but this can be highly error prone and often proves too

laborious and time consuming to be practical.

Since nuclear segmentation is not straightforward due to

cell deformations, irregularity in the shape and size of

nuclei, debris from sample preparations or culture condi-

tions, imaging artifacts, and, most noticeably, noise and

blurring, several groups have resorted to developing their

own methods. Many segmentation methods have been

applied in the context of embryogenesis and cell culture

studies. They can be categorized by their underlying image

processing technique. Deformable models (Yu et al., 2009;

Zanella et al., 2010) are usually computationally expensive

and not suitable for 3D data. Blob or local maximum
ell Reports j Vol. 2 j 382–397 j March 11, 2014 j ª2014 The Authors 383
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detection (Bao et al., 2006; Keller et al., 2008, 2010) is

computationally efficient but subject to shrinking bias,

which technically serves the purpose of detection rather

than segmentation. Segmentation by gradient flow

tracking is very sensitive to object texture (Li et al., 2007).

The Watershed method is also fast yet produces loose

boundaries that cover the background (Fernandez et al.,

2010; Olivier et al., 2010). Discrete Markov random field

optimization allows for incorporation of prior information

such as shape (X.L. et al., 2012, IEEE, conference), but the

underlying pipeline is overly complicated and, thus,

impractical. It is important to note the growing trend of

developing generic, trainable software frameworks that

are based on machine learning methods that can interact

with biologists and solve a variety of problems (Carpenter

et al., 2006; A. Sommer et al., 2011, IEEE, symposium).

However, the tradeoff for such generality is specificity.

These tools usually do not capture the very essential char-

acteristics of nuclear imaging and so do not provide a pre-

cise analysis and quantitation.

To meet this current need, our goal was to develop a tool

that wouldmake automated cell segmentation feasible and

efficient in analyzing data from higher organisms, as has

been applied to less complex data from lower organisms,

such as in bacteria (Locke and Elowitz, 2009). The objective

was to assemble a segmentation framework that is accurate

enough to allow high-fidelity analysis over a variety of

images while being robust enough to make it practical for

routine use across laboratories. A major goal was that the

software had to be a simple and intuitive application that

could run on a desktop computer having routine process-

ing power. Usability is a particularly important feature

that we sought to incorporate in modular interactive

nuclear segmentation (MINS), as this has been raised as

an important issue for bioimaging software development

(Carpenter et al., 2012). We wanted to allow biological re-

searchers to analyze large 3D imaging data with only a

few mouse clicks and minimum parameter tuning.

Here, we report an efficient and user-friendly nuclear seg-

mentation and quantitation framework (i.e., MINS) for the

analysis of cohorts of cells in both stem cell cultures and

in preimplantation stage mouse embryos. Our method

consists of three core cascaded modules: detection, seg-

mentation, and classification. Detection provides accurate
Figure 1. Image Analysis of Cells and Mouse Embryos and a Sche
(A) Schematic showing the experimental setup used for static and live
are maintained in liquid culture, and images are acquired on inverted
(B) Examples of imaging acquisition of 3D static immunostaining (le
(C) Schematic diagram showing 2D, 3D, and 4D image data acquisitio
(D) Differential interference contrast (DIC) images of CAG:H2B-GFP
compact morula, early, and late blastocyst stages merged with 2D and
diagram of lineage specification during preimplantation developmen
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localization of cell nuclei only. Segmentation expands the

detection output to cover the full nuclear body. Finally,

classification serves multiple purposes, including the sepa-

ration of multiple embryos and removal of outliers, as well

as the classification of inner and outer cells (ICM versus TE

cells) within blastocyst-stage embryos. MINS is hosted at

http://katlab-tools.org.
RESULTS

Core Algorithmic Components of MINS

We chose specimens of increasing complexity for analysis

using MINS software (Figure 1C). Mouse XEN stem cells

representing the PrE lineage of the blastocyst grow as

adherent monolayer cultures (Artus et al., 2012; Kunath

et al., 2005; Niakan et al., 2013). By contrast, mouse ES cells

grow as adherent multilayered dome-shaped cultures

(Nichols and Smith, 2011). Like ES cells, preimplantation

mouse embryos comprise spatially complex cohorts of cells

(Rossant and Tam, 2009). A direct segmentation of every

nucleus is computationally difficult and also error prone;

for example, the active contour method is prone to under-

segmentation (Roeder et al., 2012). We therefore opted to

break down the problem into two steps: a detectionmodule

that identifies each nucleus followed by a segmentation

module that propagates this ID information to the entire

body of the respective nucleus. We also added a classifica-

tion module for TE versus ICM cell lineage ID, which was

based on inner versus outer cell position, respectively,

within preimplantation mouse embryos (Figure 1D).

In brief, the core of MINS consists of three algorithmic

components: detection, segmentation, and classification.

Each component was devised and tailored according to

the specific characteristics of cell culture and mouse

embryo imaging experiments. The underlying algorithms

are chosen so that the overall pipeline satisfies our goals:

high performance and high usability.

Step 1: Detection

For the detection of nuclei, we applied the multiscale blob

detection technique developed previously (X.L. et al.,

2012, IEEE, conference). It uses the very robust eigenvalue

of the image Hessianmatrix to identify nuclei and also uses

scale-space analysis to suppress noise because noise does
matic of Preimplantation Embryo Development
imaging of stem cell and mouse embryo specimens. Notably, samples
microscope systems.

ft) or 3D live imaging of fluorescent reporter (right).
n and analysis.
transgenic fluorescent reporter expressing embryos at two-cell,

3D renderings of GFP channel showing nuclei labels and a schematic
t (Schrode et al., 2013). Scale bar, 20 mm.
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Figure 2. Procedure for Nuclei Detection and ID
(A) Users provide an input image from, for example, a mouse embryo, as shown here.
(B1 and B2) The first (B1) and second (B2) eigenvalues of the Hessian matrix are computed from the smoothed image at different
scales.
(C) A binary segmentation is obtained by thresholding the respective eigenvalues in (B1) and (B2).
(D) The final detection is obtained by combining the binary segmentations in (C), and each nucleus is assigned with a unique number using
connected component analysis.
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not yield stable response across different scales, in contrast

to real nuclei, which do. A connected component analysis

assigns a unique ID to each nucleus for retrospective ID.

Given a 3D image that contains bloblike objects (e.g.,

nuclei; Figure 2A), we start by smoothing the image with

a Gaussian kernel and compute the eigenvalues at each

pixel, which, if they are all negative, indicate that the pixel

belongs to a local region of strong intensity, i.e., the central

region of a nucleus (Figures 2B1 and 2B2). We then

threshold these eigenvalues to obtain a binarymask of fore-

ground nuclei (Figure 2C). This process is repeated using

different kernel widths of the smoothing Gaussian kernels

(Figure 2Ci [small], Figure 2Cii [medium], and Figure 2Ciii

[large]). By combing the results from all scales (a logic AND

operation), we leverage the advantages provided by each

size of kernel in terms of robustness against noise and

detection accuracy.

Step 2: Segmentation

After ID of each nucleus, the next task is to propagate this

ID to the entire body of a respective nucleus. We present

three examples of this module in Figure 3 (see additional

details in Supplemental Information available online). To

do this, we chose seeded geodesic image segmentation

(SGIS) as the base algorithm because of its runtime effi-

ciency (A. Criminisi et al., 2008, European Conference on
386 Stem Cell Reports j Vol. 2 j 382–397 j March 11, 2014 j ª2014 The Auth
Computer Vision). Geodesic image segmentation applies

a geodesic distance transform over a grid graph that repre-

sents the image. In particular, the geodesic distance be-

tween two nodes is the shortest path over a grid graph

where the edges are weighted according to the continuity

of neighboring pixels (normally based on the intensity

gradient). Therefore, geodesic image segmentation is also

referred to as the shortest path segmentation. Notably,

the geodesic distance accounts for the ‘‘landscape’’ of the

image; that is, the change in intensity between neigh-

boring pixels along the path. Intuitively, two pixels will

be considered ‘‘far’’ from one another if an edge (repre-

sented by a large intensity change) exists between them.

Assuming a homogeneous intensity distribution within a

nucleus, this technique allows one to efficiently expand

the detection (a.k.a. seed) to the entire body of the nucleus,

but not beyond, because of the existence of the boundary

of the nucleus (edge). However, hundreds of identified

nuclei could be present in the same image; thus, SGIS

would run on each of them sequentially. To speed up this

procedure, we developed a parallel SGIS based on graph col-

oring (PSGIS-GC). This propagates multiple IDs simulta-

neously in a single SGIS run. However, if nuclei in the

same SGIS run are proximate, then they will be merged

into one nucleus, causing undersegmentation. This issue
ors



Figure 3. Flow Diagram of Proposed Algorithm for Nuclear Segmentation
(A) Users provide an input image from either cell culture imaging, in columns (A1) and (A2), or live embryo imaging, in column (A3).
(B) Detection is performed to locate each nucleus.
(C) Graph coloring is used to separate proximate nuclei by assigning different colors to them.
(D and E) Iteratively, a color is selected (D), and geodesic segmentation is called to segment the entire body of the nuclei (E).
(F) The final segmentation is obtained by combining the segmentations from (E). Scale bar, 20 mm.
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was addressed using graph coloring, which assures that (1)

proximate nuclei are always assigned to different SGIS runs,

and (2) the total number of SGIS runs is minimized. This

strategy significantly increases speed: we only need at

most eight SGIS runs (parallelized in multicore systems)

rather than hundreds of SGIS runs as in the naive (or
Stem C
sequential) approach, in which one has to run SGIS per

seed against the other seeds.

Step 3: Classification

Once nuclei have been efficiently segmented, additional

challenges during the analysis need to be tackled. First,

multiple specimens (i.e., embryos) may be in the same
ell Reports j Vol. 2 j 382–397 j March 11, 2014 j ª2014 The Authors 387



Figure 4. Multistep Classification: Multiple Embryo Extraction and Outlier Removal
(A) The embryo separation algorithm successfully detects two embryos in (i) and five embryos in (ii). False detections from the background
are mistaken for true embryonic cell nuclei (yellow arrows).
(B) Outlier removal discards most of false detections (yellow arrows). True cell nuclei can be misclassified as outliers if they are located at
the embryo boundary (red arrow)
(C) Maximum intensity projections at single time points 3D time-lapse movie over (i) a 540 min period and (ii) a 1500 min period.
(D) Performance evaluation of (i) multiple embryo extraction with outlier removal on the data set described in (C) and (ii) nuclear
segmentation over an extended period. Scale bar, 20mm.
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image; this is especially common during 3D time-lapse

movies where cohorts of embryos are simultaneously

imaged (Figure 4A). Second, false detections exist due to
388 Stem Cell Reports j Vol. 2 j 382–397 j March 11, 2014 j ª2014 The Auth
noise and background disturbance (Figure 4B). Finally, as

the cell position within the mouse embryo determines its

developmental outcome, cells need to be classified into
ors
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either inner cells within the specimen, which constitute

ICM and contribute to the embryo proper, or outer cells,

which are allocated to the TE lineage (Figure 5).

Embryo Separation

We followed a clustering-based approach to extract multi-

ple embryos in the same image (Figure 4A). This problem

becomes difficult when false detections emerge from a

noisy background (Figure 4B). Therefore, local distance-

based clustering techniques such as k-means or spectral

clustering are inappropriate. Instead, we used mean-shift

(Comaniciu and Meer, 2002) which is a mode-seeking

method that fits a ‘‘template’’ (a kernel) to the image. In

our case, the kernel is a Gaussian, and the key is noticing

that the width of the kernel naturally corresponds to the

embryo size.

Outlier Removal

Outlier removal is performed per embryo using a robust

shape-fitting approach and ellipse as the underlying shape

model. Our approach consists of two ingredients: random

sample consensus (referred to as RANSAC; Fischler and

Bolles, 1981) and 2D/3D ellipse fitting (see Supplemental

Information for details).

ICM/TE Classification in Blastocysts

After removal of outliers, the remaining nuclei are to be

classified into either ICM or TE cells. Briefly, we fitted an

ellipsoidal model to the detections, and this ellipse essen-

tially describes the surface of the embryo. Considering

this ellipsoid as a function, after fitting, the surface of the

ellipsoid is of value 1 and the center of the ellipsoid

(i.e., the embryo) is of value 0. Therefore, ICM cells are

those whose center is of a value lower than 0.95, while

the rest are considered TE cells.

Performance Evaluation

Segmentation Accuracy

To judge whether a segmented nucleus is truly meaningful,

we followed the following criterion throughout evaluation:

a segmented nucleus is considered meaningful if the

automated segmentation has at least 75% overlap with

the manual segmentation. This percentage overlap pro-

vides a rough estimate to justify whether a segmented

nucleus is quantitatively useful, which mainly takes into

account its size. Moreover, this threshold is expected to

be sufficient for resolving phenotypes among various

embryonic genotypes, even though a sufficient number

of differently genetically manipulated embryos will, in

practice, be necessary for a detailed analysis. We performed

a manual evaluation by first overlaying the MINS output

on top of the raw image and then recording all errors

(missing, false-positive, etc.), which were used to compute

the following basic metrics: number of segmented nuclei,

NSeg ; number of true segmentation, NTP (i.e., true-positive);

number of false segmentation, NFP (i.e., false-positive); and
Stem C
number of missing nuclei, NFN (i.e., false-negative). Given

the true number of nuclei, NTrue, we further compute preci-

sion ½=NTP=ðNTP +NFPÞ�, recall ð=NTP=NTrueÞ, and f score

(which equals the harmonic mean of precision and recall).

The results on 2D and 3D data sets are shown in Table S1

and Table S2.

Multiple Embryo Extraction

We evaluated our multiple embryo extraction approach on

two types of data sets. The first type contains two embryos

of large size (radius, 120 pixels) and has a clean background

(Figure 4Ai). The second type is more challenging, with five

embryos and a significant background structure (Fig-

ure 4Aii). In each image, segmented nuclei are highlighted

with its embryo ID. Although all embryos are successfully

separated, not all resulting embryos are clean because of

false detections from the background structure (yellow

arrows in Figure 4). We addressed this issue in the next

outlier removal step.

Outlier Removal

We evaluated our outlier removal approach on 2D and

3D data. As shown in Figure 4, outliers are marked ‘‘O’’

in yellow. Our approach can separate true cell nuclei

from false detections. Direct comparison between Fig-

ure 4A and Figure 4B immediately indicates the improve-

ment. Occasionally, true cell nuclei are misclassified as

outliers if they are located at the embryo boundary (red

arrow in Figure 4Bii). Overall, application of embryo

extraction and outlier removal successfully discarded false

detections. Figure 4D quantitatively shows the step-by-

step effect on eight images (Figure 4C) from 4D mouse

embryo image data.

TE versus ICM Cell Classification

We evaluated our TE/ICM classification approach on four

data sets with different density and embryo shape (Fig-

ure 5D). Quantitatively, we achieved an average accuracy

of 93.30 ± 4.64 (n = 3).

Data Interfaces and Graphical User Interface

Data Import

To be compatible with the common formats provided by

major imaging vendors, we used Bio-Formats as a Java li-

brary that reads most common file formats (Linkert et al.,

2010).

Graphical User Interface

We designed a straightforward graphical user interface

(GUI) that guides users through the entire processing pipe-

line (Figures 6A–6C). After each step, users can visualize the

result and decide whether they want to proceed to the next

step or refine the current one. Users are also allowed to save

or load their specific parameterization at any given stage.

The interface only requires four key parameters from the

users: (1) average nuclear radius, (2) noise threshold,

(3) embryo diameter, and (4) number of embryos for
ell Reports j Vol. 2 j 382–397 j March 11, 2014 j ª2014 The Authors 389
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classification. We also implemented batch processing to

automatically process large quantities of data sets using

the same parameter set. See the detailed parameter selec-

tion guide in the Supplemental Information.

Export of Results

The segmentation and classification results are exported

into images and a table. The segmentation image and over-

lay on the raw data (TIFF format) allows for simple inspec-

tion, validation of the results, and analysis using other

software packages. The table provides a detailed summary

of basic characteristics of each of the segmented nuclei

(with information on size, position, etc.), quantitation

(sum/average of fluorescence intensity from all channels

in the data set), and classification (the embryo it belongs

to, outlier or not, TE or ICM cell). MINS treats interphase,

mitotic, and apoptotic nuclei equally, but using the output

table, one can easily discern distinct types of nuclei. High-

fluorescence intensity is usually associated with mitosis,

while multiple objects with a reduced size are indicative

of apoptotic bodies (Figure S1).

We and others have used the framework on various types

of image data sets (2D and 3D) where it has accelerated

phenotypic analysis (Le Bin et al., 2014). MINS software

and a detailed user guide are hosted at http://katlab-tools.

org for implementation by any users.

Comparison of MINS to Semiautomated Methods and

Related Software Tools

We compared MINS against several popular tools in

the community, including ilastik (http://www.ilastik.

org), FARSIGHT (http://www.farsight-toolkit.org/wiki/

FARSIGHT_Toolkit), and CellSegmentation3D (http://

www.biomedcentral.com/1471-2121/8/40/additional). We

tried multiple parameter sets for FARSIGHT and chose the

best result. For the machine learning-based ilastik, no

parameter tuning is required, but a training data set has

to be created; this took 10 min. For our tool, after two

rounds of parameter tuning, the result was satisfactory.

For CellSegmentation3D, unfortunately after several round

of trials, we did not manage to run through due to the

limitation of the hardware to complete the processing.

The top series of panels from Figure 6D depict the segmen-

tation achieved by these tools on a typical 3Dmouse blasto-

cyst-stage embryo data set. It appears that both FARSIGHT

and ilastik have difficulties segmenting the dense nuclear

region, which corresponds to cells of the ICM. In addition,

with FARSIGHT, the segmented boundary appears more
Figure 5. Multistep Classification: TE versus ICM Classification
(A) Schematic of TE versus ICM lineage allocation in preimplantation
(B) Preimplantation embryos over various stages immunostained with
(C) Schematic diagram of TE versus ICM classification procedure by M
(D) Performance evaluation of lineage classification. Scale bar, 20 mm
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rectangular, and it also erroneously splits some nuclei. On

the other hand, ilastik shows significant undersegmenta-

tion and produces nuclei with holes inside. MINS appears

more robust in dealing with those issues and achieves an

accuracy of approximately 95%. By contrast, we found

that the accuracy for FARSIGHT and ilastik was below

85%. MINS has been designed to serve the specific needs

of the preimplantation embryo analysis beyond the basic

segmentation function, such as embryo separation and

cell classification. However, the quality of MINS data anal-

ysis is absolutely dependent on thequality of rawdata itself.

MINS showsdecreases in the accuracy during the analysis of

more developed or complex structures, such as embryos

withmore than 200 cells (Figure 5D). Therefore, it is impor-

tant to apply MINS in various biological images or speci-

mens to improve the algorithms.

Application of MINS Software for Segmentation and

Quantitative Fluorescence Measurements

There is an imperative and growing need for quantitative

analysis of fluorescently labeled cells within early embryos,

as well as in stem cell populations. Our results suggest that

MINSwill accelerate this process. This is summarized in the

following three practical applications.

First, we applied MINS on ES cell populations that have

been cultured under different conditions (Figure 7A). It is

well established that mouse ES cells grown in standard

conditions (serum and leukemia inhibitory factor [LIF])

express the stem cell-associated transcription factor

NANOG in a heterogeneous manner, reflecting the poten-

tial of cells within the population to remain pluripotent or

to differentiate (Chambers et al., 2007; Kalmar et al.,

2009). Using MINS, we measured the level of the pluripo-

tency-associated factor NANOG after fluorescent immnu-

nostaining. The measurements using MINS revealed a

heterogeneous pattern of NANOG expression. When LIF

is withdrawn from the culture media, ES cells are more

prone to differentiate and thus express lower levels of

NANOG. For these cells, MINS provided us with values

indicative of their low NANOG expression status. Finally,

it has been demonstrated that, by adding two signaling in-

hibitors (2i), stem cells are locked into a more homoge-

neous state of naive (or ground-state) pluripotency and

express elevated levels of NANOG (Ying et al., 2008).

Once again, analysis with MINS revealed that cells grown

in these ‘‘2i’’ conditions expressed high levels of this tran-

scription factor (Figure 7A).
mouse embryo.
TE (CDX2, green) and ICM (NANOG and GATA6, magenta) markers.
INS.
.

ell Reports j Vol. 2 j 382–397 j March 11, 2014 j ª2014 The Authors 391

http://katlab-tools.org
http://katlab-tools.org
http://www.ilastik.org
http://www.ilastik.org
http://www.farsight-toolkit.org/wiki/FARSIGHT_Toolkit
http://www.farsight-toolkit.org/wiki/FARSIGHT_Toolkit
http://www.biomedcentral.com/1471-2121/8/40/additional
http://www.biomedcentral.com/1471-2121/8/40/additional


Figure 6. Overview of the MINS Platform and
Its Comparison with Related Tools
(A) The main GUI of MINS. The top boxes contain
functions for parameter loading and saving. The
middle boxes correspond to the entire processing
pipeline. The bottom boxes allow batch process-
ing on a large number of data sets.
(B) The processing pipeline and the output of
each modules.
(C) Detailed outputs ease any downstream ana-
lyses, either manually or by integration with other
software tools. Overlay of segmentation and raw
data allow rapid and straightforward inspection of
the results. A segmentation information summary
provides easy access to quantitation results.
(D) Top: volume rendering of a raw 3D CAG:H2B-
GFP mouse embryo data set and the segmentation
output generated by FARSIGHT, ilastik, and MINS.
For each segmentation, each segmented object
is assigned a unique color descriptor. Bottom:
visualization of a 2D section of the same data set.
Scale bar, 20 mm.
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We also evaluated the performance of MINS software

in the analysis of early mouse embryos that had been

fixed and immunostained for transcription factors associ-

ated with the two ICM lineages (Figure 1D), namely, the

EPI and PrE. These two cell populations originate from a

common pool of precursor cells within the ICM (Fig-

ure 1D). In approximately 100-cell-stage embryos, these

lineages are segregated and are distinctly identified by

the expression of NANOG in the EPI and GATA6 in the

PrE (Chazaud et al., 2006; Plusa et al., 2008). Running

MINS on fixed and stained 100-cell- stage embryo pro-

vided fluorescent measurement values that were indica-

tive of two discrete populations (Figure 7B): one specified

for EPI (NANOGhi; GATA6low) and another for PrE

(NANOGlow; GATA6hi). Notably, the MINS analysis also

allowed the unexpected ID of an unspecified cell that

had not committed to the EPI or PrE lineages and that

expressed both NANOG and GATA6 at comparable levels

at this relatively late stage. While developing an under-

standing of this observation is outside the scope of the

present study, it demonstrates the power of such a large-

scale (hundreds to thousands of cells analyzed from

tens to hundreds of embryos) single-cell resolution data

analysis in revealing detailed information that is critical

in the formulation of a mechanistic understanding of a

process.

Finally, we applied MINS to analyze fluorescence inten-

sity levels of cells in the ICMs of embryos cultured ex utero

and imaged in 3D time lapse (i.e., 4D). This type of live

imaging allows the visualization of the dynamics of line-

age-specific gene expression. For this analysis, we used

embryos carrying a nuclear fluorescent reporter cassette

(H2B-GFP) targeted in the locus encoding the platelet-

derived growth factor receptor alpha (PDGFRa), a marker

for the PrE lineage (Plusa et al., 2008). We previously

described that dynamic and heterogeneous populations

with respect to PdgfraH2B-GFP expression emerge; specif-

ically, GFP-positive cells were initially positioned randomly

within the ICM and are then sorted forming the epithelial

PrE layer facing the blastocyst cavity (Kang et al., 2013a;

Plusa et al., 2008). Moreover, as embryos developed and

the PrE lineage is formed, GFP expression increased.

Previously, this type of analysis was performed by manual

or semiautomated nuclear segmentation using commer-

cially available software and subsequent fluorescent quan-

titation measurements (Kang et al., 2013a). Consequently,

this process was labor intensive, taking a total of between

15 and 20 hr to complete for the movie illustrated in

Figure 7C. Conversely, by applying MINS to the same

data, we found that comparable results were obtained,

and notably, a significantly reduced amount of time was

needed for the completion of the analysis (approximately

2 hr; Figure 7C).
Stem C
DISCUSSION

Motivated by the increasing need for quantitative analysis

of image data from preimplantation mouse embryos for

staging and phenotyping (Miyanari and Torres-Padilla,

2012; Plusa et al., 2008), we sought to develop a software

tool that would allow simple rapid high-throughput semi-

automated nuclear segmentation of image data varying

from 2D to more complex 3D data sets. Here, we report

the development of a tool that has been specifically trained

and tailored for use on 3D preimplantation mouse embryo

and stem cell data, cell number calculation for embryo stag-

ing, quantitative fluorescence at a single-cell level, and po-

sitional classification and nuclear size. Our framework

achieves a balance between computational complexity

and runtime. We use basic, simple operations that are suit-

able for the detection of nuclei and segmentation. In addi-

tion, we used parallel computing to fully exploit the poten-

tial of the modern multicore computer systems. This

enables a 2D image to be processed in less than 10 s and a

normal 3D image (for example, 5123 5123 100) to be pro-

cessed in less than 3 min on a workstation such as an Intel

Xeon, quad core, 2.4GHz. It is important to note that batch

processing allows the unsupervised processing of several

data sets with the same settings.

More important, we have attempted to make the soft-

ware user friendly and intuitive to use. MINS does

not require users to create a pipeline comprising basic

modules as in CellProfiler. Similarly, there is no need for

any extra effort on training data as is the case for ilastik.

Furthermore, MINS software can be easily coupled with

other tools for downstream advanced visualization or

analysis.

The applications of MINS software are multiple, as it

allows single-cell measurements of confocal images. These

include: (1) determination of cell number that, when

applied to preimplantation mouse embryos, gives precise

developmental staging; (2) quantitative documentation

of nuclear size that can be used to monitor changes in

size as development or differentiation progresses; (3) fluo-

rescent intensity measurements that can be used as

readouts of concentrations of specific proteins, in immuno-

fluorescence data, or promoter activity, in fluorescent

reporter-expressing cells or embryos; and (4) cell lineage

allocation for mouse preimplantation embryos. It should

be noted that, when quantitative fluorescent intensities

are being determined, additional considerations should

be taken into account during the acquisition of images

and processing of the data. These include normalization,

intensity loss compensation of, for example, confocal

images, and background subtraction. These are nontrivial

issues that will be addressed as the software is implemented

and feedback is provided by the community.
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It should be noted that we were interested in developing

a tool, which, as a first step, would segment relatively sim-

ple stem cell or mammalian early embryo data sets. Thus

far, we have only tested it on stem cell and preimplantation

embryo samples. In principle, the software should be appli-

cable to other types of data; however, we have not yet opti-

mized the software for these data. Since the software will be

freely available to download online, other researchers

interested in using MINS for image analysis of their own

biological samples will have the opportunity to test it and

provide feedback.

Furthermore, although the design of MINS assumes a

certain shape of nuclei (sphere or oval), segmentation by

MINS is not limited to nuclei with those conformations.

MINS accurately detects nuclei with condensed chromo-

somes or dividing nuclei during metaphase (Figure S1,

yellow arrowhead). However, MINS does not distinguish

these nuclei from interphase nuclei during the detection

process; to this end, an increased signal intensity of these

nuclei correctly reflects their mitotic status. In addition,

apoptotic events, as recognized by nuclear debris, can occa-

sionally be detected by MINS having a significantly lower

volume (Figure S1, red arrowhead) compared to properly

shaped nuclei (Figure S1, white arrowhead). Had we incor-

porated the ID of fragmenting nuclei, we would have

reduced the efficiency of segmentation leading to overseg-

mentation of data.

Looking to the future, we envisage two key directions for

improving the performance of the MINS software, as well

as its availability to end users. First, user editing should

be integrated within the pipeline, so that specific errors

can be corrected after each step of the pipeline. For

example, in the current version of the software, an error

from the detection step cannot be fixed by the segmenta-

tion step, and user correction is needed. Second, in the

future, the migration of the MINS software to the freely

available python platform (http://www.python.org) will
Figure 7. Application of MINS for Quantitative Fluorescent Measu
(A) Nuclear segmentation and quantitative fluorescent measurements
stained for the pluripotency-associated factor NANOG. Stem cells displ
standard serum + LIF conditions (left column) but either downregula
increase its expression in the presence of the 2i inhibitors (right colum
of the culture conditions used (scatterplot at right).
(B) Nuclear segmentation and quantitative immunofluorescence of a 1
the PrE-specific factor GATA6. There are two distinct population of
arrowheads) or high levels of NANOG (red arrowheads). A single cel
categorized as unspecified for either EPI or PrE (green arrowhead). Qu
two distinct cell populations within the ICM (scatterplot at the right
(C) Comparison of quantitative analysis of 3D time-lapse imaging d
carrying the PdgfraH2B-GFP reporter cultured ex utero. Select single time
top row. GFP intensities of individual cells identified in each embryo
Scale bar, 20 mm.

Stem C
be important. This improvement will allow independence

from the commercial MATLAB environment, making

the software more readily accessible to a wider audience

of users.
EXPERIMENTAL PROCEDURES

Stem Cells and Mouse Strains
CAG:H2B-GFP mES cells have been described previously (Hadjan-

tonakis and Papaioannou, 2004). XEN cells hemizygous for the

CAG:H2B-GFP transgene were derived from CAG:H2B-GFP mouse

embryos using standard protocols (Kunath et al., 2005; Niakan

et al., 2013). Embryos were collected from CD-1 (Charles River)

orCAG:H2B-GFP strains ofmice (Hadjantonakis and Papaioannou,

2004). Additional details on ES and embryo culture and imaging

are provided in the Supplemental Information. Mouse husbandry

and all experiments were performed in accordance with Memorial

Sloan Kettering Cancer Center Institutional Animal Care and Use

Committee-approved protocols.

Software Implementation Details and Availability
MINSwas implemented using a combination ofMATLAB andC++.

MATLAB serves as the high-level glue language that provides the

GUI and also for construction of the overall pipeline. C++, on

the other hand, was used to implement the underlying algorithms

for better computational efficiency. All core algorithmic compo-

nents are implemented in C++ and invoked in MATLAB as func-

tions. Furthermore, some algorithms are paralleled including the

PSGIS algorithm. The implementation has GUI support and is

available to interested users. Additional technical details on the

algorithms supporting MINS are provided in the Supplemental

Information. MINS software and a detailed user guide are hosted

at http://katlab-tools.org.

Currently, MINS runs on a PC with 64-bit Windows OS.

Necessary supporting software includes MATLAB with the

Image Processing and Statistics Toolboxes. Java Runtime Environ-

ment is also required. For segmenting large 3D data, we used an

Intel Xeon Processor E5530 Quad Core 2.40 GHz with 24G

memory.
rements
of mouse ES cells grown under different conditions that have been
ay a heterogeneous pattern of NANOG expression when grown under
te its expression when LIF is absent (middle column) or markedly
n). Quantitative fluorescent measurements via MINS are indicative

00-cell-stage embryo stained for the EPI-specific factor NANOG and
cells within the ICM, either expressing high levels of GATA6 (blue
l expresses similar levels of NANOG and GATA6 and could thus be
antitative fluorescent measurements via MINS are indicative of the
).
ata performed either manually or with MINS software on embryos
points from a representative 3D time-lapse movie are shown on the
at selected time points are shown at the scatterplot to the bottom.
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SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes one figure, two

tables, seven movies, and Supplemental Experimental Procedures

and can be found with this article online at http://dx.doi.org/10.

1016/j.stemcr.2014.01.010.
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