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Abstract

Introduction: Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue
regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of
degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in
conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in
a novel in vitro bovine cartilage punch model.

Methods: Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight
weeks with/without stimulation with transforming growth factor-b1 (TGF-b1. Cartilage formation and integrity were
analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the
matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of
these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or
the implant material.

Results: Non-stimulated and especially TGF-b1-stimulated cartilage discs displayed a preserved structural and
functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks)
without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and
mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was
pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly
due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of
successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen
type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures.
Although TGF-b1 stimulation showed protective effects on matrix integrity, effects on other parameters were
limited.

Conclusions: The present bovine cartilage punch model represents a robust, reproducible and highly suitable tool
for the long-term culture of cartilage, maintaining matrix integrity and homoeostasis. As an alternative to animal
studies, this model may closely reflect early stages of cartilage regeneration, allowing the evaluation of promising
biomaterials with/without chondrogenic factors.
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Introduction
The unique anatomical structure of articular cartilage is
characterized by avascularity, low cell density and very
dense extracellular matrix [1,2]. Traumatic and osteoar-
thritis defects possess a very limited regeneration capacity,
with dramatic loss of cartilage substance in the remaining
tissue or complete loss of joint function.
Hence, the development of suitable treatments for

articular cartilage defect regeneration is a major goal of
modern orthopedic research. Several surgical procedures
have been introduced to address this problem, for example,
lavage, shaving, debridement, abrasion, microfracturing
techniques [3], osteochondral autologous transplantation
systems [3] and, as the present gold standard, the matrix-
assisted, autologous chondrocyte transplantation (MACT)
[4]. These techniques, however, mostly do not stop the
progression of cartilage degeneration. One reason for the
failure is that the regenerated tissue mainly consists of
fibrous or osseus cartilage with functional and biomechani-
cal properties clearly inferior to those of hyaline cartilage.
This regenerated tissue shows early degradation and loss of
function [5-7]. Concerning tissue or cell transplants, basic
problems are the isolation of adequate quantities of
biological material and the necessity to generate donor
defects in healthy cartilage. A major problem is also
the non-synchronized degradation of the resorbable
cell-containing scaffold and regeneration of the damaged
cartilage. Indeed, bioresorbable polymers are usually
degraded in the body within a few weeks, whereas the
reconstruction of fully functional cartilage usually requires
months or even years.
Thus, alternative concepts and materials are clearly

needed. One possibility is to employ the endogenous
self-healing capacity of resident cartilage cells by using a
cell-free and biocompatible, but non-resorbable cartilage
implant, for example on the basis of bacterial nanocellu-
lose (BNC). This material could serve as a mechanically
stable, persistent scaffold for the migration of local cells
into the defect-filling implant, which is then enriched by
newly synthesized cartilage matrix.
BNC, synthesized by Gluconacetobacter xylinum, can be

produced in many geometrical shapes and micro-structures
[8,9] and is composed of nanoscale cellulose fibers (thick-
ness 70 to 150 nm) with a tensile strength comparable
to that of steel or Kevlar [10]. As a typical hydrogel, it has
a water content of up to 99% and shows a moderate
compression resistance and form stability. Importantly, the
material causes no foreign body reactions [11] or cytotoxic
effects [12] and is widely considered as highly biocompati-
ble. The nanostructure of the BNC offers an attractive
surface for the interaction with cells in terms of adhesion,
proliferation and formation of new tissue [13].
BNC is employed for various medical applications

[8,10,14-17] and may represent a promising orthopedic

implant material for the regeneration of defects in tissues,
such as meniscus [18], bone [19] or cartilage [20] [see
Additional file 1]. In this context, BNC may help to
circumvent the disadvantages of established therapies by
being: 1) non-resorbable (stable scaffold during the whole
regeneration time); 2) cell-free (one step surgery, no injury
of healthy cartilage for a chondrocyte biopsy); 3) biocom-
patible; 4) producible in high quality and quantity; and 5)
suitable for long-term storage.
In addition, chondrogenic key mediators can be com-

bined with the biomaterial in order to support recruit-
ment, proliferation, differentiation and matrix synthesis of
chondrocytes by controlled release during the regeneration
of cartilage defects. Besides growth factors, such as insulin-
like growth factor-1 (IGF-1) [21-26] and fibroblast growth
factor-2 (FGF-2) [23,27], transforming growth factor-b1
(TGF-b1) represents an especially attractive chondrogenic
molecule. This is based on the induction of chondrogenic
differentiation of mesenchymal stem cells [28-31], as well
as its clear mitogenic [32-35] and matrix-inducing effects
[33,34,36], although the latter point is still somewhat
controversial [37-40]. Thus, TGF-b1 was chosen in the
present study as a prototype molecule for the recruitment of
resident cells, as well as for the induction of differentiation,
proliferation and matrix synthesis.
The gold standard for the validation of new implant

materials is the testing in established small or large animal
models ([41]. Despite their unquestionable advantages,
animal studies are time-consuming, expensive and may be
ethically problematic. To reduce the need for animal
experiments, we have established an in vitro model of car-
tilage regeneration with mature, adult bovine cartilage.
This allows the long-term culture of cartilage tissue over
several weeks under maintenance of matrix integrity and
homoeostasis. In this model, early stages of cartilage for-
mation can be simulated in vitro and used to analyze the
suitability of biomaterials, such as non-resorbable, cell-free
BNC, as cartilage implants in a standardized manner,
including the evaluation of promising chondrogenic
factors bound to the material. In comparison to previous
models with cartilage or chondrocytes derived from
immature calves [42,43] or pigs [44] known to have a
much larger regeneration capacity [45], the present model
works with material from adult bovine cartilage, which
may more closely represent the situation in human
osteoarthritis [2]. In addition, the present model employs
the physiological surface of articular cartilage and is, in
principle, suitable for high-throughput analyses in 48-/96-
well plates.

Methods
Biosynthesis of bacterial cellulose (BNC)
In order to achieve cylindrical, rod shaped BNC hydro-
gels, vertical cultivation of G. xylinus (DSM 14666) was
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performed in glass tubes with an inner diameter of 3.6
mm. Several tubes were placed in a vertical orientation
inside a beaker. A nutrient medium according to Hestrin
and Schramm [46] was used for cultivation of the bacteria;
the medium contained 20 g D-glucose, 5 g yeast extract, 5
g pepton, 3.4 g disodium hydrogen phosphate and 1.15 g
citric acid per liter (HS medium). The HS medium was
inoculated with a preculture of the bacteria in a volume
ratio of 20:1 and cultivated within the glass tubes in the
beaker. After culture for 14 days at 28°C, the BNC
hydrogels were purified by treatment with 0.1 M sodium
hydroxide solution for 30 minutes at 100°C, repeatedly
rinsed with distilled water to pH 7 and finally autoclaved
(121°C for 20 minutes using saturated steam and 2.1 bar
pressure).

Preparation of bovine cartilage, application of BNC inserts
and embedding of constructs
Cartilage was obtained on the day of slaughter from six
bovine knee joints (total of three mature, adult German
Holstein Friesian Cattle, average age 24 months).
Doughnut-shaped cartilage cylinders were aseptically
dissected from the lateral facets of the trochlea/patella
groove. To achieve this, first a biopsy punch with an inner
diameter of 6 mm was used and, subsequently, a central
defect within the 6 mm cartilage sample was created by
applying another biopsy punch with an inner diameter of
2 mm. Finally, the cartilage was removed with a scalpel
from the underlying bone (resulting height of the discs 1.3
± 0.3 mm) and directly transferred into a dish containing
culture medium (F12 Nutmix; ratio 1:1 (Invitrogen, Karls-
ruhe, Germany), with 100 μg/ml gentamycin, 5% FCS, and
insulin-transferrin-selenium (ITS)-culture supplement
(1:1000; final concentrations: 5 μg/ml insulin and transfer-
rin, 5 ng/ml selenic acid; BD Biosciences, Heidelberg,
Germany)). To remove contaminating blood, the cartilage
discs were then washed once in PBS, also leading to a ran-
dom distribution of cartilage discs derived from different
locations in the bovine knee joint. A total of 96 cartilage
samples were obtained from two femurs of one animal
and randomly assigned to the two experimental groups
(+/- TGF-b1).
Before application, each BNC cylinder was cut into five

identical pieces using a scalpel and then applied press-fit
with forceps into the defect of the cartilage discs.
To ensure a reliable fixation, the cartilage/BNC con-

structs were embedded into the wells of a 48-well plate by
adding a total of 300 μl hot liquid, 2% agarose (normal
melting point; Invitrogen) into each well of a 48-well plate
and subsequent generation of cylinders of a defined size
(5.8 mm) by inserting a custom-made metal pin plate into
the hot agarose (Figure 1). The cartilage discs were then
fixed on the bottom of the preformed agarose cylinders;
the use of agarose allowed sufficient diffusion of nutrients

from the medium into the embedded cartilage matrix. The
wells were filled with 500 μl culture medium and kept in
an atmosphere of 37°C, 5% CO2 for two, four and eight
weeks (Figure 1).
Three times a week, 550 μl of the culture supernatants

were carefully replaced with fresh culture medium with/
without TGF-b1. Supernatants were pooled over one
week and stored at -20°C for further analyses. In each
experimental group (+/- TGF-b1) 48 technical replicates
from one animal were cultured in parallel for each time
point (two, four and eight weeks), five were analyzed
histologically, three were used for REM studies and, due
to expected low amounts of RNA, the remaining 40
were pooled as four replicates of 10 samples each and
processed for mRNA and protein analysis. This design
was deliberately chosen in order to guarantee highly
standardized conditions for the initial implementation of
the model.

Histology and immunohistochemistry
Five fresh, non-cultured cartilage discs, as well as cultured
cartilage/BNC constructs, were directly fixed in PBS
containing 4% paraformaldehyde and then subjected to
paraffin embedding. For conventional histological staining
and for immunohistochemical labeling, 4 μm thick tissue
sections from the central part of the discs were mounted
on superfrost plus slides (Menzel, Braunschweig,
Germany). After deparaffinization in xylene for 30 minutes,
sections were rehydrated through a gradient with decreas-
ing proportions of ethanol. Cartilage morphology was ana-
lyzed after conventional hematoxylin/eosin staining
(Hollborn, Leipzig, Germany). Proteoglycan content of the
cartilage was assessed following Safranin-O staining and
counterstaining with light green.
For immunohistological staining, tissue slices were

subjected to different antigen retrieval treatments. For
the detection of aggrecan, a demasking of the epitopes
was performed by incubation with chondroitinase ABC
(0.25 U/ml; Sigma-Aldrich, Taufkirchen, Germany) at
37°C for 90 minutes. For collagen type I and II staining,
samples were treated with proteinase K (1:50 DAKO,
Hamburg, Germany; code:S3004) for 15 minutes at
room temperature. Endogenous peroxidase activity was
blocked by 0.5% hydrogen peroxide in methanol for 15
minutes. The sections were then blocked for 30 minutes
at room temperature with 10% serum/Tris-buffered
saline (TBS). The respective sera were derived from the
same species as the secondary antibody. Sections were
incubated overnight at 4°C with unlabeled primary anti-
bodies to bovine aggrecan (0.1 μg/ml, clone: MA85A95;
GeneTex, Irvine, CA, USA), collagen type I (2 μg/ml,
polyclonal rabbit sera; Acris, Herford, Germany) and
collagen type II (10 μg/ml, clone II-4C11, Acris).
Normal mouse or rabbit immunoglobulin G (IgG) was
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used in negative controls instead of the primary antibody.
All antibodies were diluted in TBS containing 5% BSA.
In the next step, binding was detected by incubating the
sections for one hour with a secondary anti-mouse or
anti-rabbit antibody coupled to horseradish peroxidase
(HRP) or alkaline phosphatase (AP). The signal was visua-
lized by incubation with hydrogen peroxide containing

diaminobenzidine tetrahydrochloride chromogen (Sigma)
for collagen type I and II and FastRed for aggrecan. The
sections were washed with TBS between the different inc-
ubation stages and all steps were performed at room
temperature unless otherwise stated. Sections were counter-
stained with hematoxylin, mounted with aquatex (Merck,
Darmstadt, Germany) and examined by light microscopy.

Figure 1 Scheme of the in vitro model. For embedding of the cartilage-BNC constructs, hot liquid agarose (2%) was added to the cavities of a
48-well plate (A). Cylinders of defined size (5.8 mm) were created by inserting a metal-pin plate into the hot agarose and removing it after
polymerization of the agarose (B). The central defects of the cartilage discs were filled with the BNC material using forceps (C) and, after
embedding the constructs into the agarose (D), culture medium was added (E). One part of the samples was stimulated with TGF-b1 at a
concentration of 10 ng/ml. After in vitro culture, cartilage/BNC constructs were subjected to histological characterization. In addition, gene
expression of chondrocytes isolated either from the BNC implant, the cartilage surface or the cartilage matrix was analyzed. At the protein level,
the amount of cartilage components released into the supernatant as well as the remaining content in cartilage samples was quantified. BNC,
bacterial nana-cellulose; TGF-b1, transforming growth factor-b1.
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Scanning electron microscopy
In preparation for scanning electron microscopy (SEM)
observation, three samples from each experimental group
were fixed in a mixture of 2% (v/v) glutaraldehyde in 0.2
M sodium-cacodylate buffer (pH 7.2). After 72 hours, the
samples were rinsed twice in 0.2 M sodium-cacodylate
buffer and soaked in ethanol with ascending dilutions (50,
60, 70, 80, 90, 100% (v/v)) for water exchange. The ethanol
was then replaced by acetone, the specimens dried in a cri-
tical point dryer (EMITECH K850; Emitech, Ashford, UK)
and mounted with carbon tabs on aluminum stubs. They
were then sputter-coated (EMITECH K500; Emitech) and
analyzed using a SEM (XL-30 ESEM; Philips, Hamburg,
Germany).

RNA isolation
To obtain information on the matrix synthesis of chondro-
cytes from different sites of cartilage formation, RNA was
isolated from: 1) cells migrated onto or into the BNC
implant; 2) cells migrated onto the cartilage surface; and
3) cells located within the cartilage matrix (Figure 1). For
the separate isolation of RNA from the three classified
groups of cells, the BNC-cartilage constructs were
removed from the wells and the BNC insert was carefully
removed with forceps. A total of 40 inserts were collected,
10 inserts each pooled in four tubes containing 300 μl
RLT-lysis-buffer (RNeasy® Micro kit; Qiagen, Hilden,
Germany), shortly vortexed, incubated for 15 minutes and
stored at -80°C for subsequent RNA isolation.
The empty cartilage cylinders were treated for one

minute in a tube with 600 μl lysis buffer under conti-
nous shaking to obtain the RNA from cells migrated
onto the cartilage surface. After removal from the tube,
cartilage discs were washed twice with PBS to remove
remaining lysis buffer. Lysed cell fractions and cartilage
discs were stored at -80°C until further use.
Before RNA isolation from cartilage, the shock-frozen

cartilage (10 discs for each experimental group) was
pulverized in a microdismembrator (Braun, Melsungen,
Germany), as described previously [47]. Subsequently,
RNA was extracted by resuspension of the powder in
600 μl RLT lysis buffer containing carrier RNA and
centrifugation at 8,000 rpm at room temperature for
two minutes. Total RNA of the cartilage discs and the
lysed cell fractions (cells on cartilage surface and on
BNC insert) was then isolated using the RNeasy® Micro
kit according to the supplier’s instructions (Qiagen;
including a DNase digestion).

Reverse transcription and qPCR
Total RNA eluate (12 μl) was primed with Oligo(d)T
and reverse-transcribed for one hour at 42°C using
SuperScript-II reverse transcriptase (Invitrogen).

qPCR reactions were done as previously described [47]
with PCR products as standards for the quantitation of
bovine AGGRECAN, COLLAGEN TYPE I and TYPE II
and the housekeeping gene ALDOLASE. qPCR was
performed on a mastercycler ‘realplex2’ (Eppendorf,
Hamburg, Germany) with HotMaster Taq (Eppendorf)
and the primer pairs and PCR conditions presented in
Table 1. The relative concentrations of cDNA present in
each sample were calculated by the software using the
standard curves. In order to normalize the amount of
cDNA in each sample and to guarantee the comparability
of the calculated mRNA expression in all analyzed sam-
ples, the housekeeping gene ALDOLASE was amplified
and the relative cDNA amount normalized on the basis of
these results. Product specificity was confirmed by melting
curve analysis and initial cycle sequencing of the PCR
products.

Extraction of proteins from cartilage
Cartilage proteins were extracted from the eluated lysates
following RNA isolation using acetone precipitation
according to the supplier’s instructions of the RNeasy®

Micro kit (Qiagen). Briefly, one volume of sample was
suspended in four volumes of ice-cold acetone, incubated
for one hour at -20°C, and, after centrifugation at 8,000 ×
g and 4°C for 10 minutes and decanting of the superna-
tant, the precipitate was dried and stored at -20°C. Prior to
protein analysis, samples were resuspended in 1 ml of 50
mM Tris-buffer (pH 7.6). Subsequently, the proteins in
the cartilage powder remaining after RNA isolation, were
solubilized for 48 hours at 4°C under continous shaking by
an incubation with 10 volumes of 4 M GuHCl in 0.05 M
sodium actetate (pH 6.0) including 1 mM ethylenediami-
netetraacetic acid (EDTA), 10 μg/ml pepstatin A and 1
nM iodoacetamide. After centrifugation at 12,000 × g and
4°C for 30 minutes, the protein-containing supernatant
was applied to ultrafiltration-tubes (MWCO 3000; Milli-
pore/Amicon, Billerica, MA, USA), centrifuged at 4,000
rpm for two hours at 4°C, washed with 50 mM Tris-buffer
(pH 7.6) containing proteinase inhibitors (1 mM EDTA,
10 μg/ml pepstatin A and 1 nM iodoacetamide) and finally
subjected to protein elution in 500 μl of the 50 mM
Tris-buffer.
For the assay-based analysis, both the precipitated pro-

teins from the lysate and the extracted proteins from the
cartilage powder were analyzed and the total content of
the specific protein in the cartilage samples expressed as
the sum of the lysate and the extracted protein.
The mean wet weight (ww) of the cartilage samples, as

assessed in initial analyses, was 0.1373 ± 0.02 g per
cartilage disc (n = 25) and was used as the basis for the
expression of the results as ‘quantity of the specific
protein/g cartilage’.
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Quantification of glycosaminoglycans
The amount of sulphated glycosaminoglycans released
from cartilage into the supernatant during culture, as
well as the remaining content in the cartilage following
culture, was quantified using the dimethylene blue-bind-
ing (DMB) assay, first described by Chandrasekhar [48].
Briefly, 50 μl of pooled supernatant and extracted/preci-
pitated proteins, respectively, were applied to microtiter
plates with or without dilution in 0.05 M sodium acet-
ate-buffer (pH 6.8). After addition of 15 μl 2.8 M
GuHCl solution and 200 μl DMB reagent (containing
1.9-dimethylene blue (16 μg/ml), 0.03 M sodium formi-
ate, 0.2% formic acid; pH 6.8), absorption was read at
525 nm. A dilution series of a bovine nasal septum
extract (Sigma) was used for the generation of a stan-
dard curve and calculation of the results.

ELISA
The supernatants of cartilage-BNC cultures and precipi-
tated/extracted cartilage proteins were screened for the
amount of newly synthesized collagen (CPII; Ibex, Mon-
treal, Canada), aggrecan (CS846; Ibex), collagen type II
(MD Bioproducts, Egg, Switzerland) and cleaved collagen
(C12C; Ibex). The commercially available ELISAs were
performed according to the manufacturers’ instructions.

Micromass cultures of cells isolated from BNC, cartilage
surface and cartilage matrix
In separate experiments, cartilage/BNC constructs were
cultured for eight weeks with or without the addition of
TGF-b1. Subsequently, the BNC inserts were removed
from the cartilage cylinders and both were placed in
separate dishes containing culture medium. In parallel,
some cartilage cylinders without BNC inserts were sub-
jected to cell isolation by enzymatic digestion of the car-
tilage. For this purpose, cartilage was incubated for one
hour at 37°C and 5% CO2 in serum-free (D)MEM/F12
Nutmix ((D)MEM/F12; Invitrogen) containing 0.1%

pronase E (Sigma-Aldrich, Taufkirchen, Germany) in a
spinner flask for fine mincing and digestion. After two
further washes, overnight enzymatic digestion was per-
formed at 37°C in 0.05% collagenase P (Roche Diagnos-
tics, Mannheim, Germany) in (D)MEM/F12 media
supplemented with 5% FCS. Cells were separated by fil-
tration through a 50 mesh sieve, washed twice in (D)
MEM/F12 containing 5% FCS and antibiotics, and then,
cells were seeded in culture dishes. Media were
exchanged three times a week.
After reaching the required amount of cells, high-density

cultures of chondrocytes isolated by ‘outgrowth-cultures’
from the BNC and cartilage surface and after enzymatic
digestion of cartilage were generated by centrifugation to
form a pelleted high-density culture. Stabilization of the
chondrogenic phenotype/chondrogenic differentiation was
induced for two weeks with (D)MEM-medium supple-
mented with ITS (Sigma-Aldrich, Taufkirchen, Germany)
and 10 ng/ml TGF-b1 (R&D Systems, Wiesbaden,
Germany). In non-induced controls, a basal medium with-
out TGF-b1 supplementation was used. The medium was
exchanged every other day. For histological and immuno-
histochemical analyses, high-density cultures were
embedded in optimum cutting temperature (OCT) com-
pound, frozen, and cryosections (thickness 6 μm) were
prepared. Proteoglycans were visualized by staining with
Alcian Blue 8GS (Roth, Karlsruhe, Germany) at pH 2.5.
For immunohistochemical analysis of type II and type I
collagens, cryosections (6 μm) were incubated for one
hour with primary antibodies (rabbit anti bovine type II
collagen, or rabbit anti bovine type I collagen; both Acris).
In parallel, sections were incubated for one hour with
rabbit IgG (DAKO, Hamburg, Germany) as controls.
Subsequently, sections were processed using the EnVision
System Peroxidase Kit (DAKO) according to the manufac-
turer’s instructions, followed by counterstaining with
hematoxylin (Merck, Darmstadt, Germany). Sections
incubated with rabbit IgG showed no color reaction and

Table 1 Primers, product length and specific amplification conditions for qPCR.

Gene Primer upstream(5’®3’) Primer downstream(3’®5’) Accession
number

Product length
in bp

T
annealing

Melting T
product

Aldolase 5´-
TCATCCTCTTCCATGAGACACTCTA-

3´

3´-
ATTCTGCTGGCAGATACTGGCATAA-

5´

NM_000034 314 58°C 88°C

Aggrecan 5´-CAGAGTTCAGTGGGACAGCA-3´ 3´-AGACACCCAGCTCTCCTGAA-5´ NM_173981 189 60°C 84°C

Coll II 5´-CATCTGGTTTGGAGAAACCATC-
3´

3´-GCCCAGTTCAGGTCTCTTAG-5´ NM_001001135 600 61°C 83°C

Coll I 5´-AGCCAGCAGATCGAGAACAT-3´ 3´-ACACAGGTCTCACCGGTTTC-5´ NM_001034039 185 60°C 86°C

General amplification protocol (40 cycles): initial denaturation for two minutes at 95°C; denaturation for 15 seconds at 95°C, specific primer annealing
temperature (see above) for 15 seconds, amplification at 68°C for 20 seconds, additional heating step to 5°C below the melting temperature of the PCR product
(see above). General melting curve protocol (one cycle): denaturation for one second at 95°C; cooling to 5°C above the primer annealing temperature (holding
for 10 seconds); heating to 95°C (0.1°C/second); final cooling for five minutes at 40°C. Col = collagen. qPCR = quantitative polymerase chain reaction.

Pretzel et al. Arthritis Research & Therapy 2013, 15:R59
http://arthritis-research.com/content/15/3/R59

Page 6 of 18



documented the specificity of the type II and type I
collagen antibodies and the peroxidase detection system.

Results
Morphology of cultivated cartilage BNC constructs
Due to its enormous swelling capacity, a tight lateral
bonding of the BNC insert to the cylindrical defect was
achieved [see Additional file 2]. Despite the relatively
long culture period of up to eight weeks, resident carti-
lage cells showed vital morphology without signs of
alterations and positive nuclear staining, thus pointing to
suitable culture conditions (Figure 2A). Interestingly, car-
tilage zones located close to the edge of the defect were
characterized by the appearance of proliferation-induced
cell clusters as a possible reaction to the initial mechani-
cal tissue disruption (data not shown). The matrix integ-
rity of the cartilage seemed to be largely unaffected
during the whole culture period, except for a detachment
of the superficial layer, presumably the lamina splendens,
from the underlying tissue and a subsequent demasking
of cartilage matrix structures (Figure 2B). TGF-b1 seemed
to slow down the process of superficial delamination
throughout the entire culture period of eight weeks.
Increased delamination in non-stimulated samples was
accompanied by augmented migration of cells onto the
surface of the cartilage and the BNC implant (Figure 2 A,
C), suggesting that the matrix erosion leads to a loosened
network around the chondrocytes and to active emigra-
tion of the cells. Cells attached to the BNC implant
showed a rather fibroblastic phenotype with flattened cell
bodies and long cytoplasmatic protrusions (Figure 2C).
Notably, there was no immigration of chondrocytes into
the central area of the BNC, possibly due its relatively
small pores (diameter 2 to 5 μm; Figure 2C). Semiquanti-
tative analysis revealed that cartilage erosion and cell
migration was clearly increased in non-stimulated versus
TGF-b1-stimulated samples and became more pro-
nounced with longer culture periods (Figure 2D).

Matrix metabolism in cultivated cartilage BNC constructs
Localisation, content and release of proteoglycans
The same strong degree of Safranin O staining was
observed in freshly isolated cartilage and cartilage samples
from the entire culture period, indicating negligible loss of
proteoglycan (Figure 3 A). There was no obvious differ-
ence between non-stimulated and TGF-b1-stimulated
samples. Interestingly, initial deposition of negatively
charged proteoglycans into BNC adjacent to the cartilage
was apparent after eight weeks of culture in TGF-b1-sti-
mulated samples, suggesting a beginning integration of the
insert (arrows in Figure 3 A). Quantification of the proteo-
glycan content in fresh cartilage and cultured cartilage
discs using the DMB assay revealed an increased net
glycosaminoglycan (GAG) content in non-stimulated

cartilage samples compared to fresh cartilage over the
entire culture period (Figure 4A). TGF-b1-stimulated cul-
tures showed a higher GAG level than fresh cartilage after
two weeks; this decreased during further culture to levels
below those of fresh cartilage (Figure 4A). In parallel,
cumulative GAG release from cartilage into the superna-
tant continuously increased throughout in vitro culture,
indicating a continous, almost linear liberation of proteo-
glycans over time; this was augmented at all time points
by TGF-b1 stimulation (Figure 4A). Interestingly, the
cumulative GAG release from cartilage during culture was
higher (24.3 mg GAG/g ww non-stimulated; 30.5 mg
GAG/g ww TGF-b1-stimulated) than the total content in
fresh cartilage tissue (19.2 ± 1.0 mg GAG/g ww), thus illus-
trating a substantial synthesis capacity of the chondrocytes
in vitro.
Localisation, content, release and transcription of aggrecan
Using an antibody directed against newly synthesized
aggrecan molecules, a regenerative response of the carti-
lage was predominantly detected in chondrocytes at the
interface of the cartilage defect and the BNC insert after
two weeks of culture (Figure 3B). Interestingly, BNC areas
adjacent to the cartilage also exhibited a distinct staining
which gradually decreased towards the implant center. In
contrast, chondrocytes remote from this area and the
interterritorial matrix were not stained.
Upon long-term culture for eight weeks, there was a

shift towards a more homogeneous staining of chondro-
cytes and intercellular matrix throughout the cartilage,
approaching the findings in fresh cartilage and, thus,
suggesting an attempt to re-establish metabolic tissue
homeostasis (Figure 3B). This regenerative response was
confirmed by a substantial increase of the CS846
neoepitope content in cartilage samples (approximately
two-fold) until two weeks after initiation of culture with
a subsequent steady state plateau (Figure 4B). There was
no obvious difference between the findings in non-
stimulated and TGF-b1-stimulated cartilage. The cumu-
lative CS846 release into the supernatant progressively
increased over the entire culture period, with no differ-
ences between non-stimulated and TGF-b1-stimulated
cartilage samples (Figure 4B). Notably, the total amount
of CS846 released from cartilage within eight weeks
(approximately 600 μg/g ww) exceeded the total content
in fresh cartilage tissue (131 μg/g ww) by a factor of
almost five, further underlining the synthesis capacity of
the chondrocytes in vitro.
Differential information on the aggrecan transcription

of distinct cell populations located in the cartilage matrix
or emigrated either onto the surface of the cartilage or
the BNC insert was obtained by real time PCR analysis
(Figure 5A). Compared to cells in fresh, non-cultured
cartilage, chondrocytes localized in the cartilage matrix
displayed an increased aggrecan mRNA expression
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Figure 2 Cartilage integrity and migration of chondrocytes out of the cartilage matrix. (A) Histological analysis of cartilage surfaces of
non-stimulated and TGF-b1-stimulated cartilage/BNC constructs after in vitro culture for two, four and eight weeks. The superficial layer of non-
stimulated samples shows clear signs of beginning erosion and mobilization of chondrocytes. In contrast, the surface of TGF-b1-stimulated
samples appears rather smooth and intact. Magnification: 200 x. (B) Scanning electron microscopy images display the smooth surface of fresh
cartilage in contrast to uneven cartilage surface after eight weeks of culture, most probably caused by the removal of the lamina splendens.
Magnification 2,000 x. (C) Migration of chondrocytes out of the dense cartilage matrix onto the cartilage surface and the BNC. Magnification left
panel: 1,000 x, center panel: 200 x, right panel: 5,000 x. (D) Semiquantitative analysis of cartilage erosion and migration of cells from cartilage on
the BNC. Stained histological sections were evaluated and scored with 0 to 3 points. Degree of erosion 0 = smooth cartilage surface, 1 = loss of
lamina splendens, 2 = moderate erosion of superficial cartilage, 3 = massive erosion with complete loss of cartilage surface; degree of cell
migration onto the BNC: 0 = BNC without cells, 1 = single adherent cells (<5/cartilage section), 2 = several adherent cells (<20/cartilage section),
3 = confluent cell layer on BNC. Values are shown as mean ± SEM for n = 5 technical replicates each. BNC, bacterial nana-cellulose; SEM,
standard error of the mean; TGF-b1, transforming growth factor-b1.
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throughout culture, with a maximum after two weeks and
a subsequent decrease over time (Figure 5A). This effect
was slightly more pronounced in non-stimulated as com-
pared to TGF-b1-stimulated samples. In contrast, the
aggrecan mRNA expression of cells emigrated onto the
cartilage surface at two weeks of culture was substantially
lower than that in fresh cartilage (Figure 5A) but almost
doubled until the eight-week time point, approaching the
levels of fresh cartilage. A similar time course was
observed in chondrocytes emigrated onto the BNC mate-
rial; however, the final levels at eight weeks only reached
approximately one quarter of those in fresh cartilage
(Figure 5A). In general, these effects were more pro-
nounced in non-stimulated than in TGF-b1-stimulated
samples.
The increased differentiation of cells on the surface of

cartilage discs and BNC inserts towards a chondroid
phenotype (as indicated by augmented synthesis of

aggrecan mRNA upon long-term culture) was further
supported by a substantial deposition of proteoglycan in
high-density pellet cultures, approaching the levels
observed in the respective cultures of chondrocytes iso-
lated from the cartilage discs (Figure 6A1-A3).
Localisation, content, release, translation and transcription
of collagen type II
In both non-stimulated and TGF-b1-stimulated samples
and throughout the entire culture period, the cartilage
extracellular matrix showed a strong and homogeneous
staining for collagen type II, comparable to the staining
observed in fresh cartilage (Figure 3C). Clear deposition of
collagen type II into the BNC scaffold was observed from
two weeks onwards, with steady levels for eight weeks and
without any influence of TGF-b1 stimulation. Concor-
dantly, quantitative analysis of the collagen type II content
in non-stimulated and TGF-b1-stimulated cartilage discs
revealed levels slightly below those of fresh cartilage after

Figure 3 Histological sections following conventional and immunohistological staining for the detection of cartilage matrix molecules.
Proteoglycan content was assessed in fresh and cultured (+/- TGF-b1) cartilage, as well as in the BNC by safranin-O staining (A); aggrecan
neosynthesis was shown using an antibody directed against a neoepitope on aggrecan molecules (B). In addition, specific staining for collagen
type II (C) and type I (D) was performed. Magnification 40 x. BNC, bacterial nana-cellulose; TGF-b1, transforming growth factor-b1.
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two weeks (1,080 and 1,300 μg/g ww versus 1,500 μg/g
ww, respectively) and a return to this level at eight weeks
(Figure 7A). In contrast to the findings for aggrecan, there
was only negligible cumulative release of collagen type II
(maximally 3% of the total content in fresh cartilage) from
the cultured cartilage discs into the supernatant
throughout in vitro culture, with higher values in the case
of TGF-b1-stimulated cultures versus non-stimulated ones
(53 versus 34 μg/g ww; Figure 7A).
As in the case of aggrecan, increased differentiation of

cells on the surface of cartilage discs and BNC inserts

towards a chondroid phenotype was further supported by
initial deposition of collagen type II in high density pellet
cultures; however, these levels were clearly below those of
the respective cultures of chondrocytes isolated from the
corresponding cartilage discs (Figure 6B1-B3).
In agreement with the above findings for collagen type

II, an almost steady state level of the precursor molecule
procollagen type II was detected in the cartilage discs
during the whole culture period, without clear differences
in comparison to fresh cartilage or between the findings
in non-stimulated and TGF-b1-stimulated cartilage

Figure 4 Quantitative analysis of proteoglycans and the aggrecan neoepitope CS846. (A) Proteoglycans were quantitatively assessed in
fresh and cultured (+/-TGF-b1) cartilage, as well as in the culture supernatant by the measurement of GAG by the DMB assay; (B) quantitative
analysis of the aggrecan neoepitope CS846 was performed by a specific ELISA assay. The values of the content in cartilage (blue bars) and the
cumulative release of GAG/CS846 into the culture medium (red lines) are expressed as means ± SEM. BNC, bacterial nana-cellulose; DMB,
dimethylene blue; GAG, glycosaminoglycan; SEM, standard error of the mean; TGF-b1, transforming growth factor-b1.
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(Figure 7B). The cumulative release of procollagen type II
into the supernatant progressively increased over the
entire culture period; this was enhanced in TGF-b1-sti-
mulated samples (Figure 7B). In an even stronger fashion
than for the aggrecan neoepitope CS846, the total
amount of precollagen type II released from cartilage
within eight weeks (69 and 31 μg CPII/g ww for TGF-
b1- or non-stimulated cartilage discs, respectively)
exceeded the total content in fresh cartilage (9.2 ± 0.3
μg/g ww) by a factor of 3.5 to 7.5, on one hand demon-
strating a substantial release of the precursor molecule
from the cartilage discs, but on the other hand underlin-
ing the synthesis capacity of the tissue in vitro. In agree-
ment with the relatively stable levels of collagen type II
and precollagen II throughout in vitro culture, only lim-
ited levels of the collagen breakdown marker C12C were
detected in either non-stimulated or TGF-b1-stimulated
cartilage discs; interestingly, these levels were even lower
than those in fresh cartilage (Figure 7C). In addition, the
breakdown marker C12C was not detected in the super-
natant of any of the in vitro cultures (Figure 7C).
As in the case of aggrecan, chondrocytes localized in

the cartilage matrix displayed a higher collagen type II
mRNA expression than fresh, non-cultured cartilage
during the entire culture period, with a maximum after
two (TGF-b1-stimulated) or four weeks (non-stimulated)
and a subsequent decrease over time (Figure 5B). In
contrast, the collagen type II mRNA expression of cells
emigrated onto the cartilage surface at two weeks of cul-
ture was substantially lower than that in fresh cartilage
(Figure 5B), but approached or exceeded the levels in
fresh cartilage either at the four-week or eight-week
time point. A similar time course was observed in chon-
drocytes emigrated onto the BNC material; however, as
for aggrecan, the final levels of collagen type II mRNA
at eight weeks only reached maximally one quarter of
those in fresh cartilage (Figure 5B).
In general, these effects were more pronounced in

non-stimulated than in TGF-b1-stimulated samples.

Localisation and transcription of collagen type I
As expected, neither fresh cartilage nor any of the cultured
cartilage discs showed a positive staining for collagen type
I (Figure 3D). In contrast, staining for collagen I in the
BNC inserts progressively increased upon culture, reach-
ing a maximum at eight weeks (Figure 3D). At four and
eight weeks, this effect was more pronounced in the non-
stimulated cartilage discs.
The mRNA for collagen type I displayed a pattern similar

to that observed in immunohistology, that is, the resident
cells in fresh or cultured cartilage expressed hardly any
collagen type I mRNA, whereas the cells emigrated onto
the cartilage surface showed substantial levels of collagen

type I mRNA, with peak levels at four weeks (Figure 5C).
The induction of mRNA transcription was more
pronounced in non-stimulated samples, suggesting an
inhibiting effect of TGF-b1. Interestingly, cells emigrated
onto the BNC insert showed much lower levels of collagen

Figure 5 Real time PCR analysis for Aggrecan, Collagen type II,
and Collagen type I-mRNA-expression. mRNA expression for
Aggrecan (A), Collagen type II (B), and Collagen type I (C) was
assessed in fresh cartilage, in resident chondrocytes from the matrix
of cultured (+/-TGF-b1) cartilage, as well as in cells emigrated from
cultured cartilage (+/-TGF-b1) onto the cartilage surface or the BNC
matrix. Values are expressed as means ± SEM. BNC, bacterial nana-
cellulose; SEM, standard error of the mean; TGF-b1, transforming
growth factor-b1.
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type I mRNA than those on the cartilage surface, possibly
indicating a stabilization of the chondrocyte phenotype
upon contact with the BNC (Figure 5C). As for the cells on
the cartilage surface, the induction of mRNA transcription
was more pronounced in non-stimulated BNC samples.
Strikingly, there were no obvious differences concerning

the deposition of collagen type I protein in high-density
pellet cultures of cells isolated from the cartilage discs or
from the surface of the cartilage or the BNC inserts, indi-
cating a similar degree of dedifferentiation of the indivi-
dual cell populations in culture (Figure 6C1-C3).

Discussion
Suitability of the new model
In the present in vitro model for the regeneration of carti-
lage defects, mature, adult bovine cartilage turned out to
be a well-suited tissue source and showed a number of

advantages: 1) it is regularly available and allows harvest-
ing of up to 48 cartilage discs per joint with standardized,
highly homogenous quality; and 2) the resulting discs
show an intact cartilage matrix/surface without structural
alterations and/or primary loss of proteoglycans or other
matrix molecules, features difficult to achieve with human
samples from osteoarthritis or rheumatoid arthritis
patients. The resident cartilage cells showed vital morphol-
ogy for up to eight weeks without any signs of alterations,
suggesting that the culture conditions are well-suited to
preserve the structural and functional integrity of the
chondrocytes. In addition, the matrix integrity of the carti-
lage seemed to be largely unaffected during culture, except
for the well-known detachment of the superficial lamina
splendens. This was supported by the long-term, sustained
presence of proteoglycans and collagen II. Finally, there
were no signs of cartilage dedifferentiation, as underlined

Figure 6 Histological/immunohistolpogical characterization of high-density pellet cultures of chondrocytes originating from BNC,
cartilage surface or enzymatically digested cartilage. Samples were obtained from cartilage/BNC constructs cultured for eight weeks with
continuous TGF-b1 stimulation (identical results for non-stimulated samples). Chondrocytes were then propagated by ‘outgrowth-cultures’ from
isolated BNC inserts or isolated cartilage cylinders, or after enzymatic digestion of isolated cartilage cylinders. After reaching the required amount
of cells for the three preparations, high-density cultures of chondrocytes were generated by pellet centrifugation. High-density pellet cultures of
chondrocytes originating from BNC (A1, B1, C1), cartilage surface (A2, B2, C2) or enzymatically digested cartilage (A3, B3, C3) were then
subjected to two weeks of culture in chondrogenic (with TGF-b1) or basal medium (without TGF-b1). Sections of high-density pellets were then
stained for the appearance of proteoglycans using alcian blue (A1-A3); in addition, collagen type II (B1-B3) and type I (C1-C3) were identified
immunohistologically. Inserts represent the histology of pellets cultured in basal medium. Magnifications: 40 x. BNC, bacterial nana-cellulose; TGF-
b1, transforming growth factor-b1.
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by the absence of collagen type I in the cartilage matrix.
Thus, the present model seems to provide optimal basic
conditions to study the regeneration of injured cartilage in
general and appears to be well-adapted for testing
the biocompatibility, cell seeding and matrix deposition/
regeneration capacity of candidate biomaterials, as shown
for the innovative cartilage replacement material BNC.
These issues can be monitored by various read-out para-
meters concerning both the ‘host’ cartilage and the

embedded insert, ranging from the time course of mole-
cule release into the supernatant, structural histological
analyses and RNA production, as well as the neo-synthesis,
status quo and/or degradation of matrix molecules.
Concerning the effects of bioactive factors, TGF-b1 stimu-
lation showed a protective effect on the cartilage matrix
integrity, as demonstrated by decreased superficial delami-
nation and emigration of chondrocytes, whereas there was
little effect on the BNC insert.
Innovations of the present model in comparison to

previous models based on samples derived from immature
calves [42,43] or pigs [44] include: 1) the use of adult
cartilage, likely more comparable to human diseases with
typical adult onset, instead of immature material with a
higher regenerative potential; 2) the application of cartilage
samples with their physiological surface; and 3) the basic
suitability for high-throughput analyses in 48-/96-well
plates. On the other hand, limitations of the present
model are: 1) the use of bovine instead of human material,
with possibile differences in terms of cell density, tissue
architecture, and biomechanical properties ([49] and refer-
ences therein); 2) the application of one-phase ‘pure’ carti-
lage constructs instead of two-phase osteochondral
contructs, which may be physiologically more meaningful,
but may approach the limits of cultivation due to a higher
metabolism of the living bone (marrow) component
[49-51]; 3) the limited time span in which viable
constructs can be maintained in culture without using
more complex bioreactors (maximally 12 weeks; data not
shown; [44]); 4) the lack of dynamic biomechanical loading
of the constructs during culture [51,52]; and 5) the lack
of biomechnical testing of the regenerated tissue with
push-out or compression tests [42-44,53].

Integrity of matrix and chondrocytic phenotype in the
‘host’ cartilage cylinders
The presence of proteoglycans and collagen type II in
the cultured ‘host’ cartilage cylinders remained sustained
both at the mRNA and protein level, suggesting opti-
mized culture conditions for the structural and func-
tional integrity of cartilage and chondrocytes. Strikingly,
the content of proteoglycan/aggrecan and collagen type
II remained comparable to that of fresh cartilage, further
underlining the stability of the present in vitro system.
Proteoglycan and collagen type II levels were maintained
despite substantial release of both their mature mole-
cules and neoepitopes into the supernatant, indicating
considerable matrix synthesis in the injured cartilage
cylinder, as also observed as a repair attempt in vivo in
osteoarthritis cartilage [54,55]. In the case of collagen
type II, the stability of the present model was confirmed
by decreased levels of the collagen degradation product
C12C, again similarly to the in vivo situation of osteoar-
thritis cartilage [54-56] and similarly to other in vitro

Figure 7 Quantitative analysis of collagen type II, the collagen
type II neoepitope CPII, and the collagen type II degradation-
marker C12C. Collagen type II (A), the collagen type II neoepitope
CPII (B) and the collagen type II degradation-marker C12C (C) were
quantitatively assessed in fresh and cultured (+/-TGF-b1) cartilage, as
well as in the culture supernatant by specific ELISA assays The
values of the content in cartilage (blue bars) and the cumulative
release of the respective collagen marker into the culture medium
(red lines) are expressed as means ± SEM. BNC, bacterial nana-
cellulose; SEM, standard error of the mean; TGF-b1, transforming
growth factor-b1.
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models [47]. The substantial release of proteoglycan/
aggrecan and collagen may be favored by an influence
of the in vitro conditions on the molecular structure
and the resulting binding of the proteoglycans to the
cartilage matrix, despite the fact that the high proteogly-
can content in the cultured cartilage should protect resi-
dent or newly synthesized collagen type II against
endogenous proteolytic enzymes [57]. The functional
integrity of the cultured cartilage was further underlined
by the phenotypic stability of the chondrocyte, that is,
the absence of fibroblastic dedifferentiation, such as the
expression of collagen type I [58-60].

Mobilization of chondrocytes from cartilage matrix
Increased delamination in non-stimulated samples was
accompanied by augmented migration of cells onto the
surface of the cartilage and the BNC implant, suggesting
that matrix erosion led to a loosened network around the
chondrocytes and active emigration of the cells. This is
most likely an in vitro ’artifact’ upon extended culture of
the cartilage and the emigration appears to occur predo-
minantly out of and onto the surface of the cartilage cylin-
ders. The general migration capacity of chondrocytes has
been previously described in isolated cells [61-64]. In the
case of osteoarthritis or traumatized cartilage, a focused
loss of proteoglycans and/or collagens is believed to favor
the egress of cells from the matrix [65-67]. Thus, both
superficial delamination and loss of matrix molecules may
have contributed to the emigration of chondrocytes in the
present model.

Matrix formation in the biomaterial BNC
During the first two weeks, newly synthesized aggrecan
was predominantly produced in chondrocytes adjacent
to the defect with a clear diffusion into the neighboring
BNC implant. A primary sealing of a defect area contri-
buting to a reduction of the defect size in vivo is known
as ‘cartilage flow-phenomena’ [68,69]. In in vitro models,
however, the active synthesis of new matrix occurs inde-
pendently of biomechanical loading. The concurrent
detection of mRNA and protein for cartilage-specific
aggrecan and collagen type II (in the case of the protein
throughout the BNC insert), underlines the suitability of
the present model, the biocompatibility of the BNC, and
the high synthetic capacity of the cartilage-resident or
emigrated chondrocytes [70,71]. An initial suppression
and subsequent partial recovery of the mRNA expres-
sion for aggrecan/collagen type II in cells migrated onto
the surface of the cartilage or the BNC implant - a phe-
nomenon well-known for chondrocytes expanded in
monolayer culture and then transferred to three-dimen-
sional culture [60,72-74] - further supports these
assumptions.

Dedifferentiation/redifferentiation of chondrocytes on the
BNC surface
Chondrocytes emigrated onto the BNC surface showed
certain signs of dedifferentiation, such as a fibroblastic
phenotype, as well as higher expression of collagen type I
mRNA and lower mRNA expression for aggrecan/collagen
type II mRNA than in fresh cartilage [59,60,72-75]. It has
to be taken into account, however, that a transient dedif-
ferentiation may be beneficial for the recruitment of the
cells from the cartilage matrix [64]. On the other hand,
there were also indications of a successful redifferentiation
of the emigrated cells upon contact with the BNC surface.
These included an increase of the mRNA for aggrecan/col-
lagen type II over time and substantially decreased levels of
collagen type I mRNA compared to those in condrocytes
on the cartilage surface [76]. This suggests that BNC, as
already observed for other biomaterials [75,77-79], is cap-
able of stabilizing the chondrocytic phenotype. This was
further supported by a substantial initial deposition of pro-
teoglycan and collagen type II by the cells on the BNC sur-
face in long-term high-density pellet cultures.

Relative impact of TGF-b1
Interestingly, TGB-b1 stimulation showed a long-lasting,
protective effect on the matrix integrity, as demonstrated
by decreased/delayed superficial delamination and emigra-
tion of chondrocytes. This may be due to the induction of
lubricin, a major component of the cartilage surface-cover-
ing lamina splendens [80-82], the suppression of matrix
degrading enzymes, such as matrix metalloproteinases
(MMP) [83], and concurrent up-regulation of their inhibi-
tors [84,85] and/or induction of matrix synthesis
[33,34,36].
Differential effects of TGF-b1 stimulation on other

parameters were restricted to an opposing influence on
the content of the cartilage matrix markers aggrecan and
collagen type II, as previously described [38-40]. The lim-
ited influence of TGF-b1 stimulation is probably due to
the fact that serum starvation, normally used to enhance
the effects of subsequent growth factor stimulation,
severely damages the ‘host’ cartilage cylinder and, there-
fore, cannot be applied to the present long-term model.

Bacterial nanocellulose as a potential cartilage implant
material
In the present model, the cell-free, non-resorbable carti-
lage replacement material BNC proved highly suitable in
supporting early stages of matrix formation in the cartilage
defects. This was underlined by: 1) smooth adaptation of
the BNC to the defect edges in the ‘host’ cartilage cylinder,
likely based on the enormous water binding and swelling
capacity of BNC and generally considered a prerequisite
for successful cartilage regeneration [86,87]; 2) emigration/
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seeding of the BNC with resident, phenotypically stable
chondrocytes without any signs of toxicity, indicating a
high biocompatibility of the material; 3) substantial de
novo deposition of cartilage-specific matrix onto and into
the BNC scaffold, contributing to the sealing of the defect;
and 4) initial signs of lateral integration/bonding of the
BNC (in)to the edges of the cartilage defect, indicated by
the so-called ‘cartilage flow phenomenon’ and also
regarded as pivotal for defect regeneration in vivo. These
findings are in agreement with the known biocompatibility
of BNC as a scaffold material in general [11,12,88-90] and,
in particular, its capacity to support the growth of vital,
metabolically active chondrocytes [20].
Strikingly, all the above-mentioned, favorable features

of the biomaterial BNC were achieved with a cell-free
preparation, theoretically eliminating the need of cell
harvesting with inevitable damage to healthy cartilage in
vivo and allowing storage as an off-the-shelf product. In
addition, the positive results were generated with a non-
resorbable biomaterial, allowing the long-term formation
of a BNC-cartilage matrix composite in vivo and, possi-
bly, limiting adverse reactions due to rapid release of
breakdown products [91].
Notably, there was no immigration of chondrocytes in the

central area of the BNC, possibly due to the relatively small
diameter of the pores in the BNC network (2 to 5 μm),
compared to the cell diameter (10 to 20 μm). This problem
may be addressed by modified network structures, enabling
three-dimensional seeding with chondrocytes [92]. Since
there were very little, if any, differential effects of TGF-b1
stimulation on the matrix formation in the BNC (as also
observed for the cartilage cylinders), the usefulness of TGF-
b1 coating remains to be finally assessed.

Conclusions
The present long-term in vitro model with mature, adult
bovine cartilage is highly suitable for the testing of carti-
lage regeneration with candidate biomaterials, based on: 1)
the quasi unlimited availability, reproducible quality and
extended tissue integrity of the ‘host’ bovine cartilage
cylinders; 2) successful seeding of the biomaterial (in this
case BNC) with phenotypically stable chondrocytes; and 3)
substantial de novo deposition of cartilage-specific matrix
onto and into the biomaterial scaffold. This represents a
robust, economic and versatile system to analyze thor-
oughly the interaction and reciprocal effects of cartilage
and biomaterial with a broad spectrum of morphological
and molecular techniques.
Using this model, BNC was identified as a promising

biomaterial for supporting early stages of matrix formation
in cartilage defects. This was achieved with a cell-free BNC
preparation, possibly avoiding previous harvesting of
chondrocytes and allowing long-term storage as a stable
product. Its non-resorbable character may favor the

formation of a durable BNC-cartilage matrix composite in
vivo, without limitations due to a slowly regenerating
cartilage matrix.
The necessity to add bioactive factors to the BNC, and

in particular the molecular nature of such factors, will
be the focus of future studies.

Additional material

Additional file 1: Scanning electron micrographs of BNC (A) and
bovine cartilage (B). Note the apparent ultrastructural similarity of the
three-dimensional BNC network and the cartilaginous collagen fibers.
Magnification: 5,000x.

Additional file 2: HE-stained vertical and cross sections of a
cartilage cylinder containing a BNC insert. Note the tight bonding of
the BNC material to the surrounding cartilage edges. Magnification: 40 x.
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