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Aim. /e incidence of ulcerative colitis (UC) is increasing steadily in developed countries, it is plaguing nearly 1 million people in
the United States and European countries, while developing countries have had a rapidly increased incidence over the past
decades. Curcuma is widely used in treating malaria, UC, Crohn’s disease, and colon cancer, which lead to diarrhea and bloody
stool. However, the systemic mechanism of curcuma in treating UC is still unclear. Our work was supposed to expound how does
curcuma alleviate UC in a comprehensive and systematic way by network pharmacology, molecular docking, and experiment
verification.Methods. Traditional Chinese Medicine System Pharmacology Database (TCMSP), Shanghai Chemistry & Chemical
Industry Data Platform (SGST), and papers published in Chinese Network Knowledge Infrastructure (CNKI) and PubMed were
used to collect the chemical constituents of curcuma based on ADME (absorption, distribution, metabolism, and excretion). And
effective targets were predicted by Swiss Target Prediction to establish the curcuma-related database. /e disease targets of UC
were screened by GeneCards and DrugBank databases, and Wayne (Venn) analysis was carried out with curcuma targets to
determine the intersection targets. AutoDock software and TCMNPAS systemwere used to dock the core chemical components of
curcuma with key UC targets. Protein interaction (PPI) network was constructed based on the STRING database and Cytoscape
software. Gene function GO analysis and KEGG pathway enrichment analysis were carried out by using Metascape database.
Finally, HE staining was performed to identify the inflammatory infiltration and expression difference in TNF-α and STAT3
before and after the treatment of curcuma which was verified by immunoblotting. Results. Twelve active components containing
148 target genes were selected from curcuma. Potential therapeutic targets of curcuma in the treatment of UC were acquired from
54 overlapped targets from UC and curcuma. Molecular docking was used to filter the exact 24 core proteins interacting with
compounds whose docking energy is lower than −5.5 and stronger than that of 5-aminosalicylic acid (5-ASA). GO and KEGG
analyses showed that these targets were highly correlated with EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling
pathway, JAK-STAT signaling pathway, MAPK signaling pathway, and inflammatory bowel disease (IBD). Experiments verified
curcuma relieved pathological manifestation and decreased the expression of TNF-α and STAT3. Conclusion. Curcuma relieved
the colon inflammation of ulcerative colitis via inactivating TNF pathway, inflammatory bowel disease pathway, and epithelial cell
signaling in Helicobacter pylori infection pathway, probably by binding to STAT3 and TNF-α.
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1. Background

UC is characterized by abdominal pain, diarrhea, and bloody
stool [1]. Globally, the annual incidence of UC is about 9–20/
100,000 and the prevalence is 156–291/100,000 [2]. How-
ever, the exact pathogenesis is still not fully clear for the
etiology is prototypically diverse. It is known that many
factors are involved in the development of UC, interacting
environmental, genomic, microbial, and immunological
elements [3]. With the deterioration of UC, it will eventually
lead to colorectal cancer. /erefore, to prevent before the
occurrence of UC, to avoid the complications of UC, and to
prevent the recurrence of UC after recovery, a new treatment
is urgently needed.

TCM is gaining its popularity in the ameliorating sub-
health state and treating disease. Much more attention has
been focused on the treatment of UC by Chinese herb;
curcuma is one of the popular ones. In ancient China,
curcuma was widely used to invigorating the circulation of
blood in clinical applications; nowadays, the function of the
positive regulation of inflammatory cytokines in inflam-
matory diseases [4] and its safety [5] attracted many more
clinical trials and experimental verifications.

It is well known that TCM is guided by the theory of
TCM and characteristics of being multicomponents, mul-
titargets, and multipathways in the treatment of diseases,
which meets the requirements of systematically tackling
complex diseases such as colorectal cancer. Guo et al.
established the model of colorectal cancer and predicted the
traditional Chinese medicine components of inhibiting
inflammation-induced tumorigenesis by using network
pharmacology method [6]. Gupta et al. gathered curcumin’s
pleiotropic activities frommany research studies to conclude
its ability to modulate numerous signaling molecules such as
proinflammatory cytokines, apoptotic proteins, cyclo-
oxygenases, and C-reactive protein in human participants
[7]. To improve the “one target and one drug” mode to
“network targeting multicomponent” mode and to discover
traditional Chinese medicine from the perspective of system
and molecular level [8], a systemic overall approach of
curcuma in the treatment of UC is still needed to verify the
previous results and broaden the mechanism of curcuma in
the treatment of UC.

2. Methods

2.1. Network Pharmacology

2.1.1. Active Compound Screening. Traditional Chinese
Medicine System Pharmacology Database [9] (TCMSP,
http://lsp.nwu.edu.cn/tcmsp.php), Shanghai Chemistry &
Chemical Industry Data Platform (SGST, http://www.
organchem.csdb.cn), and papers published in Chinese
Network Knowledge Infrastructure (CNKI, https://www.
cnki.net/) and PubMed were used to collect the chemical
constituents of curcuma. We screened curcuma compounds
based on absorption, distribution, metabolism, and excre-
tion (ADME) [10], and pharmacokinetic information re-
trieval filters were used to retrieve bioactive compounds for

further analysis under the conditions of OB≥ 30% and
DL≥ 0.18 in TCMSP [9]. We further screen the active in-
gredients by their effects on the human body. However, the
compounds were searched from CNKI, PubMed, and SGST
without ADME parameters, so we obtained chemical for-
mula of those components from PubChem (https://
pubchem.ncbi.nlm.nih.gov/) to finish Swiss ADME pre-
diction [11], which was requested that OB degree was equal
to HIGH and at least two terms of druglikeness were YES
[12].

2.1.2. Screening of Possible Targets for Curcuma.
PubChem was used to search the chemical structures of the
active compounds. Potential targets of curcuma were pre-
dicted by Swiss Target Prediction (STP, http://www.
swisstargetprediction.) [11]. Probability was used to bal-
ance the connection between compounds and targets, which
was closer to 1, and it was more connective. We screened
targets by the median of probability to establish potential
target database related to curcuma.

2.1.3. Predicting the Possible Targets of UC. Data of UC-
associated target genes were gathered from GeneCards
(https://www.genecards.org/) [13] and DrugBank [14]
(https://www.drugbank.ca/) with the keyword “ulcerative
colitis.” In addition, articles published in CNKI and PubMed
about the known targets of its active compounds were
counted [15]. Genes from GeneCards were provided with
scores, and genes were selected as UC-related ones whose
scores were above the median degree [16].

2.1.4. Gathering Compound-Disease Overlapped Targets.
/e screened curcuma targets and UC targets were imported
into Bioinformatics [17] (http://www.bioinformatics.com.
cn/), and the overlapped targets of compound-disease
were obtained as the potential targets for further analysis.

2.1.5. PPI Network of Compound-Disease Overlapped Targets.
Protein-protein interaction (PPI) network was derived based
on the STRING database (https://string-db.org/), which
covered almost all functional interactions between the
expressed proteins [18]. Species were set as “Homo sapiens,”
and the target interaction information was obtained
according to the results of analysis.

2.1.6. Gene Ontology (GO) and KEGG Pathway Enrichment
Analysis. /e biological process (BP), molecular function
(MF), cell component (CC), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis
were carried out using Metascape system (https://metascape.
org/) [19]. In this research, GO functional annotation and
KEGG pathway enrichment analyses were performed using
the P value less than 0.05.

2.1.7. Construction of Active Component-Target-Pathway
Network. A visual network was constructed through
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Cytoscape software to reflect the complex relationship be-
tween active compounds, filtrated targets [17], and pathways
based on KEGG pathway enrichment analysis to reflect the
relationship between top pathways, included targets, and
active compounds. Nodes represented the compounds,
targets, and pathways, while edges indicated the interactions
between pathways, targets, and components potentially
included in the treatment of UC by curcuma.

2.2. Molecular Docking. Using TCMNPAS system [20] and
AutoDock [21] software, the docking energy between the
overlapped proteins and chemical ingredients of curcuma
was calculated. Between the component and the target by
docking score value the binding activity should meet two
standards: bind tighter than 5-ASA and binding energy was
lower than −5.5 to further filtrate the targets related to the
treatment of UC by curcuma.

2.3. Experiment Verification

2.3.1. Drugs and Reagents. Curcuma (TCM Pharmacy of
Longhua Hospital of Shanghai University of Traditional
Chinese Medicine), DSS (MP Biomedicals, USA), absolute
ethyl alcohol, Tween-20, xylene substitute (Sinopharm
Group Chemical Reagent Co. Ltd.), RIPA Lysis buffer,
PMSF, BSA, BCA Protein Quantitation Kit (Beyotime),
PAGE gel rapid preparation kit, Multicolor Restrained
Protein Ladder (Shanghai EpiZyme Biotechnology Co.,
Ltd.), β-actin, anti-STAT3 antibody, anti-TNF-α antibody
(Abcam Company, England), HE dyeing (Shanghai Yixin
Biotechnology Co., Ltd.), and neutral gum (Shanghai Yiyang
Instrument Co., Ltd.) were used.

2.3.2. Consumables. Homogenized tube, ceramic beads,
frozen storage tube (Shanghai Yike Biotechnology Co., Ltd.),
centrifuge tube (Axygen Company, USA), PVDF membrane
(Millipore Company, USA), and 96-well plate (Eppendorf
Life Sciences Corporation) were used.

2.3.3. Instruments. H2050r high-speed refrigerated centri-
fuge (Hunan Xiangyi Company), MIX-S vortex mixer,
shaker oscillator (Shiloh, USA), TGear mini centrifuge
(Tiangen), heatingmagnetic agitator (Dalong, Beijing), SIM-
F140 ice maker (Sanyo, Japan), electronic balance (Sartorius,
Germany), enzyme labeling instrument (BioTek, USA),
tissue grinding homogenizer (MP Biomedicals, USA),
electric constant temperature blast drying oven (Jinghong,
Shanghai), electrophoretic system, transfer system, glue
rack, ultralow-temperature freezer (SANYO, Japan), mi-
crotome (Laika, Germany), and TKY-BMB, electro-
thermostatic water bath (Hualida).

2.3.4. Animals. Healthy male Sprague Dawley (SD) rats,
weighing 180± 20 g, were provided by Charles River Ex-
periment Technology Co., Ltd., and the certificate number is
SCXK (Hu) 2017-0005. /e rats were housed in the animal

room of Shanghai University of Traditional Chinese
Medicine.

2.3.5. Preparation of Curcuma. /e native herb was selected,
and standard decoction pieces were prepared with reference
to the Chinese Pharmacopoeia (2015 edition). Extract was
prepared by boiling the samples in 8 times amount of water
for 30min. /e procedure was repeated 3 times.

2.3.6. Groups and the Construction of the UCModel. SD rats
were accepted to the laboratory for 7 days before the ex-
periments. According to the random number table, the rats
were divided into 3 groups of 4 rats each: control, model, and
curcuma. Except for the control group, the UC model was
prepared with 5% DSS, and the intervention was given
according to the group after 7 days.

2.3.7. Drug Administration. /e curcuma group was ad-
ministered continuously by gavage with 2ml 0.1 g/ml cur-
cuma suspension for 7 days. /e other two groups were
given saline 1.08 g/kg.

2.3.8. HE Staining and Western Blot. /e steps to stain the
samples are as follows: xylene I and xylene II, 10min for
each; 100% alcohol I, 100% alcohol II, 95% alcohol, and 85%
alcohol, 5min for each; water washing for 20 s, hematoxylin
for 7min, water washing for 1min, 1% hydrochloric acid
alcohol for 10 s, 50°C water washing for 5min, eosin stain for
2min, and water washing for 10 s; 85% alcohol, 95% alcohol,
100% alcohol II, and 100% alcohol I, each for 2min; and
xylene II and xylene I, 3min for each. Neutral balsam was
added after xylene was passerillaged.

For protein extraction, tissues were placed in homoge-
nized tubes; 5 porcelain beads, 500 μL of RIPA, and 5 μL
PMSF were added to each tube. After five times’ homoge-
nization, the colon tissue was basically broken. /e super-
natant was extracted after centrifugation to test the protein
concentration and to collocate protein solution. Equivalent
amounts of protein (200 μl) were denatured at 98°C for
10min in sample loading buffer, then separated by elec-
trophoresis in 15% gel, and electrotransferred onto 0.45 μm
polyvinylidene difluoride membranes for 60min at 350mA.
Subsequently, the membranes were blocked in blocking
buffer (0.01M phosphate-buffered saline, 0.05% Tween-20
with 5% skim milk) at 25± 5°C, followed by incubation with
primary antibodies against STAT3 (1 : 5000) and TNF-α (1 :
5000) at 4°C overnight. After being washed with Tris-
buffered saline containing Tween-20 (TBST) for 5min three
times, the membranes were incubated with a horseradish
peroxidase-conjugated secondary antibody for 1 h at room
temperature. After the membranes were washed three times
in TBST for 20min each time, the bands were visualized on
X-ray film using an enhanced chemiluminescence western
blotting (WB) detection system. /e Image Lab™ software
was used for quantitative analysis.
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2.3.9. Ce Whole Workflow of Network Pharmacology
Strategy. /e workflow of this study is summarized in
Figure 1. We built the ingredient-target collection of
curcuma and UC-related genes, respectively. /e over-
lapping targets of curcuma and UC were subsequently
identified using molecular docking. And the PPI network
was constructed according to the targets. Further, the gene
ontology (GO) and the Kyoto encyclopedia of genes and
genomes (KEGG) pathway enrichment analyses were
performed and also compound-target-pathway network
was executed. Next, we performed animal experiments to
verify the remission of UC by admitting curcuma through
HE staining and immunoblotting. Last, key pathways were
analyzed to elucidate the mechanism of curcuma in the
treatment of UC.

3. Results

3.1. Active Compounds and Targets of Curcuma. TCMSP
database, SGST, and articles published in CNKI and
PubMed were used to gather the active components and
targets, and 13 potential ingredients were discovered from
curcuma (Table 1). We excluded 1,7-bis(4-hydroxy-3-
methoxyphenyl)-1,4,6-heptadiene-4-one and determined
that 12 active components out of 13 can produce platelet
aggregation and other functions in the human body,
through literature review [24, 25]. Furthermore, 148 targets
were affirmed through PubChem and Swiss Target
Prediction.

3.2. Searching the Potential Disease Targets. We obtained the
curcuma-related targets from GeneCards (whose relevance
score is above the median point) and the ones from
DrugBank, CNKI, and PubMed (Table S3). /en the
searched results were overlapped with UC targets to obtain
the UC-related disease protein targets (Figure 2). Fifty-four
potential targets were obtained based on the degree of
correlation between curcuma and UC, and their detailed
information is shown in Table 2.

3.3.MolecularDocking. We input 54 potential genes into the
PDB database (http://www.rcsb.org/) to query their PDB ID
[26]. /en, we downloaded the molecular structure of the 12
effective compounds of curcuma in the treatment of UC in
ZINC database [27] (http://zinc.docking.org/). Molecular
docking was progressed in TCMNPAS to calculate the
docking score./e interaction strength between compounds
and gene corresponding proteins can be expressed by
docking fraction, and the lower the score is, the higher the
interaction intensity is. Further, we docked the 54 potential
targets with 5-ASA. As shown in Figure 3, the 24 proteins
whose docking energy with curcuma compounds matched
two standards, the docking energy was above that of 5-ASA
and lower than −5.5, were picked for further network
analysis.

3.4. Establishment of PPI Network. /e molecular docking
filtered 24 core targets for curcuma in the treatment of UC.

Curcuma

Swiss Target 
Prediction

148 targets

Ulcerative colitis

DrugBank
and

GeneCards

1144 UC- 
related targets

PPI 
network

GO and KEGG
pathway

Compound-target-
pathway network

Molecular docking

Pathways analysis

Druglikeness ≥ 0.18
oral bioavailability ≥ 30%

54 overlap
targets

SGST

12 active compounds

TCMSP

Database building

Network analysis

Mechanism

24 core
targets

Experimental verification
HE staining and western bolt

Figure 1: /e workflow of the study. Chemical constituents of curcuma were collected from TCMSP, SGST, CNKI, and PubMed based on
druglikeness and oral bioavailability. /e active compounds were collected further and imported into Swiss Target Prediction to get protein
targets of curcuma./en, we obtained UC-related genes from GeneCards and DrugBank, and coincident genes from curcuma and UC were
collected for molecular docking to filter the proteins binding with compounds stronger than 5-ASA. PPI network was carried out by using
the STRING database. GO and KEGG pathway analyses were performed by Metascape, and compound-target-pathway network was
executed by Cytoscape. Further experimental verification and pathway analysis were carried out to interpret the mechanism.

4 Evidence-Based Complementary and Alternative Medicine

http://www.rcsb.org/
http://zinc.docking.org/


Table 1: Basic information for curcuma compound ingredients.

CAS Molecule name Structure OB (%)/GI
absorption Druglikeness

474-62-4∗ Campesterol

OH
H

H

H

H 37.58 0.71

57-88-5∗ CLR

OH

H

H

H

H 37.87 0.68

83-48-7∗ Stigmasterol

OH

H

H

H

H 43.87 0.76

76474-56-1▲ Dihydrocurcumin
OH

O

HO

O

o o

High 0.55

22608-12-4▲ Bisdemethoxycurcumin
OH

O

HO

O

High 0.55

22608-11-3▲ Demethoxycurcumin OH

O

HO

O

o

High 0.55

458-37-7▲ Curcumin
OH

O

HO

O

oo

High 0.55

87440-60-6▲ Curlone H

O

High 0.55

21698-40-8▲ Procurcumenol O

H

H OH

High 0.55

83-46-5▲ Beta-sitosterol

OH

H

H

H

H High 0.55

2309-07-1☆ Methyl ferulate [22]
OH

O
O

O

High 0.55

121-33-5☆ Vanillin [22]
OH

O
O

High 0.55

NA☆ 1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,4,6-
heptadiene-4-one [23]

OH

O

HO

O
CH3

High 0.55

∗Ingredients searched from TCMSP. ▲Ingredients searched from SGST. ☆Ingredients searched from CNKI and PubMed.
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/en, the 24 genes were uploaded into the STRING database
for analysis. We selected protein targets with a medium
confidence score of 0.400 and the selected protein targets
were plotted as an interaction network. /e network of
protein-protein interactions (PPI) was established through
the STRING database. As shown in Figure 4, 47 nodes and
274 edges were contained in the network; in detail, the
average node degree is 12.5. Nodes represented the core
targets and the extended targets, edges represented the
connection between the genes, and the degree value rep-
resented the association intensity.

3.5. Gene Ontology Enrichment Analysis and KEGG Pathway
Enrichment. We imported the selected potential 25 target
genes into theMetascape system for GO and KEGG pathway
enrichment analyses. /e results revealed that the functions
of these potential targets were related to many biological
processes, molecular functions, cellular components, and
pathways, which were of crucial importance in the devel-
opment and treatment of UC. A total of 886 biological
processes were enriched based on P< 0.05, such as cellular
response to lipid, response to oxygen levels, and regulation
of inflammatory response (Figure 5(a)). A total of 58 mo-
lecular function GO terms were enriched (Figure 5(b)).
/ese targets of molecular function mainly involved nuclear
receptor activity, transcription factor activity, steroid hor-
mone receptor activity, and many genes related to the
molecular functions described above. In all, 18 cell com-
ponent GO terms were enriched (Figure 5(c)). /e targets
were closely related to RNA polymerase II transcription
factor complex, transcription factor complex, nuclear
transcription factor complex, and membrane raft, and many
targets were ranked highly as potential related genes. /e
biological processes, molecular functions, cellular compo-
nents, and pathways revealed the vital role of curcuma in the
treatment of UC.

To further reveal the potential mechanism of curcuma on
the effect of UC, we conducted KEGG pathway enrichment
analysis on 24 targets and screened out 95 pathways based on
the threshold of P< 0.05(Figure 5(d)). Numerous pathways
for potential target genes were identified, such as epithelial

cell signaling in Helicobacter pylori infection related to
misregulation of intestinal flora. TNF signaling pathways
and inflammatory bowel disease (IBD) are closely related to
the inflammatory reaction process. p53 signaling pathway is
included in the pathways in cancer. Moreover, MAPK
signaling pathway and TGF-beta signaling pathway play a
crucial role in immunological stress. In addition, we found
some other pathways such as endocrine resistance, hepatitis
B, serotonergic synapse, and longevity regulating pathway,
which revealed that curcuma has a potential application in
other related diseases. /e KEGG pathways verified that
curcuma cured UC by regulating gut microbiota, inflam-
matory process, immunization, and inflammatory reaction.

3.6. Component-Target-Pathway Network. To view the re-
lationship between the components, common targets, and
their corresponding pathways, a target-pathway network
was constructed (Figure 6). Twenty pathways, 47 core
common targets, and 12 active compounds were connected.
/e network contained 88 nodes and 628 edges, in which the
green colored circles represented the core common targets,
the compounds colored in blue were pathways that contain
the targets, and yellow nodes were effective components in
curcuma. /e pathways with more targets were pathways in
cancer, EGFR tyrosine kinase inhibitor resistance, endocrine
resistance, and HIF-1 signaling pathway, which correspond
to 12, 8, 8, and 8 targets, respectively. /e result suggested
that these four pathways probably played significant ther-
apeutic roles.

3.7.HEStainingand theEffect ofCurcumaon theExpressionof
Key Protein in the Colon of UC Rats. According to the HE
staining (Figure 7), DSS could change the crypt structure
and inflammatory infiltration in the model rats, which were
characterized by the distortion and branch of crypt struc-
tures, loss of goblet cells, appearance of a large number of
crypt abscesses, lymphocytes, and plasmacyte. /e above
results indicated that curcuma could ameliorate DSS-in-
duced UC in terms of colon histopathological changes.

Compared with the control group, the protein expres-
sion of STAT3 and TNF-α in the colon samples of the model
group was significantly increased (P< 0.01). Compared with
the model group, the curcuma group can reduce the ex-
pression of STAT3 and TNF-α (P< 0.05) (Figure 8).

4. Discussion

UC is one of the autoimmune diseases affecting northern
Europe, Canada, and Australia [28]. /e occurrence and
development of UC are related to commensal microflora,
antigen recognition, dysregulation of immunological re-
sponses, leucocyte recruitment, and genetic factors [29]. A
large number of murine experiments and clinical tests have
been performed to identify the bright prospects for the
treatment of UC by curcuma, and TNF-α and STAT3 are
two research hotspots. It was reported that curcumin and
semibionic extraction of compound turmeric can inhibit the
proinflammatory signaling by STAT3 and TNF-α in

GeneCards

4

54
14

19

25

76 1032

DrugBank

Curcuma

Figure 2: Matching of target genes between UC and curcuma.
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experimental colitis [30, 31]. Similarly, clinical research
studies verified that curcumin inhibits NF-κB expression by
regulating tumor necrosis factor-α (TNF-α) in humans [5].
Further, meta-analyses identified that curcumin have the

potential to induce and maintain remission in UC patients
with no serious side effects [28].

/e 12 found core compounds not only have anti-im-
mune and anti-inflammation effects but also have the effect

Table 2: Information on potential targets and the topological attributes.

No. Gene name Protein name UniProt ID Degree
1 AKT1 AKT serine/threonine kinase 1 P31749 43
2 EGFR Epidermal growth factor receptor P00533 35
3 TNF Tumor necrosis factor P01375 35
4 STAT3 Signal transducer and activator of transcription 3 P40763 33
5 PTGS2 Prostaglandin-endoperoxide synthase 2 P35354 32
6 MMP9 Matrix metallopeptidase 9 P50281 31
7 ESR1 Estrogen receptor 1 P03372 25
8 EP300 E1A-binding protein P300 Q09472 23
9 TLR4 Toll-like receptor 4 O00206 23
10 PPARG Peroxisome proliferator-activated receptor gamma P37231 20
11 SERPINE1 Serpin family E member 1 P05121 18
12 CDK4 Cyclin-dependent kinase 4 P11802 14
13 NR3C1 Nuclear receptor subfamily 3 group C member 1 P04150 14
14 CDK1 Cyclin-dependent kinase 1 P06493 13
15 CDK2 Cyclin-dependent kinase 2 P24941 13
16 MMP3 Matrix metallopeptidase 3 P08254 13
17 ADAM17 ADAM metallopeptidase domain 17 P78536 12
18 CHEK1 Checkpoint kinase 1 O14757 12
19 LCK LCK proto-oncogene, Src family tyrosine kinase P06239 12
20 MMP13 Matrix metallopeptidase 13 P45452 12
21 CXCR2 C-X-C motif chemokine receptor 2 P25025 11
22 MMP14 Matrix metallopeptidase 14 P50281 11
23 MMP7 Matrix metallopeptidase 7 P09237 11
24 RPS6KB1 Ribosomal protein S6 kinase B1 P23443 11
25 CA9 Carbonic anhydrase 9 Q16790 10
26 NOS2 Nitric oxide synthase 2 P22894 10
27 PTGS1 Prostaglandin-endoperoxide synthase 1 P23219 10
28 TLR9 Toll-like receptor 9 Q9NR96 10
29 ALOX5 Arachidonate 5-lipoxygenase P09917 9
30 MET MET proto-oncogene, receptor tyrosine kinase P08581 9
31 MMP8 Matrix metallopeptidase 8 P22894 9
32 RAF1 Raf-1 proto-oncogene, serine/threonine kinase P04049 9
33 AURKA Aurora kinase A O14965 8
34 BCL2 BCL2 apoptosis regulator P10415 8
35 ESR2 Estrogen receptor 2 Q92731 8
36 F3 Coagulation factor III, tissue factor P13726 8
37 MIF Macrophage migration inhibitory factor P14174 8
38 NFE2L2 Nuclear factor, erythroid 2 like 2 P09237 8
39 TOP1 DNA topoisomerase I P11387 8
40 ALOX15 Arachidonate 15-lipoxygenase P16050 7
41 DPP4 Dipeptidyl peptidase 4 P27487 7
42 PTPN2 Protein tyrosine phosphatase nonreceptor type 2 P17706 7
43 ABCC1 ATP binding cassette subfamily C member 1 P33527 6
44 PPARA Peroxisome proliferator-activated receptor alpha Q07869 6
45 VDR Vitamin D receptor P11473 6
46 CYP2C19 Cytochrome P450 family 2 subfamily C member 19 P33261 5
47 BRAF B-Raf proto-oncogene, serine/threonine kinase P15056 3
48 HTR1A 5-Hydroxytryptamine receptor 1A P08908 3
49 RORC RAR-related orphan receptor C P51449 3
50 SLC6A4 Solute carrier family 6 member 4 P31645 3
51 TYR Tyrosinase P14679 3
52 NR1H2 Nuclear receptor subfamily 1 group H member 2 P55055 2
53 PTGER2 Prostaglandin E receptor 2 P43116 2
54 HSD11B1 Hydroxysteroid 11-beta dehydrogenase 1 P28845 2
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Figure 3: 24 proteins whose docking energy with curcuma compounds was above that of 5-ASA.
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of regulating intestinal flora. Scholars verified that the ex-
tension of UC is important for the positivity rate ofH. pylori
later [32]. Moreover, it was reported that curcumin
downregulated the expression of tumor necrosis factor-α
(TNF-α) through inhibiting NF-κB expression [32].

Meanwhile, curcumin enhanced the suppressive function of
Treg cells and promoted the recovery of damaged colonic
mucosa in UC [33]. Previous studies also suggested that
CLRs revealed in the research can be included in many
immune responses [34].

2 

3 

4 

5 

6 

-Log10
(p value)

GO: 0005667: transcription factor complex 
GO: 0048471: perinuclear region of cytoplasm 

GO: 0032993: protein-DNA complex 
GO: 0009925: basal plasma membrane 

GO: 0005741: mitochondrial outer membrane 

GO: 0045121: membrane ra� 
GO: 0098552: side of membrane 

GO: 0031983: vesicle lumen 
GO: 0031965: nuclear membrane 

GO: 0000307: cyclin-dependent
protein kinase holoenzyme complex 

GO: 0031012: extracellular matrix 

Cellular components 

14.81% 

14.81% 

12.96% 

12.96% 

11.11% 
9.26% 

7.41% 

7.41% 

5.56% 

5.56% 

5.56% 

(c)

KEGG pathway gene enrichment

hsa05200: Pathways in cancer

hsa01522: Endocrine resistance

hsa05161: Hepatitis B

hsa04726: Serotonergic synapse

hsa05321: Inflammatory bowel disease (IBD)

hsa05202: Transcriptional misregulation in cancer

hsa04931: Insulin resistance

hsa04668: TNF signaling pathway

hsa05142: Change disease (American trypanosomiasis)

hsa04115: p53 signaling pathway

hsa04350: TGF-beta signaling pathway

hsa04660: T cell receptor signaling pathway

hsa04211: Longevity regulating pathway

Enrichment 

-Log10 (p value) 

Count 

hsa05120: Epithelial cell signaling Helicobacter pylori infection

10

5 

3

0 

6
9
12
15

7.5 10.0 12.5

(d)

Figure 5: Target biological function and target-pathway analysis. (a) Biological process of curcuma in the treatment of UC. (b) Molecular
function of curcuma in the treatment of UC. (c) Cellular components of curcuma in the treatment of UC. (d) Signal pathway of curcuma in
the treatment of UC.

10 Evidence-Based Complementary and Alternative Medicine



Molecular docking verified that the binding energy of
24 key targets was better than that of 5-ASA and lower than
−5.5, meaning the interaction between the compounds and
targets of UC can bind tighter than that of 5-ASA,

indicating better therapeutic effects. Common target PPI
network showed that the targets were cocontrolled by
curcuma and UC, which revealed that curcuma could
regulate the expression of UC-regulated targets and
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alleviate UC symptoms. AKT1 (degree � 43), EGFR
(degree � 35), TNF-α (degree � 35), STAT3 (degree � 33),
and PTGS2 (degree � 32) might be the core targets of
the PPI network, through whom curcuma may come into
play.

In order to predict the mechanism of curcuma in the
treatment of UC, we analyzed the key candidate targets by
performing GO enrichment results, such as biological
processes, molecular functions, and cellular components.
/e GO terms (P< 0.05) indicated that the major hubs were
significantly involved in multiple biological processes, in-
cluding cellular response to lipid, cellular response to or-
ganic cyclic compound, and response to steroid hormone.
Furthermore, molecular function enrichment analysis
showed nuclear receptor activity, transcription factor

activity, and steroid hormone receptor activity were con-
tained in the healing process. /e active targets involved
were AKT1, EGFR, TNF, STAT3, and PTGS2, which mainly
concentrate on the molecular processes of immunization,
inflammatory reaction, gut microbiota, etc. Some of the
genes and mechanisms have been verified in curcumin,
while PTGS2 was proposed connecting with the treatment of
UC by curcuma firstly as a gene with high possibility.
Meanwhile, cellular components consist of RNA polymerase
II transcription factor complex, transcription factor com-
plex, nuclear transcription factor complex, and membrane
raft, and EGFR, DPP4, ADAM17, BCL2, and CDK2 were
contained in the cellular components. /e verified impact of
EGFR on UC by regulating epithelial barrier function could
identify the reliability of this GO analysis [35].
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/e results of pathway analysis and KEGG pathway
database [36] analysis showed that the potential mechanisms
of curcuma in treating UC were mainly immune regulation,
inflammatory reaction, intestinal flora regulation, and the
signal pathways related to immunoregulation. Among them,
the IBD pathway (Figure 9) was representative and verified
in our research.

In the IBD pathway, antigen-presenting cells (APC)
endocytosis the invading bacteria and secrete TGF-β and IL-
6. /en, TGF-β and IL-6 stimulate /17 activating STAT3
with RORγt and RORα for further inflammatory cytokines.
/e activated expression of STAT3 participates in the gene
transcription and protein expression of a variety of in-
flammatory factors such as TNF-α and IL-1β, thus pro-
moting the formation and persistent aggravation of
inflammation [37–39]. Besides, STAT3, another gene
symbol, participates in inflammation. TLR4, an important
link in the development of the pathogenesis of UC, can
nonspecifically bind to pathogen phase molecules, initiate
signal transduction, and eventually lead to the release of
nuclear factors [40]. However, lipopolysaccharides activate
NK-κB pathway through TLR4 in intestinal epithelial cells
and then induce inflammation by secreting TNF-α in Toll-
like receptor signaling pathway. Curcuma may inhibit the
inflammation through TLR4, TNF, STAT3, and RORct.

5. Conclusion

In summary, consistent with clinical experience in the long
history, experimental verification, and our HE staining, as
well as our WB results, curcuma has significant advantages
in the treatment of UC. At the same time, the uncovered
targets and pathways were excavated for a better research of
how curcuma relieves UC. It has a significant value to
provide theoretical basis for clinical treatment of UC and a
potent evidence for further study of the mechanism of
curcuma in the treatment of UC.
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