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Abstract: Breast cancer is one of the most common malignant tumors in women worldwide. Early
diagnosis, treatment, and prognosis of breast cancer are global challenges. Identification of valid
predictive diagnosis and prognosis biomarkers and drug targets are crucial for breast cancer preven-
tion. This study characterizes differentially expressed genes (DEGs) based on the TCGA database
by using DESeq2, edgeR, and limma. A total of 2032 DEGs, including 1026 up-regulated genes and
1006 down-regulated genes were screened. Followed with WGCNA, PPI analysis, GEPIA 2, and HPA
database verification, thirteen hub genes including CDK1, BUB1, BUB1B, CDC20, CCNB2, CCNB1,
KIF2C, NDC80, CDCA8, CENPF, BIRC5, AURKB, PLK1, MAD2L1, and CENPE were obtained, and
they may serve as potential therapeutic targets of breast cancer. Especially, overexpression of CCNB1
and PLK1 are strongly associated with the low survival rate of breast cancer patients, demonstrating
their potentiality as prognostic markers. Moreover, CCNB1 and PLK1 are highly expressed in all
breast cancer stages, suggesting that they could be further studied as potential drug targets. Taken
together, our study highlights CCNB1 and PLK1 as potential anti-breast cancer drug targets and
prognostic markers.
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1. Introduction

Breast cancer is a malignant tumor arising from the deterioration of lesions in the
epithelial tissue of the breast. Approximately 1.4 million people worldwide are diagnosed
with breast cancer, causing about 500,000 deaths each year [1]. As the biggest threat to
women’s life, breast cancer has the highest incidence and second highest mortality rate
among the female population [2,3]. At present, the number of breast cancer patients is
still growing at an extremely fast speed. About 2.3 million new breast cancer cases were
diagnosed worldwide in 2020. Breast cancer surpassed lung cancer as the most diagnosed
cancer worldwide for the first time and accounted for 11% of new cancer cases worldwide
in 2020 [4]. Therefore, it is essential to reveal the pathogenesis of breast cancer and discover
potent new biomarkers for breast cancer diagnosis, treatment, and prognosis.

In recent years, with an in-depth study of the molecular mechanism of breast cancer,
researchers have reported a series of abnormally expressed genes involved in the occurrence
and development of breast cancer. For example, the expression of RBBP7 and BIRC5
in ER-positive ductal carcinoma in situ (DCIS) is significantly higher than in invasive
ductal carcinoma (IDC) [5]. Overexpression of the BCL11A gene is associated with triple-
negative breast cancer (TNBC) [6]. TMEM45A, FAT1, and DST play significant roles in
transforming carcinoma in situ into invasive carcinoma [7]. Overexpression of FOXK1
promotes proliferation, migration, and invasion of breast cancer cells [8]. Regulation
of GATA-3 and FOXA1 genes expression in HR-positive/HER2-negative breast cancer
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contributes to cancer treatment [9]. In addition, isomers have been reported to play key
roles in breast cancer processing. For example, BRD4-S is a short isomer with less content in
BRD4 functioning as a carcinogen protein, while the isomer BRD4-L can inhibit breast cancer
cells’ formation, proliferation, and migration [10]. AKT has two antagonized isomers. AKT1
promotes cell proliferation and reduces the migration of breast cancer cells, while AKT2
promotes migration and invasion of cancer cells [11]. The discovery of these abnormally
expressed genes paves a novel way for drug targets development. However, the mechanism
of these abnormally expressed genes remains to be studied. Therefore, it is urgent to
continuously search for abnormally expressed genes in breast cancer that can be used as
diagnostic markers and drug targets.

At present, bioinformatics technology is widely used to predict the functions of key
genes involved in breast cancer progression. Jin et al. found that FOXC1 plays a vital role
in human basal-like breast cancer through the analysis of public databases [12]. Cheng et al.
found that increased TIMP-1 expression level is strongly associated with a poor prognosis
of TNBC [13]. Therefore, we wish to screen abnormally expressed genes that can be used as
drug targets and prognostic markers from public databases using bioinformatics analysis.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

This study is based on the following technical route (Figure S1). The acquisition of breast
cancer sample data (HTSeq-Counts) was performed in the GDC (Genomic Data Commons)
data portal of the TCGA (https://cancergenome.nih.gov/, accessed on 6 March 2022) database.
We finally obtained the gene expression data of 1215 tissue samples, of which 103 were normal,
and 1102 were cancer tissue samples. The following three methods were used to screen the
low expression genes in the bioinformatics analysis software RStudio.

1. Building a DGElist object, and then filtering out the low expression genes using the
FilterbyExpr function attached to the edgeR toolkit;

2. For the convenience of analysis, the expression levels of different genes in the database
have been assigned. The genes’ average expression levels bigger than 1 in each sample
were screened;

3. The expressed genes were screened in 75% of the samples.

2.2. Identification of Differentially Expressed Genes

This study used DESeq2, edgeR, and limma to screen differentially expressed genes
(DEGs) between normal breast tissue and tumor tissue samples. The corresponding normal-
ization processing is carried out according to the median of ratio of DESeq2 and edgeR’s
TMM. The screening conditions were |log2 (FC)| > 1.5 and p ≤ 0.05.

2.3. Weighted Genes Correlation Network Analysis

The obtained DEGs were analyzed by weighted genes correlation network analysis
(WGCNA) [14]. The steps of WGCNA mainly include gene co-expression similarity matrix
calculation, adjacency function calculation, soft threshold selection, topological overlap ma-
trix, heterogeneity matrix calculation, dynamic branch cutting calculation of gene module,
and correlation analysis between gene modules and sample clinical information.

2.4. Construction of Protein-Protein Interaction Network

The protein-protein interaction (PPI) network was constructed using the STRING
database. The STRING database excluded proteins with weak connections with other
proteins in the network by setting the minimum interaction score. The minimum interaction
score was set to “the highest confidence (0.900)” to obtain the module genes’ protein
interaction network diagram.

https://cancergenome.nih.gov/
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2.5. Screening of Core Modules and Hub Genes

The constructed PPI network was imported into Cytoscape analysis software, and the
core modules and hub genes were screened by MCODE and CytoHubba plug-ins. The setting
parameters of MCODE plug-in were: degree cut-off = 2, node density cut-off = 0.1, node score
cut-off = 0.2, k-core = 2, and maximum depth = 100. This study used three algorithms
in the CytoHubba plug-in: MCC (Maximal Clique Centrality), Degree, and Closeness to
obtain the hub gene. Each algorithm selected twenty genes with the highest score and the
intersection of three results was adopted to obtain the hub genes.

2.6. Expression Analysis

The hub gene expression in normal and cancer tissues was obtained from the GEPIA
2 database (http://gepia2.cancer-pku.cn/index.html, accessed on 6 March 2022). The
difference of hub gene expression was observed to inspect the screening results from the
TCGA database. The protein immunohistochemical staining results obtained from the
HPA database (https://www.proteinatlas.org/, accessed on 6 March 2022) were used to
verify the expression levels of the hub gene in normal and cancer tissues. The protein
immunohistochemical staining levels were divided into “not detected”, “low”, “medium”,
and “high”.

2.7. Survival Analysis

ROC (receiver operating characteristic) analysis and K-M uni-variate analysis were per-
formed to verify the possibility of hub genes as tumor diagnostic markers and
therapeutic targets.

2.8. Kaplan-Meier Plotter

“Auto select best cutoff” was used to identify the stratification threshold and evaluate
the overall survival (OS), post-progression survival (PPS), and recurrence-free survival
(RFS) of breast cancer patients. The corresponding 95% confidence interval and p-value
were set.

2.9. Analysis of Candidate Targets

GEPIA 2 database was used to investigate the relationship between target genes
expression and stage grades, the expression map of target genes in other cancers, and the
isoforms expression distribution of target genes.

2.10. Gene Enrichment Analysis

The enrichment analysis results were verified from three aspects:

1. Gene Ontology (GO) and KEGG enriched module genes obtained by WGCNA;
2. DAVID database was used to conduct GO and KEGG enrichment analysis on the

modules with the highest scores screened by the plug-in MCODE;
3. GEPIA 2 database was used to screen ten genes that similar to each hub gene’s

expression pattern. The Metascape (https://metascape.org/, accessed on 6 March
2022) was chosen for enrichment analysis.

2.11. Tools

All bioinformatics analysis in this study used R (https://www.r-project.org/, accessed
on 6 March 2022) language and multiple data packets, including “tcgabiolinks”, “ggplot2”,
“Rio”, “rjson”, “edger”, “deseq2”, “limma”, “pheatmap”, “factoextra”, “factominer”, “ven-
ndiagram”, “WGCNA”, “survival”, “surfminer”, “proc”, “clusterProfiler”, “enrichplot”,
“topGO”, “ReactomePA”, “pathview”, “AnnotationHub”, and “AnnotationDbi”.

http://gepia2.cancer-pku.cn/index.html
https://www.proteinatlas.org/
https://metascape.org/
https://www.r-project.org/
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3. Results
3.1. Identification of 1026 Up-Regulated Genes and 1006 Down-Regulated Genes

To reduce the impact of the batch effect on sample screening and subsequent anal-
ysis, we excluded five duplicate samples to obtain a multidimensional gene expression
matrix including 20,546 genes from 113 normal breast tissue and 1097 cancer tissues’ gene
expression profiles. Principal component analysis (PCA) was adopted to reduce the high-
dimensional gene expression data into several principal components. By analyzing the
similarity between principal components, the overall similarity between samples was ob-
tained. The similarity of samples lower than 30% indicated that the gene expression level
between normal and tumor samples was significant. If the sample similarity was higher
than 30%, the batch correction was required. The PCA results indicated that the general
gene expression levels of the normal and tumor groups were significantly different. The
first principal components explained 19.9% of the total variance, while the second principal
component was 9% (Figure 1A). Since the significant difference in the gene expression
between normal and tumor samples was observed, we wished to identify DEGs using
DESeq2, edgeR, and limma. DESeq2, edgeR, and limma are the gold standards for the tran-
scriptome differential expression analysis [15–17]. Considering the analysis error caused
by using any of the three methods alone, the intersection of the three methods was used
to reduce the errors [18]. DESeq2 identified 1625 up-regulated and 1121 down-regulated
genes; edgeR identified 1667 up-regulated genes and 1206 down-regulated genes; and
limma identified 1142 up-regulated genes and 1554 down-regulated genes (Figure 1B–D).
Integration of the results generated from these three methods identified 1026 up-regulated
genes and 1006 down-regulated genes (Figure 1E–F).

3.2. Identification of 693 Module Genes Correlated with Breast Cancer

Earlier studies indicated that clinical phenotypes impacted breast cancer treatment.
To further study the correlation of clinical phenotype with identified DEGs, we firstly
constructed a corresponding weighted gene co-expression network. A total of 1209 samples
were clustered as a clustering tree, as shown in Figure S2A. Afterward, we applied weighted
gene co-expression network analysis (WGCNA) to reveal the correlation of DEGs with
clinical phenotypes, including gender (male, female), survival time (0−8605 days), age
(26−90 years), cancer stage (I, II, III, IV, X), TNM stage (M0, M1, MX; N0, N1, N2, N3, NX;
T1, T2, T3, T4, TX), survival status (death, survival), and breast cancer infection status
(positive, negative).

WGCNA was further applied for cluster analysis to highlight module genes. To make
the network constructed by WGCNA approximate to a scale-free network, we used the
proximity function of WGCNA in R to obtain the soft threshold β= 8 (scale-free R2 = 0.9)
(Figure S2B). All selected genes were clustered by using the dynamic tree-cutting algorithm
based on the topological overlap matrix (TOM), the minMoudleSize (minimum number
of genes in the module) was set to 30, and the mergeCutHeight (minimum distance of
merging module genes) was used to merge modules that distance was less than the set
value (0.25). The clustering tree was divided into six modules (Figure S2C). Genes that were
not included and correlated with any module were classified as a gray module, removed
from subsequent analysis. The number of genes in each module were shown in Table S1. We
analyzed the interaction of the five modules and generated the network heat map, which
indicated the high degree of independence between modules and the relative independence
of gene expression in each module (Figure 2A).
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Figure 1. PCA and differential expression analysis. (A) PCA analysis of breast cancer samples. The
red circle represents the normal tissue, and the blue triangle represents the breast cancer tissue. The
x−axis “Dim1” is the similarity between the first principal component of cancer tissue sample and
normal tissue sample; the y−axis “Dim2” is the similarity between the second principal component.
(B) Volcano plots of DEGs screened by DESeq2. (C) Volcano plots of DEGs screened by edgeR.
(D) Volcano plots of DEGs screened by limma. The abscissa in (B–D) is the logarithm of fold change.
The ordinate is −log10 p value. The magnitude of the numerical value is positively correlated
with significance. Red represents up−regulated genes; blue represents down−regulated genes; and
grey represents none significant. (E) Venn diagrams of up-regulated genes. (F) Venn diagrams of
down-regulated genes. (E,F) demonstrate the number of genes intersected by different methods.

Following the construction of the WGCNA network, we wished to investigate the
correlation of DEGs with clinical phenotypes. We calculated the MS (module significance),
which indicated the correlation of each module trait and association with the different
phenotypic traits of breast cancer. We observed that the module characteristic genes (ME)
of turquoise (r = 0.72, p = 1 × 10−196) and brown (r = 0.72, p = 1 × 10−194) modules had a
stronger correlation with breast cancer infection status than other modules, which contained
a total of 693 genes (Figure 2B).

3.3. A Total of Fifteen Hub Genes Were Selected by the PPI Network

The interaction between proteins profoundly affected all aspects of activities in cells.
To explore the core modules and hub genes that played the greatest role in modular genes,
the STRING database was applied to construct a PPI network of these 693 genes (Figure 3A).
Cytoscape was utilized to visualize the PPI network (Figure 3B). The plug-in MCODE in
Cytoscape was used to identify the dense connection region of the molecular interaction
network based on each molecular’s connection data, of which had a high possibility of
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participation in biological regulation. Finally, sixteen important modules were obtained
(Table S2), and the module with the highest score was visualized (Figure 3C).

Since too many hub genes were included in the modules, it was difficult to under-
stand the role of these hub genes in breast cancer progression. Therefore, we wished to
highlight key hub genes from complex interactive networks by using plug-in CytoHubba
in Cytoscape, which can use different algorithms to calculate the score of each node in the
network, and then sort it. Evaluation of key hub genes were decided by MCC, Degree, and
Closeness. We selected the candidates of key hub genes, as shown in Table S3. Moreover, we
constructed the network map of these highlighted key hub genes, as shown in Figure 3D–F.
Finally, fifteen hub genes were obtained, including CDK1, BUB1, BUB1B, CDC20, CCNB2,
CCNB1, KIF2C, NDC80, CDCA8, CENPF, BIRC5, AURKB, PLK1, MAD2L1, and CENPE.

Figure 2. WGCNA analysis results. (A) Visualization of module gene network. The upper part is the
cluster between modules, and the lower part is the correlation between modules. Color represents
the degree of correlation. (B) Heatmap of the correlation between ME and phenotype of BRCA.
Color represents the correlation between module gene and phenotype, positive value represents
positive correlation and negative value represents negative correlation. It also expresses the level of
significance. p < 0.05 was considered statistically significant. “T”, “N”, and “M” in the x-axis are the
TNM stages of breast cancer. “T” is the size and stage of the tumor, “N” is the metastasis of lymph
nodes, and “M” is the tumor metastasizes to the distance.

3.4. Fifteen Hub Genes Were Highlighted as Potential Therapeutic Drug Targets

The differential expression of the selected fifteen hub genes in normal tissues and
cancer tissues were detected by GEPIA 2 and HPA database to analyze whether hub genes
could be used as breast cancer diagnostic markers. The results showed that the expression
levels of fifteen hub genes in cancer tissues were higher than that in normal tissues, further
suggesting that these fifteen hub genes may play key roles in the development of breast
cancer (Figure 4). The protein expression level of hub genes was verified using the HPA
database. Since lacking data for BUB1, BUB1B, and NDC80 genes in the HPA database,
we showed only twelve key hub genes’ results (Figure S3). The expression of hub genes
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were specified as “high”, “medium”, “low”, and “not detected”. Ten hub genes (CDK1,
CCNB2, CCNB1, CDCA8, CENPF, BIRC5, AURKB, PLK1, MAD2L1, and CENPE) were highly
expressed in cancer tissues compared to normal tissues. However, the antibody staining
of CDC20 and KIF2C both showed medium in breast cancer and normal tissues, so no
significant difference was observed in the expression of CDC20 and KIF2C genes.

Figure 3. (A) PPI network constructed by STRING database. PPI network diagram is composed
of nodes and edges. Each node represents a protein, and the connection represents the interaction
between proteins. (B) Visualization of PPI network in Cytoscape. (C) Visualization of the core module
with the highest score. (D) Hub genes obtained according to MCC. (E) Hub gene obtained according
to Closeness. (F) Hub gene obtained according to Degree.

To further verify the predictive performance of the highlighted key hub genes as
potential drug targets, we conducted ROC analysis and calculated the area under curve
(AUC) to compare the expression level of these fifteen key genes in normal and tumor tissue.
The results indicated that the AUC values of fifteen key hub genes were more than 95%,
which further suggested the expression of these fifteen key hub genes can be distinguished
from tumor tissues to normal tissues (Figure 5). Our observation was consistent with
GEPIA 2, and HPA databases’ results indicated that these hub genes might be potential
tumor molecular markers of breast cancer.

3.5. Highly Expressed CCNB1 and PLK1 in Breast Cancer Were Associated with a Low
Survival Rate

To explore the relationship between the expression of fifteen hub genes and the
survival rate of breast cancer patients and whether they can be used as potential targets
for treatment and prognosis, we conducted a survival analysis on selected hub genes.
The results suggested that only CCNB1 and PLK1 could be potential therapeutic targets
and prognostic markers (Figure 6A,B). However, the other 13 genes were not statistically
significant (p > 0.05) (Figure S4). We wished to further evaluate the CCNB1 and PLK1 as
therapeutic targets and prognostic markers. Kaplan–Meier plotter was applied to analyze
the correlation of survival rate with CCNB1 and PLK1 expression. The results demonstrated
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that the high expression of the CCNB1 group’s overall survival rate declined faster than
the patients that CCNB1 was less expressed from 0 to180 months. However, the overall
survival rate of both groups were nearly the same at the 180th month. After 180 months, the
survival rate of the low-expression group remained at 0.7, while the survival rate of the high
expression group decreased remarkably until remained at 0.4 (Figure 6C–E). In addition,
we also investigated the post-progression survival rate and recurrence-free survival rate.
In line with the observation of overall survival rate, CCNB1 high-expression group’s
post-progression survival rate and recurrence-free survival rate significantly decreased
compared to the low-expression group. Similarly, the analysis of all three survival rates
of patients with high-expression PLK1 were lower than the PLK1 low-expressed group
(Figure 6F–H). The significant correlation between the high expression of CCNB1 and
PLK1 and the low survival rate of patients implied the possibility of CCNB1 and PLK1 as
prognostic markers and as targets to screen expression inhibitors during treatment.
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To further explore the role of CCNB1 and PLK1 in the development of breast cancer,
we used the GEPIA2 database to analyze the expression levels of CCNB1 and PLK1 at
different clinical stages. The results indicated that the expression levels of CCNB1 and
PLK1 in stage III were higher than that in patients in other stages (Figure S5A,B). Previous
studies reported that different isoforms played vital roles in breast cancer development.
Interestingly, CCNB1 has seven known isoforms, while PLK1 has nine isoforms. We selected
the GEPIA2 database to analyze the expression of CCNB1 and PLK1 isoforms in breast
cancer patients. The results indicated three CCNB1 isoforms, including CCNB1-001, CCNB1-
003, and CCNB1-006, and the isoform PLK1-001 of PLK1, were highly expressed in breast
cancer samples (Figure S5C,D).

In addition, we also used GEPIA2 to investigate the expression of CCNB1 and PLK1 in
a variety of other cancers, and the results demonstrated that they were highly expressed
in most tumor tissues. Especially, they were significantly over-expressed in lung cancer,
gastric cancer, rectal cancer, and brain cancer tissues. This observation further illustrated
that the over-expression of CCNB1 and PLK1 were of great significance for the occurrence
of other cancers (Figure S6).
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3.6. CCNB1 and PLK1 Were Enriched in Breast Cancer Cell Division and Cell
Cycle-Related Pathways

We conducted enrichment analysis in three aspects to carry out the multi-dimensional
cross-analysis. We firstly performed GO and KEGG enrichment analysis on 693 module
genes obtained from WGCNA (Figure 7A,B). KEGG analysis showed that the genes mainly
enriched in “cell cycle,” “oocyte meiosis,” “human T-cell leukemia virus one infection,”
and “progesterone-mediated oocyte maturation.” The GO enrichment analysis results
showed the genes in BP (biological process) mainly enriched in “organelle fission,” “nuclear
division,” and “chromosome segregation.” CC (cellular component) was mainly enriched in
the “chromosomal region”, “spindle”, “chromosome, centromeric region”, and “condensed
chromosome” and other regions. MF (molecular function) mainly enriched in “tubulin-
binding”, “ATPase activity”, and “microtubule-binding”.
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The DAVID database was used to perform GO and KEGG analysis on the genes of the
core module with the highest score to investigate the core module’s main action pathway
(Figure S7). The analysis results were shown in Table S4. The five most enriched path-
ways obtained are “GO:0007062-sister chromatid cohesion”, “GO:0051301-cell division”,
“GO:0007067-mitotic nuclear division”, “GO:0000777-condensed chromosome kinetochore”,
and “GO:0005829-cytosol”.

Since the number of hub genes is small, we selected ten genes with similar expression
patterns for each hub gene in the GEPIA 2 database to reduce the errors in the enrichment
analysis. We obtained a total of 150 genes; the enrichment analysis of these genes was
performed using Metascape to study the gene action pathways related to the expression
pattern of the hub gene and compared with the previous module gene action pathways
(Figure 7C). The results showed that similar genes of the hub gene were mainly enriched
in “cell division,” “spindle,” “chromosome, centromeric region,” “regulation of cell cycle
process,” and “spindle pole.”
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Figure 6. Kaplan−Meier survival analysis of the hub genes. (A) K−M analysis of CCNB1. (B) K–M
analysis of PLK1. The x−axis is the survival time, and the death time or the last follow−up time of the
patient was taken as the final survival time of the patients. The y−axis is survival rate. The samples
were divided into “high” (Red) and “low” (Blue) gene expression groups, and the segmentation
threshold was the median. p < 0.05 was considered statistically significant. (C) Overall survival rate
(OS) of CCNB1. (D) Post-progression survival (PPS) rate of CCNB1. (E) Recurrence-free survival
(RFS) rate of CCNB1. (F) Overall survival (OS) rate of PLK1. (G) Post-progression survival (PPS) rate
of PLK1. (H) Recurrence-free survival (RFS) rate of PLK1. The upper x−axis is the survival time,
and the y−axis is the survival rate. The samples were divided into “high” (Red) and “low” (Black)
gene expression groups, and the segmentation threshold was auto select best cutoff. p < 0.05 was
considered statistically significant.
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Figure 7. Enrichment analysis. (A) GO enrichment analysis of 693 module genes obtained from
WGCNA. The enrichment results are carried out from three aspects: biological process (BP), cellular
component (CC), and molecular function (MF). (B) The 693 module genes obtained from WGCNA
were analyzed by KEGG enrichment analysis. The x−axis of each part of a−b is the proportion of
genes enriched in this pathway of the total analyzed genes. The different size of the dot represents
the number of genes enriched in the pathway, and the color of the dot represents the p value. p < 0.05
is regarded as statistically significant. (C) Enrichment analysis of 150 genes expression, which were
similar to hub genes expression pattern. Each column bar on the y−axis represents an enrichment
pathway, and the x-axis is the significance.

4. Discussion

Breast cancer is a malignant tumor with high molecular heterogeneity. Since the late
1970s, breast cancer has been the leading cause of women’s death [1]. The formation,
development, and deterioration of breast cancer are affected by multiple factors such as
genetic factors, therapeutic factors, and environmental factors. For a long time, the clinical
treatment of breast cancer has been based on surgery, supplemented by chemotherapy,
endocrine therapy, radiotherapy, and traditional Chinese medicine treatment. The discovery
of molecular markers and drug targets paved the way for a novel treatment based on
molecular targets. At present, gene targeting therapy for breast cancer is mainly focused
on the treatment of oncogenes, tumor suppressor genes, and tumor angiogenesis genes of
breast cancer. In addition, especially indirect therapy will be carried out for breast cancer
immune genes, drug-sensitive genes, and multi-drug resistance genes [19]. The wide use
of molecular targets in diagnosis, treatment, and prognosis encourages researchers to find
better molecular targets. It is essential to understand the molecular basis playing key roles
in the development and progression of breast cancer.

In this study, we obtained genes expression data of 1097 breast cancer samples and
113 normal tissues from the TCGA database. The analysis of DESeq2, edgeR, and limma
indicated 1026 up-regulated genes and 1006 down-regulated genes in breast cancer tissue
samples. Since the samples contained a large number of DEGs, we only focused on the part
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with the highest correlation when analyzing the correlation between traits and DEGs. We
highlighted two modules, which were the most relevant to breast cancer status, including
693 module genes. Then, the PPI network containing 693 genes was constructed using
a STRING database, and sixteen core modules were obtained. The hub genes in the PPI
network were selected by calculating three algorithms: MCC, Degree, and Closeness. A
total of fifteen hub genes (CDK1, BUB1, BUB1B, CDC20, CCNB2, CCNB1, KIF2C, NDC80,
CDCA8, CENPF, BIRC5, AURKB, PLK1, MAD2L1, and CENPE) were obtained.

This was followed by the detection of the fifteen hub genes expression level in normal
and tumor tissues through the GEPIA2 database. The results indicated that all hub genes
were highly expressed in tumor tissues. HPA database was selected to further verify the
expression level of these hub genes in tumor tissues. BUB1, BUB1B, and NDC80 were
excluded because they were not recorded in the HPA database. The protein immunohisto-
chemical staining indicated the levels of CDC20 and KIF2C were nearly the same in normal
and cancer tissues, which was inconsistent with the result that the expression levels of
CDC20 and KIF2C in tumor tissues were higher than normal tissues. This may be due to the
sample size of CDC20 and KIF2C in the HPA database being too small, post-transcriptional
regulation, or any other mechanisms. This may be our future interest remained to be
studied. However, the other ten hub genes were highly expressed in cancer tissues, which
was consistent with the analysis of the GEPIA2 database.

ROC analysis of fifteen hub genes showed that the AUC values of fifteen hub genes
were all greater than 95%, suggesting that these fifteen hub genes might have a better chance
to be tumor diagnostic markers. However, since the samples we obtained were already in
the cancer stage, the possibility of them as diagnostic markers of pre-cancer remain to be
investigated. Further experimental and clinical verification of their feasibility as diagnostic
markers of breast cancer would be needed in the future. In addition, the Kaplan–Meier
survival analysis of fifteen hub genes demonstrated that the high expression of CCNB1
and PLK1 was significantly correlated with the low survival rate of breast cancer patients.
The 5- and 10-year overall survival rates of CCNB1 and PLK1 highly expressed patients
were about 22% lower than those patients low-expressed. Furthermore, the survival rate of
CCNB1 and PLK1 highly expressed group was dramatically declined after 15 years, which
was about 43% lower than the low-expressed group. We also investigated the relationship
between CCNB1 and PLK1 and the clinical stage using the GEPIA2 database. The results
indicated that CCNB1 and PLK1 expression level in stage III were higher than other stages,
suggesting they might play special roles in the development of breast cancer, especially
in stage III. Previous studies have found that some protein isoforms play an important
role in the development of breast cancer. For example, BRD4 and AKT are important for
the proliferation of breast cancer cells, and their isomers are antagonized to each other.
Interestingly, CCNB1 and PLK1 have multiple isoforms. We analyzed the expression levels
of their isoforms and found that the expression levels of CCNB1-001, CCNB1-003, CCNB1-
006, and PLK1-001 in breast cancer tissues were higher than those in normal tissues. In
later studies, we will further explore the role of their isoforms in the development of
breast cancer.

As an important member of the cyclin family, CCNB1 plays an important role in mito-
sis initiation and regulation. CCNB1 accumulates in the S phase and reaches the maximum
level during mitosis. Afterward, CCNB1 is degraded rapidly when the cell cycle transits
from metaphase to anaphase. At present, the role of CCNB1 in a variety of cancers has
been studied. For example, the silencing of CCNB1 in pancreatic cancer cells promotes
cell senescence, inhibiting cell proliferation and promoting cell apoptosis [20]. The role
of CCNB1 in breast cancer progression is also reported. For instance, Liang Fang et al.
reported that circ-CCNB1 inhibits p53, thereby promoting the occurrence and development
of breast cancer [21]. The combination of CCNB1 and paclitaxel increases the apoptosis of
breast cancer cells and enhances paclitaxel’s antiproliferative effect [22]. Moreover, CCNB1
is a highly reproducible prognostic marker in lymph node negative breast cancer [23]. PLK
family is an essential mitotic regulator, controlling the termination of mitosis by modulat-
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ing APC production (anaphase-promoting complex) and regulating the coordination of
cytokinesis in space and time [24]. PLK1 is a highly conserved member of the PLK family.
It plays a vital role as a regulator of cell division during mitosis. PLK1 is generally enriched
in mitotic centrosomes, kinetochores, and cytokinesis midbody, which enable PLK1 to
phosphorylate specific downstream targets, thereby regulating mitosis [25]. At present,
researchers elucidate the roles of PLK1 in the development of breast cancer. Researchers
have shown the anti-sense inhibitors, that target PLK1 inducing a synergistic effect of
taxane and paclitaxel, thereby enhancing the sensitivity of breast cancer cells to these drugs
in vivo and in vitro [26]. In addition, researchers have reported the transcriptional action
of PLK1 on the regulation of ER mediated by human breast cancer cells, and proposed the
mechanism of PLK1 as a mediator of interphase transcription regulators in animal mam-
malian tumors [27]. Above all, we concluded that continuous tracking of the expression
levels of CCNB1 and PLK1 was of great significance in improving patients’ prognosis and
survival rate. Moreover, the identification of inhibitors that targeting CCNB1 and PLK1
might provide a new idea for treating breast cancer.

Although the other thirteen hub genes were not significantly correlated with prognosis,
their abnormal expression might play an important role in the occurrence and development
of breast cancer. For example, blocking CDK1 expression combined with other therapies
has shown strong anti-cancer effects for breast cancer patients [28]. Knockdown of CDC20
results in inhibition of metastatic MDA-MB-231 migration in breast cancer cell lines [29].
CCNB2 overexpression stimulates proliferation in vitro and in vivo in three negative breast
cancer cells [30]. Although the role of other hub genes in breast cancer has not been
specifically reported, studies have shown that they play an essential role in other cancers,
such as BUB1 promotes proliferation by activating SMAD2 phosphorylation [31]. The
injury of BUB1B has a destructive effect on the viability and tumorigenicity of cancer
cells [32]. The TBX15/miR-152/KIF2C pathway regulates adriamycin resistance in breast
cancer by promoting PKM2 ubiquitination [33]. High expression of NDC80 promotes
the malignant progression of colorectal cancer [34]. Knocking down CDCA8 inhibits the
proliferation of bladder cancer cells and enhances apoptosis [35]. CENPF regulates cancer
metabolism by regulating pyruvate kinase M2 phosphorylation signal transduction [36].
BIRC5 directly regulates apoptosis and mitosis in cancer cells during tumorigenesis and
tumor metastasis [37]. AURKB promotes the proliferation of gastric cancer cells in vitro
and in vivo [38]. Abnormal expression of MAD2L1 induces chromosome instability and
aneuploidy in cells to promote tumor formation [39]. After knocking down the expression
of CENPE, the proliferation of lung cancer cells is inhibited [40]. The above evidence
suggests that these hub genes play an important role in the occurrence and development of
different cancers. If they can be used as clinical targets need to be further studied.

To explore the pathways and regions that the hub genes are involved in, we performed
three levels of GO and KEGG enrichment analysis on 693 module genes obtained from
WGCNA. The enrichment analysis of these three aspects showed that the above genes
were enriched in the “cell cycle” and “cell division” (including nuclear division, organelle
division, and chromosome division). The research on the cell cycle and cell division of
tumor cells has always been the hot spot. For example, Katrien et al. found that the
P13K pathway is significantly related to proliferation, cell division, cell differentiation,
and apoptosis and may help develop new breast cancer drug therapy combined with
trastuzumab [41]. Meanwhile, CCNB1 and PLK1 also participate in cell cycle and cell
division and function as a regulator of cell division during mitosis, which corroborates
results of the previous analysis. In addition, KEGG analysis highlighted a special pathway,
which is human T-cell leukemia virus 1 infection. Human T cell leukemia virus 1 (HTLV-1)
is a pathogenic retrovirus related to adult T cell leukemia/lymphoma. At present, no
research has proved that HTLV-1 is related to the occurrence and development of breast
cancer, which may provide new ideas for the pathogenesis of breast cancer.

In summary, we screened DEGs based on the TCGA database and discussed their
functions and pathways, which may be related to the occurrence and development of breast
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cancer. We concluded that fifteen hub genes might be a potential diagnosis target for breast
cancer. Especially, we highlighted CCNB1 and PLK1 genes may be potential therapeutic
targets and prognosis markers. These preliminary findings will pave the foundation for
our future experimental investigation.
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