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Magnetic resonance imaging (MRI) is an excellent non-invasive tool to investigate bio-
logical systems. The administration of the paramagnetic divalent ion manganese (Mn2+)
enhances MRI contrast in vivo. Due to similarities between Mn2+ and calcium (Ca2+),
the premise of manganese-enhanced MRI (MEMRI) is that the former may enter neurons
and other excitable cells through voltage-gated Ca2+ channels. As such, MEMRI has
been used to trace neuronal pathways, define morphological boundaries, and study
connectivity in morphological and functional imaging studies. In this article, we provide a
brief overview of MEMRI and discuss recently published data to illustrate the usefulness
of this method, particularly in animal models.
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Introduction

Magnetic resonance imaging (MRI) is an excellent non-invasive tool for providing anatomical infor-
mation of biological systems (1–6) due to its unique soft tissue contrast and relatively high-spatial
resolution.

With a large variety of MRI applications being proposed, great effort has been made to develop
contrast agents that may add physiological and/or molecular information to anatomical images (7).
Along this line, the potential use of the paramagneticmanganese ion (Mn2+), which induces a strong
reduction in both longitudinal (T1) and transversal (T2) relaxation times, has been investigated
(8). As Mn2+ has a high-chemical similarity with calcium (Ca2+), it may enter neurons and other
excitable cells through voltage-gated calcium channels and the Na+/Ca2+ exchanger (9).

Over the last decade, Mn2+ has been used as a contrast agent in various manganese-enhanced
MRI (MEMRI) applications. These may be grouped in three major classes: neuronal tract tracing
(10–14), morphological (15–18), and functional imaging (19–23). Typically, during neuronal tract-
tracing studies manganese is directly injected into a specific brain region (24–29). In other classes
of applications, this ion is administered either systemically into the bloodstream (30–39) or directly
into the cerebrospinal fluid (CSF) (40, 41).

Neuronal tract-tracing explores the transport of Mn2+ across synapses. In contrast, morpho-
logical and functional studies using MEMRI are dependent on local neuronal cell density, the
permeability of the blood–brain barrier, and neuronal activation (42). In Mn2+-based functional
MRI (fMRI), tissue contrastmay be correlatedwith activity-dependent ion accumulation in excitable
cells (43). As such, the contrast inMEMRI ismore directly related to neural activity then fMRI blood
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oxygenation level dependent (BOLD) (44, 45). Another advantage
is that Mn2+ uptake after systemic injections takes place over
an extended period of time in awake and freely moving animals
(46). As a result, only the MRI acquisition needs to be performed
under anesthesia. This is another advantage of MEMRI over
BOLD fMRI, which requires both stimuli and acquisition to be
performed under sedation.

A major drawback of the use of Mn2+ is the toxic side effects
observed at high concentrations (47–51). This is of concern as
high-Mn2+ tissue levels are often required to enhance the contrast
between structures (52–54). In fact, toxicity is one of the main
limitations for the full development of Mn2+ as an MRI contrast
agent for humans. Even in animal studies, there needs to be a
compromise between avoiding toxicity and delivering adequate
doses of manganese. The ultimate goal is to reduce systemic
side effects while guaranteeing animal well-being andmaximizing
contrast and imaging quality (8, 17, 55).

Several methodological developments have been recently pro-
posed to improve MEMRI as a technique to study functional
neural circuits and in vivo brain anatomy. In the present work, we
provide a brief overview of MEMRI and illustrate the potential
applications of this method in small animal models.

Manganese-Enhanced MRI

Historical Perspective
The first use of Mn2+ in nuclear magnetic resonance (NMR)
coincides with the early days of this technique (56). Together
with other ions, Mn2+ was employed in tests to measure the
exchange rate of bulk water molecules with those in the first
coordination sphere of paramagnetic ions (56). These findings
played an important role in our understanding and optimization
of water-exchange effects, a crucial step in the development of
efficient T1-shortening MRI contrast agents (57–59). Later, Mn2+

was also used in experiments that enabled quantitative structural
information to be obtained from biological molecules, which led
to the development of techniques to determine protein structure
using NMR (60).

Mn2+ has also been present since the earliest stages of MRI.
Lauterbur (61) has used MnSO4 to change the longitudinal relax-
ation time of water and prove that relaxation times could affect
signal intensity. This was an important step to demonstrate the
feasibility ofMRI, since, at that time, the techniquewas believed to
be limited due to the small variations of water density in biological
tissues (62). Mn2+ can then be considered as the first reported
MRI contrast agent. Since then, it has contributed to our under-
standing of relaxation effects in biological systems (63). These are
still considered to be helpful in establishing strategies to alter MRI
contrast with exogenous agents and are extremely useful, not only
in clinical practice but also in preclinical models (64, 65).

Dosage and Toxicity
The ion Mn2+ is essential for a normal development and cellular
function. Disruptions in manganese homeostasis in humans are
associatedwith neurological disorders, skin lesions, bone diseases,
and among others (66–68). Chronic exposure to this heavy metal
leads to manganism, a progressive neurodegenerative condition

that resembles Parkinson’s disease (47, 50, 69, 70). An acute over-
exposure to Mn2+, which happens when a high-systemic dose of
contrast agents is administered to patients, may result in cardiac
toxicity, hepatic failure, and even death (48, 49, 71).

As the MEMRI contrast is proportional to the accumulation
of tissue Mn2+ (52–54), the successful application of this tech-
nique depends on the delivery of appropriate ionic doses to the
regions of interest. The most common way for delivering Mn2+ is
through the injection of MnCl2 solutions (8). Depending on the
application, MnCl2 can be delivered directly into the brain. This
minimizes toxicity, since the exposure to lower doses of Mn2+ is
restricted to the injection site and adjacent regions. Though focal
toxicity may still occur (72), this approach has been successfully
used in several studies of neuronal tract tracing (24–29).

For systemic injections targeting the brain, MnCl2 can be
injected intravenously, intraperitoneally, or subcutaneously. So
far, all have been widely used, as there is no strong evidence
suggesting that one route is better or causes more toxicity than
the others (30, 31, 33–39). One of the major drawbacks of using
systemic injections is that, prior to reaching the brain manganese
reaches the liver, heart, and kidneys. This increases the risk of
acute toxic effects, including cardiac, renal, and liver failure.

In the intact brain [i.e., without blood–brain barrier (BBB)
breakdown], the time-course and distribution of MnCl2 varies
across brain regions (34, 73). Under these circumstances, con-
trast enhancement seems to reach its equilibrium 24 h following
administration. As this is particularly slow for brain activa-
tion studies, one strategy is to disrupt the BBB to accelerate
uptake (19, 43, 46). An alternative to avoid BBB disruption
(40, 41) is to administer MnCl2 directly into the CSF. In this
case, Mn2+ is uniformly supplied to the whole brain in a rea-
sonable timescale for a variety of chronic functional activation
studies.

The use of systemic fractionated injections (limited to small
daily doses) was proposed as an alternative for delivering high
doses of Mn2+ with fewer side effects in preclinical models (52,
53). A similar increase in contrast delivery with low toxicity
has been observed with the use of subcutaneous mini-osmotic
pumps (74). It is important to mention, however, that studies
using these techniques were designed to demonstrate alternative
ways of improving MRI contrast enhancement. Every attempt to
use similar protocols should take into account reported changes
in behavioral, neurochemical, electrophysiological, and histo-
logical signs of toxicity, especially when considering long-term
effects (75–78).

Routes of Administration
In general, the route of delivery (i.e., systemic or intracerebral) is
chosen based on the application. After the systemic administra-
tion, most Mn2+ likely reaches the brain through the blood–CSF
barrier (79), enhancing the visualization of the cerebral cytoarchi-
tecture and demarcating active brain regions. The focal cerebral
administration enables mapping of neuronal tracts in the living
brain, where Mn2+ is stored and transported along axonal tracts
(75). As already mentioned, MEMRI applications can be grouped
into three major classes: morphological (15–18), neuronal tract
tracing (6, 10–14), and functional imaging (19–23).
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In contrast to gadolinium-based agents that are typically
intravascular and remain in the cerebral vasculature,MEMRI con-
trast achieved after the systemic administration of Mn2+ comes
from the brain parenchyma itself. Mn2+ may enter the brain
basically through three different routes are as follows: (i) from
the bloodstream via a fast transport system in the choroid plexus.
Through this route,Mn2+ gets very rapidly into the CSF and brain
(80, 81); (ii) from the nasal space through the olfactory nerve via
olfactory epithelium (25, 82, 83); (iii) from the bloodstream across
the BBB at cerebral capillaries (84–87). In the intact brain,MEMRI
signal enhancement following Mn2+ administration begins in
the ventricles and periventricular regions prior to reaching more
distant areas of brain parenchyma (34, 80, 88).

Once in the brain, manganese may be transported along axons
(89) or across synapses (26). The time-course and distribution
of MnCl2 varies across brain regions (34, 73). Those with an
initial poor access to manganese may be supplied over time by
axonal transport from areas with a strong initial uptake (88).
Contrast enhancement seems to reach its equilibrium 24 h fol-
lowing administration. Thereafter, manganese has an extremely
slow clearance rate that can take up to 300 days, with a half-life
of 51–74 days in different brain regions, as shown by autoradiog-
raphy (90). MRI-based studies showed a reduced Mn2+ half-life
of 5–12 days, but not of the same magnitude (54, 91, 92). Since
the regional signal enhancement following manganese adminis-
tration is proportional to the propensity of each brain region to
uptake this metal, MEMRI is a powerful tool for visualizing brain
architecture.

Manganese Entrance into Excitable Cells
Overall, Mn2+ presents a high-chemical similarity with calcium
(Ca2+), being handled in an analogousmanner bymany biological
systems (93). This means that the Mn2+ can enter neurons and
other excitable cells through calcium pathways, such as voltage-
gated calcium channels and the Na+/Ca2+ exchanger (9, 86). In
addition, Mn2+ can bind to intracellular proteins and nucleic
acids. Once in the cell, Mn2+ accumulates in the endoplasmic
reticulum (25, 26), being subsequently packaged into vesicles and
transported anterogradely in axonal tracts. Upon reaching the
presynaptic membrane (27, 89), it is finally released and taken up
by the next neuron (25, 27). This property, along with the fact
that Mn2+ is MRI-detectable, has contributed to its labeling as an
in vivo trans-synaptic tracer.

Prior to MEMRI, tract-tracing studies employed invasive tech-
niques (94, 95), requiring tracers to be injected and animals sacri-
ficed in order for these agents to be visualized. A major limitation
of this methodology is that longitudinal studies cannot be carried
out in the same animals. As MEMRI can be conducted multiple
times, it has contributed to the in vivo temporal assessment of
connectivity and integrity of neuronal tracts in several animal
models (i.e., from small rodents to non-human primates) (13, 26,
28, 96).

The ability of manganese to be taken up via voltage-gated Ca2+

channels has not only been explored for non-invasive tract tracing
but also to functionally assess the rate of neuronal transport. This
latter plays a crucial role in the normal functioning of neurons.
In fact, perturbations in axonal transport and its machinery have

been associated with disease states, such as Alzheimer’s disease,
diabetes, as well as with normal aging (97–99). In contrast to
Mn2+, large tracer molecules may not accurately represent the
axonal transport in in vivo systems.

Activity-Induced Manganese MRI
The main concept underlying the use of MEMRI for the assess-
ment of neuronal activity is the fact that activated brain regions
have elevated Ca2+ influx through Ca2+ channels. As mentioned
before, in the presence of extracellular Mn2+ active regions will
have greater Mn2+ influx, since manganese competes with Ca2+

to enter the cells. Thus, the accumulation of Mn2+ is directly
related to brain activation and may provide information about
brain function. This approach, which has been named activity-
induced manganese MRI (46), led to the development of a
Mn2+-based fMRI technique. It differs from traditional methods,
because it does not take into account information on hemody-
namic fluctuations and deoxy-hemoglobin concentration. Hence,
the activity-induced manganese-dependent contrast (AIM) MRI
produces maps with better spatial localization than those pro-
duced by conventional fMRI (19).

A particular concern related to AIM MRI experiments is that
the Mn2+ cannot efficiently penetrate the BBB. The CSF route
is particularly slow for this purpose (87, 100) and the amount
of Mn2+ entering the brain is minimal compared to cases where
the BBB is disrupted. As a result, several AIM MRI studies have
been performed in conjunction with BBB disruption. On the
other hand, some studies showing activation of the auditory (22,
23) and visual pathways (30, 101) following auditory and visual
stimulation, respectively, were performed in mice without BBB
disruption.

An interesting aspect of AIM MRI is that, after BBB disrup-
tion and upon brain stimulation, Mn2+ accumulates in active
regions at a short time scale. Once accumulated, Mn2+ does not
leave these regions for several hours. This allows Mn2+ to be
delivered outside the scanner, while the animal is being freely
moving or carrying out behavioral tasks. When compared with
conventional fMRI protocols, this represents a new horizon in
terms of functional evaluation. One of its disadvantages, how-
ever, is the intrinsic temporal resolution of the technique, which
prevents the assessment of rapid changes in activity, particularly
tissue deactivation (102). Besides providing valuable information
to answer physiological questions, AIM MRI was proven to be an
important tool for the study of spatial BOLD signal changes in the
cortex (19, 45, 103, 104). This is particularly important because
BOLD is the MRI-based “gold standard” method for measuring
brain activity in humans and several methodological questions
still remain to be addressed.

MEMRI: Recent Applications
in Experimental Animal Models

Over the last years, MEMRI has been extensively used in neu-
rosciences. Studies using this technique have addressed neuro-
physiological and neuroanatomical problems in animal models of
nociception (105, 106), neurodegeneration (35, 36, 99, 107–111),
and psychiatric disorders (112).
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Activity-Dependent Signaling
In animals, MEMRI has been used to determine high versus low
activation of brain areas after specific stimuli or in models of
brain disease. One example is the sequence of activation of the
hypothalamic paraventricular nucleus, supraoptic nucleus, and
preoptic area, which are thought to be involved in central osmotic
regulation after intracarotid injection of hypertonic NaCl (113).
In another study, mice exposed to an odorant showed localized
T1 MRI signal enhancements in the olfactory epithelium and
bulb (25). MEMRI has also been shown to be effective for map-
ping the mouse auditory brainstem (22). Chronic tinnitus (the
perception of sounds in the absence of acoustic stimulation) in
rats was associated with elevated focal activity in the auditory
brainstem (114). On the other hand, a reduction in Mn2+ uptake
was demonstrated in the rodent visual cortex in depression-like
states (sickness behavior) induced by interferon-α (IFN-α), which
was related to altered local functionality (112).

Epilepsy
At first sight, these results may suggest a positive correlation
between MEMRI enhancement and cell activation. However,
other factors, such as tissue edema, neurodegeneration, and cell
density (8),may also determine signal changes, as shown in animal
models of epilepsy. Several rodents and non-human primatemod-
els have been used to study cellularmechanisms that underlie tem-
poral lobe epilepsy (TLE), including those following pilocarpine,
kainic acid (115–121), and pentylenetetrazol injections (122). In
these models, status epilepticus (SE) represents an acute phase,
after which the animals enter the silent period that ends with
the occurrence of spontaneous recurrent seizures (chronic phase).

The temporal sequence and the neuropathological alterations that
characterize these chronic models resemble those observed in
human TLE. In rodents, the acute phase of the kainic acid model
is characterized by a poorly defined MEMRI signal in areas with
high-cellular activity (i.e., hippocampus) (107, 108). A possible
explanation for this finding is that the MEMRI signal may have
been obscured by cell damage that occurs at this early phase,
especially when SE lasts more than 30min. Similar results have
been shown during the acute phase of the pilocarpine model (35,
109), even when SE lasted only from 5 to 30min (Figure 1). A
proposed mechanism to explain this finding is that reductions in
MEMRI signal could be related to hippocampal cell edema rather
than apoptotic cell death (35). Both edema and cell death have
to be taken into account when one is planning to map active or
inactive brain areas with MEMRI.

Asmentioned above, both the kainic acid and pilocarpinemod-
els exhibit spontaneous recurrent seizures in the chronic phase,
which, as described in humans, are accompanied by hippocampal
sclerosis and mossy fiber sprouting (MFS) (115, 116, 123, 124).
MRI has been largely used to study the chronic phase of TLE,
since it allows a non-invasive longitudinal follow up using differ-
ent approaches. These include anatomical imaging for evaluating
hippocampal and amygdala volumetric changes (110, 125–128)
and relaxometry for estimating relaxation times changes in dif-
ferent brain areas (i.e., hippocampus, amygdala, piriform cortex,
and/or thalamus) (127, 129–131). Longitudinal studies may also
be used to evaluate changes in spectroscopy so that biochemical
changes may be characterized. As an example, the hippocampi of
lithium–pilocarpine-treated rats have reduced N-acetylaspartate
(NAA) and choline (Cho) peaks, as well as an increase in lactate

FIGURE 1 | Hippocampal MEMRI in pilocarpine injected animals, at
different time points after status epilepticus (SE): 5 (SE 5min), 15 (SE
15min), and 30min (SE 30min). T1-weighted MEMRI images (A,C) and
MEMRI data (B). Regions of interest (ROIs) drawn in hippocampal sub regions,

including the DG (dentate gyrus), CA1 and CA3 (Cornu Ammonis), are
represented in (A). The DG was enlarged and converted from gray into a
colored scale in (C) to show differences between non-epileptic controls and the
SE 30 group (*P<0.01). Reproduced with permission from Malheiros et al. (35).
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FIGURE 2 | T1-weighted MEMRI (A–C) and representative
photomicrographs (D–F) of pilocarpine-chronic epileptic rats
(Pilo-treated) with no mossy fiber sprouting (MFS, left panel),
Controls (middle panel), and Pilo-treated MFS-positive (right panel)
animals. The dentate gyrus in MEMRI (A–C) was enlarged and converted
from a gray into a colored scale. Pilo animals showed MFS in the

supragranular layer (s, black arrowheads) and MEMRI hyperintensity in the
DG. Similar abnormalities have not been detected in either epileptic
animals with no MFS or controls. MRI data from the three groups were
normalized to the muscle signal intensity to minimize possible signal
differences. Scale bars= 50µm. Reproduced with permission from
Malheiros et al. (36).

compared to non-epileptic controls (131). Besides these MRI
approaches,MEMRI is used as amolecular imaging technique (35,
36, 107–110). The focal and systemic administration of MnCl2
results in an increased hippocampal dentate gyrus MEMRI sig-
nal in kainic acid (108, 110) and pilocarpine-chronic epileptic
rats (36). In these animals, signal changes correlates with aber-
rant MFS.

The relationship between MFS and MEMRI hyperintensity
in pilocapine animals can be observed in Figure 2. Chronic
pilocarpine rats that show aberrantMFS also showMEMRI hyper-
intensity. These signal changes have not been observed in pilo-
carpine animals in which MFS was suppressed by cycloheximide,
suggesting that (1) MEMRI is able to detect hippocampal changes
during the course of epileptogenesis and (2) a relationship exist
between manganese enhancement and spontaneous seizure out-
come (132). From the above-mentioned results, we conclude that
MEMRI is a useful tool to follow important aspects related to
neuronal plasticity, including those related to aberrant MFS and
spontaneous recurrent seizures. Unfortunately, however, MEMRI
may not be useful to study-activated areas during the acute phase
of these models, as injury-related edema interferes in the signal.

Pain
In pain-related studies, MEMRI has been used to delineate func-
tional connections between cortical and non-cortical areas; elec-
trical stimulation of the left forepaw increased MEMRI signal
in the contralateral anterior cingulate cortex, midcingulate cor-
tex, retrosplenial cortex, ventralmedial caudate-putamen, nucleus
accumbens, and amygdala. Of those, signal changes in the retros-
plenial cortex were attenuated by morphine injections (106). The

efficacy of MEMRI to trace anatomical connections was indeed
confirmed by Mn2+ transportation from the medial thalamus
to the cingulate cortex and medial striatum, but not the motor
cortex (106).

A recent study has shown reduced reactivity to thermal pain
in the dorsal spinal cord following repeated amphetamine injec-
tions (133). The authors showed a temporal correlation between
reduced pain sensitivity and increased MEMRI signals in the
dorsal horn following repeated amphetamine administration.
MEMRI has also been valuable in demonstrating the involvement
of the hippocampus in the processing of pain during early devel-
opment (105). As shown by different studies, noxious stimulation
of newborn rats not only causes sex-specific long-term effects on
the natural behavioral repertoire during adulthood (35, 134–136)
but also dentate hippocampal cell activation.

In a rat model of pruritus, MEMRI has been used to investigate
brain regions activated during itching. These were the parafascic-
ular thalamic nucleus, superior/inferior colliculus, periaqueductal
gray, cingulate cortex, amygdala, midbrain regions, lateral habe-
nula, and hypothalamic areas (137). Gabapentin-treated itching
rats decreased scratching behavior and had an attenuation of
functional activity in the brain regions described above. Together,
these results suggest that MEMRI hyperintensity is related to
stimulus-induced activation of specific brain regions and that
this techniques may be used as a strategy for understanding
mechanisms of pain-related diseases.

Axonal Transport
Axonal transport is an essential physiological function. Its disrup-
tion severely interfere with neuronal viability and leads to distinct

Frontiers in Neurology | www.frontiersin.org July 2015 | Volume 6 | Article 1615

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


Malheiros et al. MEMRI in neuroscience

neurological disorders. As an example, axonal transport impair-
ment occurs at the onset of optic neuritis in an experimental
murine model of autoimmune encephalomyelitis (EAE). Using
the MEMRI technique, it was demonstrated that Mn2+ accumu-
lation and axonal transport were significantly decreased not only
in these animals (138) but also in rTg4510mice, which comprise a
model of fronto-temporal dementia and parkinsonism (139). In a
mousemodel of Alzheimer’s, axonal transport rates were shown to
be reduced as soon as amyloid-beta (Aβ) deposition begins. This
reduction becomes evenmore pronounced after plaque formation
(99). In this particular case,MEMRI showed that in vivo reduction
in axonal transport can be detected prior to plaque formation.

Mechanisms of Pathological Mn2+ Enhancement
Bearing in mind that Mn2+ enters neurons through Ca2+ chan-
nels and is transported along axonal transport systems, MEMRI
has been used to trace the recovery of neuronal connectivity in
experimental models of stroke (111). According to the authors,
loss or dysfunction of neuronal connections, even outside the
ischemic lesion, may explain the lasting impairment of function.
Systemic Mn2+ injections in the acute phase of neonatal mild
hypoxic–ischemia provide an enhanced MEMRI signal indicative
of cortical gray matter lesion. This would be otherwise unde-
tectable with conventional MRI techniques (140–142). In the late
phase of the hypoxic–ischemia model, MEMRI signal was intense
in the dorsolateral thalamus, hippocampus, and the remaining
cortex of the injured hemisphere. This was co-localized with

reactive astrocytes, dying neurons, and activatedmicroglia on his-
tological analysis. MEMRI enhancement in this study had higher
correlation with activated microglia (suggesting inflammatory
process) than with dying cells (143).

Conclusions
Based on the above-mentioned studies, MEMRI may be con-
sidered as a powerful approach for in vivo studies to determine
stimulus-dependent brain areas of activation, axonal transport,
neuronal connectivity, and brain lesion in several experimental
animal models. However, few challenges still have to be overcome
so that researchers may take full advantage of all the benefits
that this technique has to offer. Since dose-related toxicity is a
major concern, there is a need to develop and further refine
MRI pulse sequences in order to make them more sensitive to
small changes in relaxation times. Also, it is important to develop
better strategies to deliver the Mn2+ to the region of interest,
reducing the risk of side effects after systemic MnCl2 injections.
The combination of all of these aspects will likely allow MEMRI
to be an evenmore powerful, versatile, and useful tool for modern
neurosciences studies.
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