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Abstract: Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern
Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe
encephalitis in humans with high mortality. However, limited insights are available into the fun-
damental biology of EEEV and residue-level details of its interactions with host proteins. In recent
years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about
public safety. This review article summarizes recent advances in the structural biology of EEEV
based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with
functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to
how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.
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1. Introduction

Alphaviruses are enveloped icosahedral arboviruses that infect mammalian hosts, in-
cluding humans [1–7]. Alphaviruses are broadly classified as arthritogenic and encephalitic
based on the disease associated with their infection. For instance, Chikungunya virus
(CHIKV), an arthritogenic alphavirus, was responsible for an epidemic that affected mil-
lions in the Indian subcontinent and islands in the Indian Ocean in 2006 [8]. In contrast
to arthritogenic alphaviruses, infections of encephalitic alphaviruses are often associated
with mortality, especially for EEEV, which is endemic mostly to the Americas [9–16]. EEEV
is transmitted by the mosquito Culiseta melanura mostly to birds [17–19]. Although EEEV
typically causes fewer than ten reported human cases per year, 34 cases of EEEV were
reported in USA in 2019 and the virus has been detected in mosquitoes that feed on hu-
mans [16,18,20]. EEEV infections have a high mortality rate of up to 75%, and nearly 90%
of survivors report permanent neurological sequelae [21–23]. It has been reported that
EEEV can be spread as an aerosol, which has led to its classification as a select agent by
United States Department of Agriculture (USDA) and Centers for Disease Control and
Prevention (CDC) [24,25]. At present, there are no approved vaccines or therapeutics to
prevent or contain EEEV infections in the general human population [17,26,27]. Hence,
EEEV represents an emerging threat to human health. However, molecular insights into
EEEV infection and interactions of its proteins with host factors are rather limited as com-
pared to other alphaviruses such as CHIKV. In this review article, we provide a summary of
recent publications on the structural biology of EEEV entry, disassembly, assembly, and in-
teractions with host molecules. We highlight how EEEV escapes detection by receptors
for viral glycans and provide a perspective on antibody interactions with viral envelope
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proteins. The structural questions on EEEV dynamics in host cells raised in this article have
broad relevance to the understanding of alphavirus infection and interactions with host
cell molecules.

2. Overview of Alphavirus Infection and Assembly Cycles

Alphaviruses such as EEEV have a 12 kb positive-sense single-stranded RNA genome
with five structural genes encoding capsid, E3, E2, 6K, Tf, and E1, and four non-structural
genes encoding nsP1, nsP2, nsP3, and nsP4 [1,28–30]. The present review article focuses
on the structural proteins capsid, E2, and E1 that constitute viral particles [28,31,32]. Al-
phaviruses have a complex infection cycle that is summarized in Figure 1 [33]. This involves
viral entry into host cells, low pH triggered conformational changes and subsequent fusion
with endosomal membrane, release of the nucleocapsid in the cytosol, disruption of the
capsid shell to release the viral RNA genome, biosynthesis of progeny RNA and proteins,
assembly of progeny nucleocapsid, and assembly and release of progeny alphavirus parti-
cles [1,34,35]. Hence, multiple host organelles are involved in the alphavirus infection and
assembly cycles. These distinct steps present potential targets for therapeutic intervention.
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Figure 1. Entry and replication cycle of alphaviruses. Entry and disassembly steps are highlighted in red ((1) to (4)), whereas
progeny virus assembly and exit are from step (5) to (7). (Step 1) Receptor-mediated endocytosis allows alphavirus particles
to enter cells (particles shown in blue, cyan). (Step 2) Viral and endosomal membranes undergo fusion upon acidification of
the endosome lumen (pink). (Step 3) Cytosolic release of the nucleocapsid core (yellow). (Step 4) Disintegration of the core
and release of the viral RNA genome (vRNA, red line). (Step 5) Cytosolic progeny RNA genome synthesis and nucleocapsid
core assembly occur in the cytosol, whereas envelope proteins are synthesized in secretory ER and Golgi network (Step 6).
(Step 7) Final assembly of alphavirus progeny particles involves plasma membrane. Figure taken from [33].
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3. SINV-EEEV Chimera and EEEV Virus-Like Particles (VLPs) for Structural Analyses

As a select agent, EEEV requires biological containment, which poses challenges
for structural studies. Two reagents have been developed for structural studies of intact
particles. First, a SINV-EEEV chimera has been described with SINV TR339 non-structural
genes and RNA replication control elements and EEEV strain FL93-939 structural genes,
i.e., for capsid, E3, E2, 6K, and E1 proteins [36,37]. These chimeric particles are replication
competent and require biological safety level-2 containment. The structure of these particles
has been determined to an average resolution of 4.4 Å by single-particle cryoEM [33].
Second, VLPs of EEEV have been developed by co-expression of genes for capsid, E3,
E2, 6K, and E1 proteins from EEEV PE-6 [38]. These particles have been characterized by
single-particle cryoEM to an average resolution of 4.2 Å [39]. Both SINV-EEEV chimera
and EEEV VLPs have an overall icosahedral arrangement that is consistent with previously
described cryoEM structures of alphaviruses [40–49].

4. E1 and E2 Glycoproteins: Tools to Penetrate Host Membranes

The alphavirus envelope consists of three proteins, E1, E2, and E3 [28,30,50,51]. Sub-
stantial insights into the structure and function of these proteins have been obtained from
prior investigations on other alphaviruses, using both purified proteins and intact virus
particles [52–56]. The E2 protein is implicated in receptor binding, whereas E1 is involved
in low pH fusion with the host membrane [44,57–62]. This low pH-driven interaction
of the alphavirus spike with host membranes raises an intriguing question, i.e., how is
premature fusion inhibited during progeny spike biogenesis and assembly in the acidic
Golgi lumen? The E3 protein has been shown to associate with the E1–E2 spike under
acidic conditions to stabilize the hetero-dimer and to inhibit premature fusion [63]. Neutral
pH in the extracellular medium drives dissociation of furin-cleaved E3 from the E1–E2
hetero-dimer [63–67]. The 4.4 Å resolution cryoEM structure of SINV-EEEV chimera iden-
tified the location of E1 and E2 proteins but not of E3 [33] (Figure 2a–e). Presumably,
E3 was dissociated from the viral envelope during progeny assembly and purification. It is
noted that E3 was reported in the cryoEM map of Venezuelan Equine Encephalitis Virus
(VEEV) [48]. The SINV-EEEV cryoEM map corresponding to the E1–E2 ecto-domains has a
resolution of approximately 3.5–6.0 Å (Figure 2a,b). The E1–E2 ecto-domains are organized
in a hetero-dimer that closely resembles the hetero-dimer reported for SINV and CHIKV by
X-ray crystallography [55,56]. The E1 and E2 ecto-domains are enriched in β-strands and
demonstrate a three-domain organization, i.e., domains I, II, and III for E1 and A, B, and C
for E2 (Figure 2c–e). Intra-chain disulfide bonds stabilize the respective ecto-domains
of E1 and E2 proteins. Three E2 monomers in each trimeric spike demonstrate a radial
arrangement, whereas three E1 monomers are organized tangentially, which is consistent
with previous structural investigations (e.g., [41,48]).

The envelope layer in alphaviruses undergoes pH-driven conformational changes [68–70].
This includes a rearrangement of tangential E1 ecto-domain into a radial orientation for
insertion into the endosomal membrane and subsequent release of the alphavirus genome
into cytosol [54,58,71,72]. The residue-level details of this membrane interaction are cur-
rently not well understood. The cryoEM analysis of SINV-EEEV particles generated new
hypotheses relevant to these spike conformational changes [33]. For instance, the cryoEM
structure of SINV-EEEV showed an E1–E2 interface that is highly enriched in charged, proto-
natable residues (Figure 3a) [33]. This suggests a possible pH-sensing mechanism for E1–E2
dissociation and envelope layer disassembly as suggested for related alphaviruses [73–76].
Such a hetero-dimer dissociation event would release the E1 ecto-domain for interactions
with the endosomal membrane. This investigation proposed conservation in the mech-
anism of hetero-dimer dissociation as the likely pH-responsive residues in the E1–E2
electrostatic interface are widely conserved in alphaviruses [33]. Low pH initiated changes
also involve a radial to tangential re-orientation of the E2 ecto-domain, which requires dis-
ruption of E2–E2 contacts proximal to the spike 3-fold axis [53,69,72]. This E2–E2 interface
in SINV-EEEV is enriched in basic residues that demonstrate limited sequence conservation
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amongst alphaviruses (Figure 3b–d). This suggests the possibility that the pH sensitivity
of the E2–E2 interface is alphavirus-specific. However, experimental validation of the
above-mentioned hypotheses and residue-specific testing are still lacking. Nevertheless,
the involvement of distinct early to late endosomal compartments hints towards distinct
pH requirements for entry of different alphaviruses [77–80].
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Figure 2. Structure of EEEV. (a) Surface representation of EEEV using radial coloring. An internal section of the cryoEM
map is shown on the right (black dotted lines highlight lipid bilayer). (b) Resolution range and distribution in the cryoEM
map highlighting prominent features such as envelope proteins and capsid protein (scale at bottom). The RNA genome
(gray) was not included in this analysis. Gray arrows show directions of icosahedral symmetry axes for reference. Color
code for boxes: red, E1 ecto-domain; black, capsid proteins in vicinity of icosahedral 5-fold axis; “*”, E2 ecto-domain.
(c–e) Organization of E1–E2 trimeric spike ecto-domain shown in (c) in a radial orientation and (d) side-view rotated by
90◦ from (c). For clarity, E1 and E2 ecto-domains are shown in different representations as ribbon and surface, respectively.
(e) Domain organization of E1 and E2 ecto-domains. The color codes as in (c,d). “F” represents the fusion loop. Figure taken
from [33].
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Figure 3. Electrostatic interactions in SINV-EEEV E1–E2. (a) Complementary charged surfaces in E1 (cyan) and E2 (pink)
ecto-domain interface. Color code, acidic in red and basic in blue. (b–d) Basic residues shown as sticks in the trimeric E2–E2
interface (pink). (b) Trimeric spike along 3-fold axis. Black box highlights the basic interfacial residues, which are magnified
in (c). (d) Four basic residues from one E2 ecto-domain are labelled. Figure taken from [33].

Flaviviruses, such as Dengue and Zika viruses, are similar to alphaviruses in their
icosahedral symmetry and the presence of an internal membrane, although there is no
sequence relationship between these two distinct genera [50,81]. Structural analyses have
demonstrated similarities in the fold and organization of E1 protein in alphaviruses and
envelope (E) protein in flaviviruses [54,82,83]. It has been noted that the acidic character of
E1 (theoretical isoelectric point of ecto-domain, 6.0–6.7) is shared by the flavivirus E protein
(theoretical isoelectric point of ecto-domain, 5.8–6.8), suggesting likely conserved low pH
neutralization of acidic residues in membrane insertion [33].
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5. A Multifunctional Capsid Protein

The capsid protein of SINV-EEEV demonstrates a two-domain organization charac-
teristic of alphaviruses and is divided into an N-terminal (NTD, residues 1–116) and a
C-terminal domain (CTD, residues 117–261) [33,48,52,84]. The alphavirus capsid NTD
is enriched in basic residues that have been suggested to interact with the viral RNA
genome [85,86]. A recent investigation has identified multiple sites for capsid protein
binding on the viral genomic RNA [87]. The capsid NTD in EEEV demonstrates an abun-
dance of Gly and Pro residues, which are characteristic of intrinsically disordered proteins
(reviewed in [88]). This is consistent with cryoEM reconstructions of intact alphavirus
particles wherein a large segment of the capsid NTD is not visualized (e.g., [48]). It is
inferred that this is due to disorder in the capsid NTD. However, cryoEM reconstructions
of alphaviruses utilize icosahedral symmetry for averaging between 60 asymmetric units.
This raises the question of whether there is symmetry mismatch between the outer layer of
envelope proteins and inner capsid NTD, which would contribute to relatively poor recon-
struction of the capsid NTD. This possibility has not been explored in detail. Nevertheless,
it has been postulated that the intrinsic disorder of the capsid NTD may provide structural
flexibility for interactions with dissimilar sequences in the viral RNA genome [33]. This is
because the icosahedral protein shell of alphaviruses encloses a single copy of the viral
RNA genome. The alphavirus genome sequence associated with each of the capsid proteins
will be unique, leading to dissimilar genome–capsid interactions at these sites. Flexibility
in the capsid NTD may facilitate these interactions while minimizing the genetic cost of
encoding specialized sequences for each capsid position. Insights into the organization of
the capsid NTD are derived from a comparison of a crystal structure of the SINV capsid
protein and the cryoEM structures of SINV-EEEV and related VEEV [33,48,52,85]. Coordi-
nates for short segments of the capsid NTD attached to the CTD have been refined in these
maps. However, the coordinates of these short segments of capsid NTD show considerable
differences (Figure 4a,b). For instance, in the SINV crystal structure, the NTD segment
displays an elongated conformation that extends “radially” from the CTD [85]. An analysis
of crystal packing shows that this short segment is involved in contacts with adjacent
symmetry-related molecules [85]. In contrast, a comparable segment of the capsid NTD in
the SINV-EEEV cryoEM structure has a more tangential organization, although the map
is at a lower resolution [33]. However, in both structures the NTD short segment shows
an extended conformation wherein the side-chains of the basic residues are available for
interactions with the acidic viral RNA genome. The extended conformation of SINV-EEEV
capsid NTD is consistent with a comparable, but shorter capsid NTD sequence mapped in
the VEEV cryoEM structure [33,48]. Despite these advances in elucidating the structure
of the capsid NTD, limited insights are available into the stoichiometry of genome-capsid
interactions within an alphavirus particle, whether all 240 capsid protein copies bind the
genome, and whether there is local “order” at the capsid–genome interaction site that is
not visualized by current icosahedral averaging approaches. Addressing these questions is
essential for a deeper understanding of genome packaging and alphavirus assembly.

The alphavirus capsid CTD has been characterized in substantially more detail
than NTD. Functionally, the CTD encodes a protease activity that is essential for al-
phavirus polyprotein processing and is consistent with a chymotrypsin protease-like fold of
CTD [52,85]. The CTD contains a mixed secondary structure content of short α-helices and
β-strands. A groove in the capsid CTD provides the interaction surface for the C-terminal
residues of the E2 glycoprotein [33,48,89,90]. In the cryoEM structure of SINV-EEEV, this
CTD groove is enriched in polar interactions from side chains of Arg132, Tyr159, Tyr177,
Trp244, and Thr250. Hydrophobic and Van der Waals interactions are provided by CTD
Phe134 and Ile158. Mutagenesis of SINV capsid CTD residues in this groove has implicated
Tyr162, which is equivalent to EEEV capsid Tyr159, and Lys252 in alphavirus assembly [89].
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Figure 4. Structure of alphavirus capsid protein. (a) Capsid protein from SINV-EEEV. The RBS
and NTD form an extended structure that is associated with the compact chymotrypsin-like CTD.
(b) Structural superposition of SINV-EEEV and SINV capsid CTD (yellow surface) demonstrates
difference in location of NTD residues between capsid of EEEV (cyan) and SINV (red). (c) In the
internal capsid layer, pentamers and hexamers are arranged at the icosahedral 5- and 2-fold axes,
respectively. These provide major stabilizing capsid–capsid contacts, whereas no interactions are
observed near the 3-fold. In (a,b), coordinates for capsid protein (PDB ID 6MX7 for SINV-EEEV,
1SVP for SINV) were downloaded from PDB and figures were generated in PyMol (www.pymol.org,
(accessed on 1 June 2021), version 1.8.6.0). Panel (c) taken from [33].

The capsid protein in alphaviruses provides a protective shell around the viral ge-
nomic RNA [50]. An analysis of the SINV-EEEV and other alphavirus cryoEM structures
shows differences in interactions between adjacent capsid CTD with respect to the icosahe-
dral symmetry axes (Figure 4c) [33,48,50]. For instance, neighboring capsid CTDs proximal
to the icosahedral 2-fold and 5-fold vertices are organized into hexagonal and pentagonal
facets. Three capsid CTDs near an icosahedral 3-fold vertex belong to three adjacent capsid
hexagons. These three capsid CTDs are more widely separated and do not demonstrate
inter-capsid interactions, unlike the capsid pentagons and hexagons [33,50]. This suggests

www.pymol.org
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that stability in the nucleocapsid core is provided by CTD linkage with the E2 layer, which
is closely packed with extensive inter-protein contacts [42,51,91]. In this model, disruption
of envelope–capsid interactions upon alphavirus entry and low pH-triggered fusion re-
leases the nucleocapsid core into the cytosol, devoid of stabilizing E2 contacts, followed
by subsequent core disassembly. Although the experimental validity of this model of nu-
cleocapsid disassembly remains to be tested, it is consistent with prior investigations that
suggest nucleocapsid disassembly in the host cell cytosol follows alphavirus entry [92–95].
These structural data on EEEV reinforce several interesting questions that are yet to be
fully addressed. For instance, if the nucleocapsid core is inherently unstable, then how
is it assembled during progeny assembly in the cytosol prior to interactions with the E2
glycoprotein? Is the nucleocapsid core assembled initially in a metastable state(s)? Investi-
gations of in vitro-assembled cores in alphaviruses such as RRV and WEEV have provided
clues to this assembly process wherein the envelope-free cores maintain an overall arrange-
ment similar to that inside viral particles [96,97]. In complementary structural analyses,
icosahedral symmetry was demonstrated in newly assembled VEEV cores, although the
diameter was substantially larger than in intact virus particles [98–100]. Furthermore,
the isolation of envelope-free nucleocapsid cores by detergent treatment and gradient
purification has been reported [101]. These data suggest that the cores are assembled in
a somewhat stable, icosahedral state prior to complete alphavirus assembly. However,
more recent data present a contrasting picture wherein a lack of nucleocapsid uniformity is
noted even in fully assembled alphavirus particles [97]. These results suggest that while the
envelope layer provides protection to the core, association with the envelope layer may be
insufficient to generate an ideal capsid icosahedron. Presently, it is not known what causes
this deviation in nucleocapsid core symmetry, the extent to which these differences in
structural uniformity are important for assembly/disassembly, and if this non-uniformity
is a widely conserved feature in alphaviruses. Recent data on genome-less capsid cores
add another layer of complexity to the role of the viral genome in driving nucleocapsid
assembly [102,103]. Overall, the understanding of uncoating [104], symmetry, organization,
assembly of alphavirus nucleocapsid cores is limited despite recent advances. Progress in
cryoEM imaging inside cells and improvement in resolution of such structures should help
address several of the unanswered questions pertaining to alphavirus nucleocapsid cores.

6. Structural Basis of Heparan Sulfate (HS) Binding in EEEV

HS is a long anionic polysaccharide polymer linked to plasma membrane proteins and
is involved in a variety of functions, such as cellular adhesion, signaling, and coagulation
(reviewed in [105,106]). Cell culture adaptation of alphaviruses is associated with an HS
binding phenotype and decreased pathogenesis [59,60,107–110]. However, in EEEV, an HS
binding phenotype is associated with host infection [111,112]. The sequencing of North
American strains of EEEV host isolates identified key basic residues in the E2 ecto-domain
(Lys71, Lys74, and Lys77) associated with HS binding. Of these three basic residues, Lys74
of E2 is widely conserved, Lys77 is least conserved, and residue Lys71 is semi-conserved
and often replaced by His, which is also basic [33,111,112]. The 4.4 Å cryoEM structure
of SINV-EEEV chimera placed these residues in a “linear triad” in E2 (Figure 5a,b) [33].
In this linear triad, access to the Lys71 side-chain is partly occluded by domain B, whereas
Lys74 and Lys77 are well exposed. This linear triad is surrounded by a predominantly
electrostatic protein environment. Hence, the putative binding site for HS is distributed
over three adjacent symmetry-related E2 monomers.
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Figure 5. HS binding residues in E2 of SINV-EEEV. (a) The Cα-atoms of HS binding residues (Lys71, red; Lys74, yellow;
Lys77, blue) shown as spheres, whereas the E2 ectodomain is shown in a surface representation (pink). (b) A rotated
side-view shows one linear triad highlighted in a black oval. Figure taken from [33].

Structural insights into the interactions of the SINV-EEEV with HS were obtained
from single-particle cryoEM analysis of SINV-EEEV particles complexed with heparin (Hp),
a low-molecular-weight HS analog [113]. SINV-EEEV demonstrates specific interactions
with Hp, which reduces infection of SINV-EEEV chimera in cell culture by almost 90%
upon pre-incubation with Hp. In contrast, the sulfated polysaccharide polymer chondroitin
sulfate (CS), which is similar to HS, only reduces infection by 30%, suggesting stereo-
specificity in SINV-EEEV for Hp and HS. The cryoEM structure of SINV-EEEV in the
presence of Hp yielded surprising insights. No features corresponding to Hp were observed
in the vicinity of the linear triad of Lys71–Lys74–Lys77. It was proposed that this could
be due to a non-icosahedral arrangement of Hp, which likely results in a loss of features
during reconstruction. Alternatively, this implies that the linear Lys triad is not directly
involved in binding Hp, but is rather selective for endogenous host HS, which is more
complex and larger [114]. In a trimeric spike, linear Lys triads from three monomers in
a quaternary organization would provide multiple interactions with high avidity for HS,
in contrast to a single linear Lys triad from one spike monomer. The substantially smaller
chain length of Hp in the cryoEM analysis could have been insufficient to satisfy this
complex interaction with multiple linear Lys triads. Hence, even though Hp molecules
were not visualized by cryoEM analysis of SINV-EEEV, a role of the linear Lys triad in HS
binding prior to viral entry cannot be excluded.

The cryoEM analysis of SINV-EEEV revealed four distinct sites for Hp binding that are
unique with respect to icosahedral symmetry axes [113]. Two axial Hp sites overlap with
the 3-fold rotational symmetry axis in q3 and i3 trimeric spikes, whereas two peripheral
sites are in proximity to the E2 β-connector. The quaternary arrangement of residues in
the axial sites provides multiple interactions for Hp binding. These axial sites are enriched
in basic residues, whose side chains face the 3-fold rotational symmetry axes, and the
bound Hp molecules. In the axial as well as peripheral sites, the bound Hp molecules
appear to be spherical, which is likely a consequence of multiple binding poses and 3-fold
averaging in the i3 spikes. Hence, this cryoEM analysis suggests that HS interactions in
EEEV involve multiple sites in the viral E2 protein, which could provide multiple routes
towards neurovirulence [111,112].



Pathogens 2021, 10, 973 10 of 20

7. Glycosylation of E1 and E2 Proteins in EEEV

Post-translational modifications such as glycosylation play a key role in alphavirus
infection and assembly cycles. Mutations in the alphavirus envelope protein glycosylation
sites affect infectivity, membrane fusion, assembly, and yield of progeny virus [91,115–119].
Elimination of E2 glycosylation sites enhances viral interaction with HS [118]. E2 gly-
cosylation interacts with host cell DC-SIGN and L-SIGN molecules for viral entry [120].
DC-SIGN/L-SIGN are lectin molecules in macrophage and dendritic cell plasma mem-
branes that demonstrate strong interactions with pathogen high-mannose glycosylation
sites to activate downstream immune responses [121–127]. The structural analysis of SINV-
EEEV chimera generated insights into the location and function of glycosylation sites
(Figure 6) [33]. A sequence analysis showed one N-linked glycosylation site each on E1
and E2 ecto-domains of EEEV, i.e., E1 Asn134 and E2 Asn315. These two sites conform to
the well-established glycosylation motif, Asn-X-Thr (X = any residue except Pro), and have
the sequence Asn134-Ile135-Thr136 and Asn315-Phe316-Thr317 for E1 and E2, respectively.
The cryoEM analysis of SINV-EEEV particles was consistent with this sequence-based
prediction. The cryoEM map demonstrated the presence of a feature connected to the Asn
side-chain in both E1 and E2. One N-acetyl-glucosamine monosaccharide was fitted in the
E2 site, whereas a disaccharide was accommodated in the E1 site. The E2 glycosylation
site is not accessible on the viral surface, whereas the E1 site is well-exposed near the
2-fold and 5-fold symmetry axes, close to the base of the trimeric spike. In the context
of E2, this presents a contrast as other alphaviruses demonstrate at least one exposed
glycosylation site on the E2 ecto-domain [91,128,129]. In the case of EEEV, this lack of an
accessible E2 glycosylation site may provide a biological route to escape immune detection
via DC-SIGN/L-SIGN [33]. A comparative analysis of infectivity was performed between
EEEV and SINV, which was previously shown to interact efficiently with DC-SIGN and
L-SIGN [120]. It was observed that EEEV demonstrates more limited infectivity in this
cellular system than SINV, thus implicating the poorly exposed E2 glycan in inefficient
interactions with host lectins. This also suggests that the E1 glycan is not sufficient for viral
entry even though it is surface exposed. This is consistent with the observation that glycan
composition is a key determinant of viral tropism [130]. A chemical analysis of the E1 gly-
can in purified SINV-EEEV particles showed enrichment in pauci-mannose carbohydrates
in the virus from mosquito C6/36 cell lines and in complex-type carbohydrates in the virus
from mammalian BHK-15 cells [33]. Oligo-mannose glycans, which are essential for inter-
actions with DC-SIGN and L-SIGN, constituted only one-tenth and one-sixth of the total
glycans in E1 in the mosquito- and mammalian-derived SINV-EEEV particles, respectively.
Hence, the E1 glycan is biochemically sub-optimal for interactions with DC-SIGN/L-SIGN
even though it is exposed on the viral surface [131]. It would be informative to test if the
EEEV envelope glycans are essential for efficient viral protein biogenesis. If this hypothesis
is confirmed, it would suggest that EEEV has likely evolved a means for envelope protein
biogenesis while avoiding a deleterious side-effect of glycosylation, i.e., immune detection.
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8. Structural Basis of EEEV Neutralization by Monoclonal Antibodies

The structural and functional basis of neutralization by monoclonal antibodies (mAbs)
has been previously investigated for several alphaviruses such as arthritogenic CHIKV,
RRV and MAYV, and encephalitic VEEV and WEEV [44,45,132–150]. In the context of EEEV,
prior investigations have focused on characterization of immune response to E2 peptides
and compared their cross-reactivity to VEEV [151–154]. Two recent cryoEM investigations
have provided structural insights into the neutralization of EEEV by Fab fragments from
neutralizing mAbs [33,39].

In the first investigation [33,36], Fabs from five potent neutralizing mouse mAbs
(EEEV-3, EEEV-5, EEEV-42, EEEV-58, and EEEV-69) were characterized in complex with
SINV-EEEV chimera by single-particle cryoEM. These structures were determined to a
resolution of 7.3–8.2 Å and all five Fabs were found to bind to the E2 ecto-domain (Figure 7).
These five Fabs were classified into two groups based on their footprints, i.e., domain A Fabs
(EEEV-5, EEEV-42, and EEEV-58) and domain B Fabs (EEEV-3, and EEEV-69). Even though
each respective group of Fabs demonstrated substantially overlapping footprints, large
differences in average occupancies were reported. For instance, EEEV-5 had a relative
occupancy of 45.4% with respect to the ecto-domain, whereas EEEV-58 had a relative
occupancy of 97.2%. Both Fabs were incubated in excess with the SINV-EEEV particles
prior to flash-freezing for cryoEM analysis. This raises an intriguing question about the
factors that contribute to this difference in Fab occupancies. It was suggested that the
angular orientation of the Fab may play a role in its occupancy (Figure 8). In a trimeric
spike, three symmetry-related copies of E2 domain A are clustered close there near the
3-fold rotational axis. Hence, a Fab that is bound in a radial orientation on domain A,
and hence parallel to the spike 3-fold axis, would face steric clash from its symmetry-
related partners. This would limit its average occupancy on the spike. However, domain A
Fabs that deviate from this radial orientation and are more tangential would experience
fewer steric restrictions. Hence, a tangential orientation of Fabs will be favored for high
occupancy in domain A. Domain B Fabs present a contrasting scenario. Domain B of
the E2 ecto-domain is located at the distal end of the trimeric spike, at a larger distance
from the spike 3-fold axis than domain A. However, domain B from a trimeric spike is
closer to domain B from an adjacent spike. Hence, a Fab bound tangentially to domain
B could potentially pose steric restrictions on the binding of a second Fab to domain B
from an adjacent trimeric spike. However, Fabs that demonstrate a more radial orientation
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are likely to face fewer steric restrictions. Based on this analysis, it was suggested that
the more radial orientation of domain A Fab, EEEV-5, i.e., 14.5◦ with respect to the spike
3-fold axis, was partly responsible for this low 45.4% occupancy. Although this analysis
was performed on SINV-EEEV, the conservation of E1–E2 organization and structure in
alphaviruses suggests that this is widely applicable to investigations of steric limitations in
Fab-alphavirus interactions.
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A more recent structural analysis of SINV-EEEV with Fabs from two potent neutral-
izing human mAbs, EEEV-33 and EEEV-143, has provided insights into conformational
epitopes [39]. These cryoEM structures showed that EEEV-33 is a domain A Fab, whereas
EEEV-143 is a domain B Fab. This analysis demonstrated a radial orientation of EEEV-33
Fabs on the trimeric spike, which generates potential steric restrictions for binding of a
divalent IgG. Here, it should be noted that Fabs from these two human mAbs possess
strong neutralization activity, unlike monovalent Fabs from mouse mAbs with anti-EEEV
neutralization activity. This suggests a likely interaction wherein the Fab from these human
mAbs either sterically blocks access to the host membrane or cross-links the EEEV enve-
lope. A binding analysis showed that EEEV-33 preferentially interacts with intact particles
over purified E2 protein, indicating the involvement of a quaternary binding site. Hence,
cross-linking of multiple adjacent subunits represents a potent mechanism for alphavirus
neutralization.

It is likely that cross-linking of adjacent subunits by Fabs is a high probability event
in alphaviruses from a structural perspective. In an alphavirus spike, the most highly
exposed surfaces are of individual E1–E2 hetero-dimers. The likely sites on the alphavirus
surface where adjacent subunits are in close contact are in proximity of the icosahedral
2, 3, and 5-fold axes. This is consistent with the cross-linking activity noted for EEEV-33,
which recognizes a quaternary epitope near the spike 3-fold axis and in a cryoEM struc-
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ture of CHIKV complexed with a bivalent IgG [155]. Overall, cross-linking of adjacent
protein subunits is expected to be more efficient if the viral surface were “smoother”,
wherein neighboring subunits are available for simultaneous binding by Fabs or mAbs.
An example is mature flaviviruses whose envelope protein is arranged in a smooth, her-
ringbone pattern [81,156–161]. In these enveloped icosahedral viruses, multiple sites for
subunit cross-linking are accessible. This is noted by a relatively larger abundance of Fabs
and mAbs whose epitopes are located close to the subunit–subunit interface (reviewed
in [162,163]).

9. Conclusions

The investigations of SINV-EEEV chimeric particles and EEEV VLPs described above
have greatly advanced the understanding of the structural basis of EEEV–host interactions,
especially in the context of entry and antibody neutralization, while setting the stage for
further investigations. For instance, it is not known which protein receptors in the host
membrane are hijacked during EEEV entry. What are the intermediate states of E1–E2
ecto-domains during pH-triggered transitions in internalized EEEV, and more broadly in
alphaviruses? Are these E1–E2 transition states conserved in alphaviruses and can they be
exploited in the design of broad-spectrum inhibitors? Does association with host receptors
affect E1–E2 conformational changes and disassembly? When Fabs and mAbs are provided
in sub-stoichiometric quantities, what are the preferred epitope sites for Fab and mAbs
binding on the crowded viral surface in EEEV and other alphaviruses? Is the binding
of Fabs or mAbs at a few selected sites sufficient for neutralization? Addressing these
questions will require a combination of cellular and functional approaches that build on
high-resolution information derived from structural studies to gain further insights into
alphavirus–host interactions.
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