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ABSTRACT
Bacterial small regulatory RNAs (sRNAs) are key regulators of gene expression in many processes related 
to adaptive responses. A multitude of sRNAs have been identified in many bacterial species; however, 
their function has yet to be elucidated. A key step to understand sRNAs function is to identify the 
mRNAs these sRNAs bind to. There are several computational methods for sRNA target prediction, and 
the most accurate one is CopraRNA which is based on comparative-genomics. However, species-specific 
sRNAs are quite common and CopraRNA cannot be used for these sRNAs. The most commonly used 
transcriptome-wide sRNA target prediction method and second-most-accurate method is IntaRNA. 
However, IntaRNA can take hours to run on a bacterial transcriptome. Here we present sRNARFTarget, 
a machine-learning-based method for transcriptome-wide sRNA target prediction applicable to any 
sRNA. We comparatively assessed the performance of sRNARFTarget, CopraRNA and IntaRNA in three 
bacterial species. Our results show that sRNARFTarget outperforms IntaRNA in terms of accuracy, ranking 
of true interacting pairs, and running time. However, CopraRNA substantially outperforms the other two 
programsin terms of accuracy. Thus, we suggest using CopraRNA when homolog sequences of the sRNA 
are available, and sRNARFTarget for transcriptome-wide prediction or for species-specific sRNAs. 
sRNARFTarget is available at https://github.com/BioinformaticsLabAtMUN/sRNARFTarget.
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1 Introduction

sRNAs are bacterial small regulatory RNAs, usually less 
than 200 nucleotides in length, involved in several biologi
cal functions, such as virulence, metabolism, and environ
mental stress response [1]. It is generally accepted that 
most bacteria have hundreds of sRNAs that regulate 
mRNA expression [2]. Many sRNAs exert their functions 
when they interact with mRNAs, and these interacting 
mRNAs are called the targets of the sRNAs. To understand 
the function and the regulatory networks of sRNAs, we first 
need to identify their targets.

There are several bioinformatics methods for sRNA target 
prediction such as CopraRNA [3], SPOT [4], TargetRNA2 [5], 
sTarPicker [6], and IntaRNA [7,8]. CopraRNA, the most accu
rate method, requires sequence conservation of both sRNA and 
mRNA in at least four bacterial species, and must be run one 
sRNA at a time. The sequence conservation requirement makes 
CopraRNA unsuitable for species-specific sRNAs. The number 
of species-specific sRNAs per bacterium varies greatly, as stu
dies have found between one-fifth to nearly four-fifths of 
detected sRNAs to be species-specific [9–11]. Out of the pro
grams that are not comparative genomic-based, IntaRNA and 
sTarPicker have been shown to achieve the best results in terms 
of the area under the ROC curve (AUROC) [6,12]. IntaRNA is 
also the underlying algorithm of CopraRNA [3]. However, 
perform 

ing a transcriptome-wide sRNA target prediction on a bacterial 
transcriptome using IntaRNA might take several hours 
depending on the number of sRNAs and mRNAs investigated. 
Here we present sRNARFTarget, the first ML-based method 
that predicts the probability of interaction between an sRNA- 
mRNA pair. sRNARFTarget is generated using a random forest 
[13] trained on the trinucleotide frequency difference of sRNA- 
mRNA pairs. As sRNARFTarget bases its predictions on 
sequence alone, it can be applied to any sRNA-mRNA pair 
(i.e. does not require sequence conservation of either sRNA or 
mRNA). To train sRNARFTarget we collected known sRNA– 
mRNA interactions including those identified using RNA 
sequencing (RNA-seq) [14] approaches such as MAPS [15], 
GRIL-seq [16], CLASH [17] and RIL-seq [18]. This generated 
a data set of 745 known sRNA-mRNA interacting pairs from 
multiple bacteria.

We comparatively assessed the performance of 
sRNARFTarget, CopraRNA and IntaRNA in terms of 
AUROC, ranking of confirmed interacting pairs, and run
ning time using data from three bacterial species 
(Escherichia coli, Pasteurella multocida and Synechocystis 
sp PCC 6803). Our results show that CopraRNA is the 
most accurate and sRNARFTarget is the fastest of the 
three programs. Specifically, sRNARFTarget is on average 
100 times faster than IntaRNA with the same or higher 
accuracy.
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2 Materials and methods

2.1 Data collection

By searching in NCBI Pubmed, we identified studies listing 
confirmed sRNA–mRNA interactions including those identified 
by RNA-seq-based methods (Table 1). We collected all experi
mentally confirmed or high-confidence sRNA-mRNA pairs 
listed in these studies and gathered roughly 2,400 sRNA- 
mRNA pairs from multiple bacteria. An overview of the criteria 
used to select these sRNA-mRNA pairs is provided in Table S1.

The sRNA-mRNA pairs listed in the literature are in 
a variety of formats providing either sRNA – mRNA names, 
sRNA – mRNA sequences, or sRNA – mRNA genomic loca
tions. We used the sequences directly if they were provided 
(e.g. sTarBase3.0 [29]). For other datasets, we created a file 
containing Entrez genome accession number, sRNA name 
and target mRNA name per sRNA-mRNA pair.

Our first data preprocessing step was to remove any dupli
cate pairs. To get the sRNA and mRNA sequences, we wrote 
two Nextflow (version 0.32.0) [30] pipelines. The first pipeline 
finds whether the sRNAs and mRNAs names exist in the 
NCBI Gene database using the esearch function of Entrez 
direct [31] and generates a table containing sRNA-mRNA 
pairs found in the NCBI Gene database. Then, our second 
pipeline gets the sRNA/mRNA sequences using esearch from 
Entrez direct, and bedtools (version 2.27.1) [32]. We then 
divided the collected data into training data and validation 
data (Tables S2 and S3). 102, 22, and 20 sRNA-mRNA pairs 
from Escherichia coli [12], Pasteurella multocida [33] and 
Synechocystis [34,35] respectively, were held-out for bench
marking. The remaining data was used for training the mod
els (Table 2).

At the end of this process we have 745 interacting pairs 
from 37 bacterial species for training, and 144 interacting 
pairs from three bacterial species for validation. All 
Nextflow pipelines and training/validation data used are avail
able at https://github.com/BioinformaticsLabAtMUN/ 
sRNARFTarget.

2.2 Machine learning model generation

We generated models for sRNA target prediction using three 
ML methods, namely, Random Forest (RF) [13], K-nearest 

neighbours (KNN) [36] and gradient boosting (GB) [37] using 
scikit-learn [38] functions to implement these classifiers.

2.2.1 Training data
We used k-mer frequency difference, and secondary structure 
distances as features to train the machine learning models. To 
calculate k-mer frequency difference, one first has to sepa
rately compute k-mer frequency for both sequences (sRNA 
and mRNA), and then calculate for every k-mer i, fi;mRNA �

fi;sRNA where fi;s is the frequency of k-mer i in sequence s. To 
obtain k-mer frequency and then k-mer frequency difference, 
we ran another Nextflow pipeline using scikit-bio (version 
0.5.5) [39] in Python (version 3.7.4). We used k equal to 3 
and 4, which corresponds to 64 and 256 k-mers, respectively. 
We obtained predicted secondary structures of sRNAs and 
mRNAs using CentroidFold (version 0.0.16) [40] with default 
values. Then we calculated seven distances between sRNA and 
mRNA secondary structures using RNAdistance (version 
2.4.13) [41] programwith default values and indicating with 
the -D parameter the distance to calculate (F, H, W, C, h, w, 
or c).

After processing, our training data contained 745 interact
ing sRNA-mRNA pairs collected from the literature (Table 
S2). We created negative instances by randomly swapping the 
sRNAs in the sRNA-mRNA pairs. Basically, negative 
instances are sRNA-mRNA pairs where there is no experi
mental evidence for interaction. The use of non-annotated 
sRNA-mRNA pairs as negative instances gives 
a conservative estimate of the performance of the models 
(some predictions considered false positives might in fact be 
true positives). In total, we had 1490 sRNA-mRNA pairs (745 
positives and 745 negatives) for training the ML models.

In sum, we have a balanced training data with 1,490 
instances for a binary classification task, and explore four 
feature sets with (a) 64 (trinucleotide frequency difference), 
(b) 71 (trinucleotide frequency difference plus seven dis
tances), (c) 256 (tetra-nucleotide frequency difference), and 
d) 261 (tetra-nucleotide frequency difference plus seven dis
tances) attributes.

2.2.2 Model training
We used grid-search cross-validation (CV) of scikit-learn to 
get the best parameters per ML method. Table 3 shows the 
parameter ranges used in grid-search CV. We did 10-fold 
stratified CV to ensure balanced class distribution in each 
fold and used the area under the ROC curve (AUROC) to 
evaluate model performance. Additionally, we used 
R importance function [42] based on mean decrease in 

Table 1. Studies from which we collected sRNA-mRNA interacting pairs.

Bacterium Data source

Escherichia coli [12,17–20]
Pseudomonas aeruginosa [16,21,22]
Burkholderia cepacia [23]
Pasteurella multocida [33]
Salmonella [24,25]
Mycobacterium tuberculosis [26]
Synechocystis [34,35]
Multiple bacteria [27–29]

Table 2. Training and benchmarking data characteristics.

Data No. of species No. of sRNAs No. of pairs

Training 37 176 745
Benchmarking 3 25 144

Table 3. Parameters per ML method used for grid-search CV.

Method Parameter Values

RF n_estimators [500, 600, 800, 1000]
max_features [‘sqrt’, ‘log2ʹ]
max_depth range(1, 11)

GB n_estimators [400, 500, 700, 1000]
max_features [‘log2’,‘sqrt’]
max_depth range(1, 11)

KNN n_neighbors range(1, 50)
weights [‘distance’, ‘uniform’]
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accuracy to get the feature importance, and filtered out any 
feature with a mean decrease in accuracy � 0.

2.2.3 Model selection
We calculated sRNA-mRNA secondary structure distances to 
explore whether these features will increase AUROC and 
added them as features together with the trinucleotide fre
quency difference or the tetra-nucleotide frequency difference. 
Thus, we trained models using either trinucleotide frequency 
difference (64 features), tetra-nucleotide frequency difference 
(256 features), trinucleotide frequency difference plus seven 
distances, or tetra-nucleotide frequency difference plus seven 
distances. For each of the four sets of features, we found the 
optimal parameter setting per classifier using grid search CV 
and compared the models’ performance in terms of 10-fold 
CV AUROC. We selected the model with the highest 
AUROC, and saved this model to be used by the Nextflow 
pipeline implementing sRNARFTarget.

2.3 sRNARFTarget nextflow pipeline

We wrote a Nextflow pipeline that uses our best model for 
sRNA target prediction. The pipeline takes sRNA and mRNA 
sequences in FASTA format as input, creates all possible 
sRNA-mRNA pairs, obtains the k-mer frequency for both 
sRNA and mRNA, and calculates the k-mer frequency differ
ence by subtracting sRNA frequency from mRNA frequency 
using pandas (version 0.25.1) [43,44] subtract function. Then, 
the saved best model is loaded and predictions for all pairs are 
generated. The final result of the pipeline is a CSV file con
taining predicted probabilities of sRNA–mRNA interaction 
sorted in descending order (see Fig. S1 for workflow of 
sRNARFTarget program). Additionally, a file containing the 
features for all sRNA and mRNA pairs is also created. This file 
is used by the interpretability programs.

2.4 sRNARFTarget interpretability

We wrote two Python scripts using SHAP (version 0.35.0) 
[45] and pyCeterisParibus (version 0.5.2) [46] packages to 
facilitate the interpretation of predictions generated by 
sRNARFTarget (Fig. S2). Both scripts use the feature file 
generated by sRNARFTarget to get the features for the pair 
of interest. sRNARFTarget_SHAP uses TreeExplainer of 
SHAP to create an explainer. Then, it calculates the SHAP 
values for a given observation and generates SHAP’s decision 
and force plots for interpretation. sRNARFTarget_CP creates 
the explainer using training data and calculates ceteris paribus 
profiles for a chosen feature for given sRNA-mRNA pair. It 
then generates a plot of the calculated profiles for the selected 
feature.

2.5 Benchmarking

Previous comparative assessments of sRNA target prediction 
programs [4,6,12] reported four programs (CopraRNA, 
IntaRNA, SPOT and sTarPicker) as the most accurate pro
grams, with CopraRNA been the most accurate program. 

SPOT is reported to be comparable to CopraRNA; however, 
we were unable to run SPOT locally and running SPOT 
through Amazon Web Services (AWS) requires payment 
[47]. Additionally, sTarPicker program is no longer available. 
Therefore, we included CopraRNA and IntaRNA in our 
benchmark.

The data used for independent benchmarking have 22 
sRNAs and 102 confirmed interacting sRNA-mRNA pairs 
for E. coli [12], one sRNA and 22 confirmed sRNA-mRNA 
pairs for P. multocida [33], and two sRNAs and 20 pairs for 
Synechocystis bacteria [34,35]. These data were not used for 
training. We extracted the sequences for 22 sRNAs of E. coli 
using our Nextflow pipeline as described above. For all other 
sRNAs, we fetched the sequence directly from the NCBI 
nucleotide database based on the locations provided in the 
corresponding manuscript. The location of isar1 sRNA was 
taken as reported in [34]. The location of psrR1 sRNA 
(1,671,919–1,672,052) was confirmed by electronic communi
cation with the author of [35]. Finally, gcvB sRNA location 
was obtained from [33]. As we wanted to perform transcrip
tome-wide prediction of sRNA targets, we collected genomic 
location for all the mRNAs belonging to each bacterium 
directly from NCBI. We then obtained the sequences for 
these mRNAs using our Nextflow pipeline. In the case of 
CopraRNA, if predictions for a given E. coli sRNA were 
already available in CopraRNA web server, we used the avail
able predictions. Otherwise, to find homologs for E. coli 
sRNAs, we used GLASSgo – sRNA Homolog Finder [48]. 
Additionally, we used the homologs provided in [34] and 
[35] for isar1 and psrR1 sRNAs of Synechocystis. For gcvB 
sRNA of P. multocida, we retrieved homolog sRNAs from 
NCBI. Note that all the sRNAs in the validation data are 
conserved among some bacterial species. We chose conserved 
sRNAs so that CopraRNA could be included in the compara
tive assessment.

We downloaded IntaRNA (version 3.1.0.2) source code 
from [49], installed it locally, and executed it with default 
values from the command line. To obtain a total execution 
time for IntaRNA, we created a Nextflow pipeline to run 
IntaRNA’s two steps: 1) getting the interaction energy 
and 2) calculating the p-values for the interaction energy. 
We ran sRNARFTarget and IntaRNA from the Linux com
mand line (system specifications are: one processor, processor 
speed 2.2 GHz, 4 cores and 16 GB RAM). CopraRNA (version 
2.1.2) was run from its web server (http://rna.informatik.uni- 
freiburg.de/CopraRNA/Input.jsp, version 4.8.2).

After running the programs, we standardized their results 
by assigning corresponding classes to all predictions (1 to 
confirmed interacting sRNA-mRNA pairs and 0 to all other 
sRNA-mRNA pairs) and using predicted interaction probabil
ity for all programs. CopraRNA and IntaRNA output p-values 
where lower p-values indicate higher predicted likelihood of 
interaction. Thus, we subtracted CopraRNA and IntaRNA 
p-values from 1 to obtain predicted interaction probability. 
Additionally, for all three programs we rounded the predicted 
interaction probability to 5 decimals. To eliminate the dupli
cate entries from CopraRNA result, we wrote an R (version 
3.5.1) script to get the most significant p-value (lowest 
p-value) for each sRNA-mRNA pair, and remove all other 
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entries. We wrote an R script to get the pairs predicted by 
both IntaRNA and sRNARFTarget (Table 4). For those 
sRNA-mRNA pairs not predicted by CopraRNA (i.e. non- 
conserved pairs), we included them in CopraRNA evaluation 
with a predicted interaction probability of zero. By doing this, 
all three programs were evaluated on the same number of 
sRNA-mRNA pairs (Table 4). On average, CopraRNA did not 
make a prediction for 16:7%� 0:025 of sRNA-mRNA pairs 
(Table S4).

3 Results and discussion

3.1 Selection of sRNARFTarget ML model

We adopted the idea of using sequence-derived features such 
as k-mer frequency from previous studies [50–53]. As sRNAs 
bind mRNAs through base pairing [54], we hypothesized that 
k-mer frequency difference might capture base pairing poten
tial between mRNA and sRNA for the classifiers to use. Thus, 
we created feature sets using trinucleotide and tetra- 
nucleotide frequency difference. We started with trinucleotide 
composition, and as the performance decreased with tetra- 
nucleotide composition, we decided not to go beyond tetra- 
nucleotide composition.

Table 5 shows the performance in terms of AUROC of 
the best model per classifier when trained using trinucleo
tide frequency difference and tetra-nucleotide frequency 
difference. AUROC achieved with trinucleotide frequency 
difference was higher than the AUROC achieved with 
tetra-nucleotide frequency difference. With trinucleotide 
frequency difference, the model with the best performance 
in terms of AUROC was the RF one with 0.67, followed by 
GB with 0.66, and then KNN with 0.63.

RNA secondary structures are associated with the regula
tion of mRNA [55]. Previous studies [53,56] used secondary 
structure information for prediction of sRNA–mRNA inter
action and non-coding RNAs. As the secondary structure of 
both sRNA and mRNA affects their binding [57], we decided 
to assess whether including secondary structure distances as 
features together with the tri(tetra)-nucleotide frequency dif
ference improved performance in terms of AUROC. However, 

including predicted secondary structure distances to the fea
ture set did not increase the models’ performance. When 
including secondary structure distances as features in addition 
to trinucleotide frequency difference, the AUROC was 
unchanged for RF (AUROC 0.67), dropped by more than 
half for KNN (AUROC 0.27) and went slightly up for gradient 
boosting (AUROC 0.67). Similarly, adding secondary struc
ture distance features with tetra-nucleotide frequency differ
ence features had little to no effect on model performance 
(Table S5). As adding distance features did not substantially 
improve models’ performance but dramatically increased the 
time required to extract the features from seconds to hours 
(due to the prediction of RNA secondary structure using 
CentroidFold), we decided against using the distance features 
in our final model.

RF and GB models were comparable in terms of AUROC; 
however, the RF model was much faster to train than GB. 
Thus, we decided to train our final model on the 1490 sRNA- 
mRNA pairs using RF and included this model in the 
sRNARFTarget pipeline. The parameters to create this 
model are 500 trees (n_estimators), log2 of features for split 
(max_features), and a maximum depth of the trees of 9 
(max_depth). From now on, we will refer to this final RF 
model as sRNARFTarget. Fig. S3 shows the 10-fold CV ROC 
curve of sRNARFTarget and Fig. S4 shows its top 30 most 
important features.

3.2 Interpreting sRNARFTarget predictions

To facilitate the interpretation of sRNARFTarget predictions, 
we have implemented two pipelines (sRNARFTarget_SHAP 
and sRNARFTarget_CP) to apply interpretability programs to 
sRNARFTarget predictions. To illustrate the functionality of 
these pipelines, we discuss interpretability plots generated for 
isaR1-petF confirmed interacting pair of Synechocystis. 
SHAP’s decision plot shows how the model reached its deci
sion and suggests that the value of feature GGC lowers the 
probability of interaction for this pair (Fig. S5). Force plot 
shows that features ACC and AAT are pushing 
sRNARFTarget to output higher interaction probability for 
this pair (Fig. S6). To gain insight on how a different value 
for the feature GGC impacts the output of sRNARFTarget for 
this pair, we looked at the ceteris paribus plot for feature GGC 
for isaR1-petF pair from Synechocystis (Fig. S7). It shows 
sRNARFTarget’s prediction for different values of GGC 
when all other feature values remain constant. These plots 
can help pinpoint the sequence segments (trinucleotides) that 
contribute more to a specific sRNA–mRNA interaction.

3.3 Benchmark on independent data set

First, we assessed the performance of sRNARFTarget, 
CopraRNA and IntaRNA in terms of AUROC on data from 
three bacterial species: E. coli (gammaproteobacteria), 
Synechocystis (cyanobacteria) and, P. multocida (gammapro
teobacteria). These data were not used for training. The E. coli 
102 confirmed sRNA-mRNA pairs were the same used in the 
assessment performed by Pain et al [12]. We performed 
transcriptome-wide predictions; i.e. the methods have to 

Table 4. Final benchmarking dataset used for all three programs. The table lists 
the genome accession used, the number of sRNAs, the number of mRNAs, the 
number of confirmed interacting pairs (P), and the number of pairs considered 
non-interacting (N) per bacterial species (from top to bottom: E. coli, 
Synechocystis and P. multocida).

Accession sRNAs mRNAs P N

NC_000913.3 22 4,240 101 92,348
NC_000911.1 2 3,179 20 6,324
NC_002663.1 1 1,804 22 1,781

Table 5. 10-fold CV AUROC for the best model per classifier trained on 
sequence-derived features (trinucleotide frequency difference and tetra- 
nucleotide frequency difference) of 1490 sRNA-mRNA pairs.

AUROC (mean � standard deviation)

Models Tri nt. difference Tetra nt. difference
RF 0:67� 0:03 0:31� 0
GB 0:66� 0:03 0:32� 0
KNN 0:63� 0:03 0:45� 0:01
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infer interaction probability for all possible sRNA-mRNA 
pairs. Note that this is a conservative assessment as there 
might be true sRNA-mRNA interacting pairs that have not 
been confirmed yet and are considered false positives in the 
evaluation. Figs. 1, 2 and 3 show the ROC curve for E. coli, 
Synechocystis and P. multocida, respectively. Table 6 shows the 
AUROC for the three programs per bacterium. Across the 

three bacterial species, CopraRNA has the highest AUROC 
followed by sRNARFTarget and then IntaRNA. All programs 
show a decrease in AUROC on P. multocida data. As the data 
used is highly unbalanced (Table 4), we also obtained the 
Precision-Recall curves (PRC) (Figs. S8–S10 and Table S6). 
As it can be seen from the PRC curves and the AUPRC 
achieved, there is still room for improving the precision of 
computational transcriptome-wide sRNA target prediction. 
This result is similar to that obtained by Pain et al [12].

Next, we looked at the rank distribution of confirmed 
interacting pairs per bacterium. Ideally, actual interacting 
pairs should have lower rank than non-interacting pairs, as 
a lower rank indicates that the program predicts with higher 
confidence that a given sRNA-mRNA pair is an actual inter
acting pair. To visualize program performance in terms of 
ranking of confirmed interacting pairs, we generated violin 
plots showing the rank distribution of confirmed interacting 
sRNA-mRNA pairs. The shape surrounding the box plots 
indicates the data density for different rank values. The hor
izontal bar inside the box shows the median rank of the 
confirmed interacting pairs. Fig. 4 shows the violin box plot 
for E. coli. CopraRNA has a lower median rank followed by 
sRNARFTarget and then IntaRNA. The shape of CopraRNA 
suggests that most of the confirmed interacting pairs are 

Figure 1. ROC curve for the three programs on Escherichia coli data. The plot 
shows the sensitivity (also called recall or true positive rate) as a function of the 
false-positive rate (FPR). The dash line indicates random classifier performance.

Figure 2. ROC curve for the three programs on Synechocystis data. The plot 
shows the sensitivity (also called recall or true positive rate) as a function of the 
false-positive rate (FPR). The dash line indicates random classifier performance.
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Figure 3. ROC curve for the three programs on Pasteurella multocida data. The 
plot shows the sensitivity (also called recall or true positive rate) as a function of 
the false-positive rate (FPR). The dash line indicates random classifier 
performance.

Table 6. AUROC obtained on each bacterial species included in the benchmark 
for all three programs assessed.

Bacterium CopraRNA sRNARFTarget IntaRNA

E. coli 0.88 0.65 0.62
Synechocystis 0.95 0.63 0.48
P. multocida 0.65 0.44 0.40
Average � sd 0.83 � 0.16 0.57 � 0.12 0.50 � 0.11
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ranked before all other pairs. The shape of the plot for 
sRNARFTarget suggests that it has more confirmed interact
ing pairs with lower ranks than IntaRNA. We compared the 
rank distributions using the Mann-Whitney test (Fig. 4). The 
p-values obtained indicate that CopraRNA’s median rank of 
interacting pairs is significantly lower than sRNARFTarget’s 
median rank, and that sRNARFTarget’s median rank is sig
nificantly lower than IntaRNA’s median rank.

Figs. 5 and 6 show the violin plots for Synechocystis and 
P. multocida, respectively. For these two bacterial species as 
well, the median rank of confirmed interacting pairs is the 
lowest in CopraRNA’s predictions, followed by 
sRNARFTarget and then IntaRNA. All three programs 
found it more difficult to distinguish true interacting pairs 
in P. multocida and ranked confirmed interacting pairs with 
higher ranks (Fig. 6) than for the other two bacteria. 
Nevertheless, CopraRNA still ranks confirmed interacting 
pairs significantly lower than sRNARFTarget 
(p-value = 2.15e-05), and sRNARFTarget ranks true interact
ing pairs lower than IntaRNA (p-value = 0.056).

We plotted the percentage of confirmed interacting sRNA- 
mRNA pairs predicted among a certain percentage of top 
predicted interacting pairs. To create these plots, we took 
the top 10% predictions for each program, counted the num
ber of confirmed interacting pairs among these predictions, 
and calculated the percentage of true positives (recall) among 
the top 10% predictions. Then, iteratively increased the per
centage of top predictions by 10% and repeated the process 
described above until all predictions (100%) were taken into 
account. We plotted the percentage of predictions on the 
x-axis and the percentage of confirmed interacting pairs 

(recall) on the y-axis. Fig. 7 shows this plot for E. coli. In 
the top 10% predictions, CopraRNA predicted 74% of con
firmed interacting pairs, sRNARFTarget predicted 21% of 
these pairs, and IntaRNA predicted 14%. Among the top 
50% predicted interacting pairs on Synechocystis, CopraRNA 

Figure 4. Rank (lower = better) distribution of 102 Escherichia coli confirmed 
interacting pairs. The violin plot for each program shows the data density for 
different rank values and the horizontal line inside each box indicates the 
median rank of confirmed interacting pairs.

Figure 5. Rank (lower = better) distribution of 22 Synechocystis confirmed 
interacting pairs. The violin plot for each program shows the data density for 
different rank values and the horizontal line inside each box indicates the 
median rank of confirmed interacting pairs.

Figure 6. Rank (lower = better) distribution of 20 Pasteurella multocida con
firmed interacting pairs. The violin plot for each program shows the data density 
for different rank values and the horizontal line inside each box indicates the 
median rank of confirmed interacting pairs.
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predicted 100% of the confirmed interacting pairs, 
sRNARFTarget predicted 70% of these pairs and IntaRNA 
predicted 55% (Fig. 8). In the top 20% predictions for 
P. multocida, CopraRNA predicted 18% of confirmed inter
acting pairs, sRNARFTarget was able to predict 10% of these 
pairs, and IntaRNA did not predict any confirmed interacting 
pair (Fig. 9). Thus, sRNARFTarget recovers more verified 
sRNA-mRNA interacting pairs than IntaRNA.

Finally, we looked at the amount of agreement among 
the three programs. To do that, for each bacterium, we 
took the top 10% predictions for each program and gener
ated a Venn diagram (Fig. S11). There is low concordance 
among the three programs. On average only a quarter (or 
24:77%� 1:79) of the top 10% predictions of each program 
are predicted by at least another program, and 13:86% �

1:01 of all the top 10% predictions per bacterium are 
supported by at least two of the programs.

3.4 sRNARFTarget’s performance on IntaRNA 2.0’s 
testing data [8]

We took the confirmed interacting sRNA-mRNA pairs pro
vided by [8]. Out of 160 confirmed interacting pairs, we 
excluded those pairs present in our training data and used 
the remaining 119 interacting pairs (88 pairs of E. coli (NC 
000913) together with 31 pairs of Salmonella (NC 003197)) to 
compare the performance of sRNARFTarget with that of 
IntaRNA. We ran sRNARFTarget and IntaRNA for 17 
sRNAs and 4240 mRNAs of E. coli and, 7 sRNAs and 4450 
mRNAs of Salmonella. The final number of pairs was 102,385 
(71,427 pairs of E. coli and 30,958 pairs of Salmonella) for 
both programs.

Fig. 10 shows the ROC curve of sRNARFTarget and 
IntaRNA. AUROC of sRNARFTarget is 0.61, and IntaRNA 
is 0.59. sRNARFTarget’s performance is comparable to that of 
IntaRNA in terms of AUROC. We plotted the ROC curves 
separately for E. coli and Salmonella for both programs to 
check the behaviour of the two bacteria independently. The 
performance for E. coli is comparable for both programs 
(AUROC 0.61 for sRNARFTarget and 0.62 for IntaRNA) 
(Fig. S12). For Salmonella, sRNARFTarget achieved an 
AUROC of 0.58 and IntaRNA achieved an AUROC of 0.51 
(Fig. S13).

Fig. 11 shows the violin box plot for E. coli along with 
Salmonella for sRNARFTarget and IntaRNA. sRNARFTarget 
has a lower median rank compared to IntaRNA. P-value 
(Mann-Whitney test) indicates that the median rank of con
firmed interacting pairs in sRNARFTarget is significantly 
lower than the median rank of IntaRNA.

3.5 Programs execution time

In terms of execution time, sRNARFTarget is faster than 
CopraRNA and IntaRNA (Tables 7 and 8). Table 8 shows 
the time taken by the CopraRNA web server for job com
pletion on selected sRNAs (CopraRNA is run for one sRNA 
at a time). These times were calculated by taking the dif
ference between the job submission time and the job 

Figure 7. Percentage of Escherichia coli confirmed interacting sRNA-mRNA pairs 
(recall) as a function of percentage top predicted interacting pairs.

Figure 8. Percentage of Synechocystis confirmed interacting sRNA-mRNA pairs 
(recall) as a function of percentage top predicted interacting pairs.

Figure 9. Percentage of Pasteurella multocida confirmed interacting sRNA-mRNA 
pairs (recall) as a function of percentage top predicted interacting pairs.

50 K. NASKULWAR AND L. PEÑA-CASTILLO



completion time (timestamp of job completion email). 
These times are not directly comparable to those shown 
in Table 7 as CopraRNA was run from the web server, and 
sRNARFTarget and IntaRNA were run from the Linux 
command line. sRNARFTarget execution time includes fea
ture extraction (i.e. calculation of the trinucleotide 

frequency difference). To obtain interacting predictions 
for 1804 sRNA-mRNA pairs of P. multocida, 
sRNARFTarget took 31.4 seconds while IntaRNA took 
6,196 seconds. To obtain interacting predictions for 93,280 
sRNA-mRNA pairs (22 sRNAs and 4240 mRNAs) of E. coli, 
sRNARFTarget took 0.683% of the time taken by IntaRNA, 
which represents a 146-fold reduction in execution time 
(from more than 38 hours to 15 minutes). On average, 
sRNARFTarget is 100 times faster than IntaRNA with 
same or higher AUROC.

3.6 Predicting targets of sRNA RCd1 in clostridioides 
(clostridium) difficile

RCd1 is a C. difficile sRNA detected by RNA-seq and vali
dated by Northern blot [58]. RCd1 is conserved only within 
C. difficile strains and bound by Hfq [59]. We used 
sRNARFTarget to predict RCd1 targets. To do this, we gave 
sRNARFTarget a FASTA file with RCd1 nucleotide sequence 
and a FASTA file with the mRNA sequences of C. difficile 630 
(NC_009089.1) 3,902 mRNAs (downloaded from 
EnsemblBacteria release 51). FASTA files and 
sRNARFTarget predictions are available at https://github. 
com/BioinformaticsLabAtMUN/sRNARFTarget/tree/master/ 
Data/CaseStudy.

sRNARFTarget predicted CD630_33600, a two compo
nent-response regulator, and spoVS (CD630_19350), stage 
V sporulation protein S, as the 6th and 19th most likely 
RCd1 targets, respectively. Boudry et al. suggested that RCd1 
is involved in the control of late stages of sporulation in 
C. difficile [59]. Interestingly, in C. difficile sporulation is 
controlled by a two-component signal transduction system 
[60]; and, SpoVS is controlled by SigH and involved in later 
stages of sporulation [61].

Using DAVID Functional Annotation Tool [62], we looked 
at whether there was functional enrichment among 
sRNARFTarget top 390 (10%) predictions. There were 63 
genes encoding hydrolases (FDR corrected p-value of 0.001). 
Hydrolases affect sporulation in Streptomyces coelicolor [63], 
another gram-positive spore-forming bacterium. Thus, one 

Figure 10. ROC curve for sRNARFTarget and IntaRNA on E. coli and Salmonella 
data. The plot shows the sensitivity (also called recall or true positive rate) as 
a function of the false-positive rate (FPR). The dash line indicates random 
classifier performance.

Figure 11. Rank (lower = better) distribution of 119 E. coli and Salmonella 
confirmed interacting pairs. The violin plot for each program shows the data 
density for different rank values and the horizontal line inside each box indicates 
the median rank of confirmed interacting pairs.

Table 7. Execution time for sRNARFTarget and IntaRNA on benchmarking data. 
Both programs were run on an Intel Core i7 (2.2 GHz) with 4 cores and 16 GB of 
RAM computer.

Bacterium No. of sRNAs/ mRNAs Execution time (HH:MM:SS)

sRNARFTarget IntaRNA

P. multocida 1/1804 0:00:31 1:43:16
Synechocystis 2/3179 0:01:18 2:33:02
Salmonella 7/4450 0:05:47 6:18:16
E. coli 22/4240 0:15:56 38:52:43
Average 8/3418 0:05:53 12:21:49

Table 8. CopraRNA web server job execution time on selected sRNA for each 
bacterium on the benchmark data.

CopraRNA web server

Bacteria sRNA No. of homologs Execution time (HH:MM:SS)

E. coli arcZ 8 08:00:00
P. multocida gcvB 4 08:19:00
Synechocystis isrR1 19 17:49:00
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can speculate that some of these hydrolases might also be 
involved in sporulation in C. difficile. Additionally, we com
piled a list of 78 C. difficile genes involved in sporulation from 
[61,64]. There was a slight enrichment of genes involved in 
sporulation among sRNARFTarget top 10% predictions 
(Table 9, hypergeometric p-value of 0.043), including: spo0A 
and CD630_24920 which encode a key regulator of sporula
tion and one of its associated kinases [61]. Thus, 
sRNARfTarget most-likely predicted RCd1/mRNA interac
tions are in agreement with the potential functional role of 
RCd1, and include potential targets worth further 
investigation.

4 Conclusion

There are many bacterial sRNAs without known mRNA tar
gets. For example, for E. coli and S. enterica, two well-studied 
organisms, we found interactions for about 40 sRNAs for each 
of out of approximately 200 to 300 sRNAs expressed in these 
bacteria [2]. For other bacteria, the number of sRNAs without 
known interactions is much higher. For instance, roughly 400 
putative sRNAs have been detected in R. capsulatus [11], but 
none of them has had its interactome characterized yet. 
Basically, the rate of sRNAs detections has outpaced the rate 
at which sRNAs’ mRNAs targets are identified. In this study, 
we present a transcriptome-wide sRNA target prediction pro
gram, sRNARFTarget. We collected sRNA-mRNA pairs from 
the literature to create a training data set consisting of 745 
confirmed interacting sRNA-mRNA pairs. As a comparison, 
RNAInter [65] contains 408 sRNA-mRNA interactions. We 
selected a Random Forest model as the final model for 
sRNARFTarget using the trinucleotide frequency difference 
between sRNA-mRNA as features.

In our benchmark, we compared sRNARFTarget with 
CopraRNA and IntaRNA. Our results show that the com
parative genomics-based approach used by CopraRNA is the 
best performing approach in terms of AUROC. However, 
unlike CopraRNA, sRNARFTarget does not require an 
sRNA or mRNA sequence to be conserved among other 
bacteria and can generate predictions for any number of 

sRNA and mRNA sequences. We also show that 
sRNARFTarget is 100 times faster (Table 7) than the best 
non-comparative genomics program available, IntaRNA, 
with better accuracy (Table 6). Another advantage of 
sRNATarget is its simplicity to use, as sRNARFTarget does 
not require any parameter setting there is no risk to obtain 
a suboptimal result. On the other hand, IntaRNA has about 
a dozen parameters that need to be set and the setting of 
these parameters affects its performance [66].

As CopraRNA is the most accurate of the three programs, we 
suggest using CopraRNA when the homologs of the sRNA- 
mRNA sequences are available in at least four bacterial species. 
For transcriptome-wide prediction or when homolog sequences 
are not available, we recommend using sRNARFTarget.
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