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Abstract: The sea cucumber is prominent as a traditional remedy among Asians for wound healing
due to its high capacity for regeneration after expulsion of its internal organs. A short peptide
consisting of 45 amino acids from transcriptome data of Stichopus horrens (Sh-EGFl-1) shows a
convincing capability to promote the growth of human melanoma cells. Molecular docking of
Sh-EGFl-1 peptide with human epidermal growth factor receptor (hEGFR) exhibited a favorable
intermolecular interaction, where most of the Sh-EGFl-1 residues interacted with calcium binding-
like domains. A superimposed image of the docked structure against a human EGF–EGFR crystal
model also gave an acceptable root mean square deviation (RMSD) value of less than 1.5 Å. Human
cell growth was significantly improved by Sh-EGFl-1 peptide at a lower concentration in a cell
proliferation assay. Gene expression profiling of the cells indicated that Sh-EGFl-1 has activates
hEGFR through five epidermal growth factor signaling pathways; phosphoinositide 3-kinase (PI3K),
mitogen-activated protein kinase (MAPK), phospholipase C gamma (PLC-gamma), Janus kinase-
signal transducer and activator of transcription (JAK-STAT) and Ras homologous (Rho) pathways.
All these pathways triggered cells’ proliferation, differentiation, survival and re-organization of the
actin cytoskeleton. Overall, this marine-derived, bioactive peptide has the capability to promote
proliferation and could be further explored as a cell-growth-promoting agent for biomedical and
bioprocessing applications.

Keywords: sea cucumber; docking; protein–protein interaction; EGF-like; EGFR

1. Introduction

Sea cucumber, locally known as gamat, has long been consumed as a food product and
utilized in folk medicine among Asian and Middle Eastern communities [1]. Sea cucumber
is used as traditional ointment for wound healing due to its ability to regenerate body
tissues. Echinodermata organisms such as holothuria (sea cucumber), crinoidea (sea lilies),
ophiuroidea (brittle starfish), asteroidea (starfish) and echinoidea (sea urchin) have the
unique capability to self-regenerate body fragments as a response towards traumatic
amputation. The Holothuria family, including the genus Stichopus, is reported to regenerate
new internal organs after the evisceration or complete removal of these organs [2]. In
Samoa, local people believe that consuming a sea cucumber’s internal organs provides
the power of healing. After harvesting the internal organs, the Samoans throw the sea
cucumber back into the sea to allow it to self-regenerate [3]. Based on scientific studies,
the regeneration capacity of sea cucumber is more effective than that of sea urchins and
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sea stars, making it a primary regeneration model. Regeneration and restoration of its
normal functions after evisceration only take a few weeks to complete [4]. This remarkable
capability of tissue regeneration has been associated with extensive cell proliferation of
undifferentiated cells of this organism.

There are few elements reported in sea cucumber that could contribute to its tissue
regeneration property. Collagen, one of the most popular element in the cosmetic and
food supplement market nowadays, is a major component of the sea cucumber’s body
wall structure [5]. Docosahexaenoic acid, which is present in a large amount in the water
extract of Stichopus chloronotus, is one of the most important fatty acids that plays a potential
function in tissue repair and wound healing [6,7]. Sea cucumber is also rich in vitamins A,
B1, B2 and B3, and minerals, especially calcium, magnesium, iron and zinc [8]. Even in a
dried form, it is a rich source of protein containing interesting combinations of important
amino acids such as glycine, glutamic acid, aspartic acid and alanine. In addition, the
presence of polysaccharides, sterols, phenolics, peptides, cerebrosides, lectins and other
bioactive secondary metabolites have contributed to its medicinal role in having anti-
inflammatory, immunostimulatory, anti-tumor, anti-microbial, anti-hypertension, anti-
angiogenic and anticancer properties [9–11].

Despite these nutritional properties that could be indirectly associated with the wound
healing benefit of this marine organism, the full potential of sea cucumber as a source of
marine therapeutic product remains unexplored and limited to the previous approaches
of specific metabolite identification. Among the prospective molecules to be investigated
are growth factors and cytokines, which are examples of important mitogens that ensure
an effective wound healing process [12]. Several mitogens are involved directly as growth
factors in cell proliferation such as epidermal growth factor (EGF), fibroblast growth factor
(FGF) and insulin-like growth factor (ILGF) [13]. EGF plays important roles during wound
healing, including promoting the re-differentiation of keratinocytes, and increasing the
proliferation and migration of both keratinocytes and fibroblasts. It also helps in wound
contraction during re-epithelization [12,14]. EGF’s roles in promoting proliferation are
long proven in many in vitro studies of many types of cells such as hair follicle cells [15],
amniotic epithelial cells [16] and hepatocyte-like cells [17]. Most of these cells exhibit
increasing EGF activity during cell cycle at S and G2/M phases. The association between
increasing DNA synthesis and the presence of EGF has been studied in a human skin model
during wound healing [18]. EGF at 50 nM shows the maximum increase of DNA synthesis
as compared to 0.1 nM and 10 nM EGF. The effects of EGF started to occur as early as 24 h
after wounding and the mitosis effect was significantly increased on day 3 and day 7 of
the treatments. In addition, Tanaka et al. [19] revealed that gelatin sheets containing EGF
accelerated the wound healing process in partial thickness wounds by speeding up the
re-epithelization process.

The key mechanism of cell proliferation is mitosis, which is activated through in-
tracellular signaling pathways. Cyclin D is a critical factor during the transition of G1
to DNA synthesis phase (S phase) [20]. In eukaryotes, cells will divide when they have
reached a certain size or with the presence of extracellular stimuli such as growth factors
or hormones [21]. Epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor
that binds ligands from the EGF family, including EGF, TGF-alpha, amphiregulin, epigen,
betacellulin, epiregulin and heparin-binding EGF to activate a signal transduction pathway
through autophosphorylation of downstream signaling cascades. Once the EGF binds to
a receptor on the cell surface, the receptor will undergo hetero or homodimerization and
is internalized into the cell through endocytosis. Meanwhile, the EGF will undergo either
lysosomal degradation or recycling. Several signaling pathways, such as PI3K, MAPK,
MEK, STAT and Rho, are activated by EGFR, which could contribute to cell proliferation,
differentiation, and migration, the reorganization of actin cytoskeleton, apoptosis and
cell survival [22].

Although there were many studies that showed the effectiveness of sea cucumber
extracts on wound healing and cell regeneration [23–27], the mechanisms involving the
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biomolecules that might play significant roles in these biological processes are yet to
be explored. In our study, we have identified contig 498513 that was retrieved from our
transcriptomic data of S. horrens. The contig was among a few lists identified with epidermal
growth factor-like human domains. We predicted a protein structure based on the DNA
contig sequence and simulated molecular docking of the structure with human EGFR [28].
Based on the docking simulation, the 4.9 kDa peptide showed inter-residue contact with
human EGFR. The peptide, named Sh-EGF-like 1 or Sh-EGFl-l, was synthesized and was
assessed for its interaction with human receptors based on a ligand binding assay. The
effect of Sh-EGFl-l on human melanoma cell proliferation was analyzed and was validated
using a PCR array for any interaction of genes involved in human EGF/PDGF pathway.

2. Results
2.1. Selection of Sh-EGFl-1 Peptide from Contig 498513 Protein Sequence

ORFinder analysis predicted that contig 498513 sequences consist of a 378 bp coding
region. The length of the predicted protein is 128 amino acids and has 57% identity with
EGF of the purple sea urchin, Strongylocentrotus purpuratus. A domain search for this protein
showed the presence of a calcium-binding EGF-like superfamily in two different locations
(Figure 1). Attachment of calcium ion in this domain helped stabilize its interaction with
another protein through the N-terminal domain [29]. In order to determine the active
residues from the Sh-EGFl-1 protein, which directly interact with human receptors, two
approaches were applied as follows: (i) one based on a literature search on the 1IVO model,
and (ii) one based on CPORT software prediction [30]. Based on the 1IVO crystal structure of
EGF–EGFR complex reported by Ogiso et al. [31], 48% (10 of 21 residues) were listed in the
calcium-binding-like domain region of S. horrens predicted protein i.e., Asn77, Cys79, Phe80,
Ser81, Ser82, Pro83, Cys84, Cys90, Cys99 and Thr106. In addition, CPORT predicts passive
residues, which contributed to the interaction, but the scores were not penalized when
either of the residues were not included during docking. Overall, there were 42 passive
residues predicted by CPORT including Met5, Leu7, His9, Phe10, Ile11, Ser12, Cys15, Lys16,
Glu25, Lys26, Leu30, Asn75, Ile76, Glu78, Glu85, Asn86, Gln87, Gly88, Ile89, Gln91, Asp92,
Glu93, Gly96, Tyr97, Asn98, Val100, Cys101, Gln102, Gly104, Phe105, Gly107, Thr108,
His109, Glu111, Ser112, Leu115, Asn116, His117, Val118, Leu122, His123 and Cys124. Out
of these 42 residues, 23 (55%) were in the second calcium-binding domain which were used
for this modeling. When the S. horrens protein was compared to EGF in the 1IVO human
crystal structure [31], 30 residues were aligned between Cys84 and Glu111, which happened
to be located in the second calcium-binding domain (Supplementary Material S1). BLASTP
version 2.7.1 analysis revealed that residues from this domain have 31% identity similarity
with EGF 1IVO structure, based on E-value of 2 × 105 and 73% sequence coverage [32].
Based on the protein docking with human EGFR, a similar domain of the S. horrens protein
showed a good binding interaction (Supplementary Material S2). Therefore, a short amino
acid sequence from residues 75 to 111 of the protein sequence was selected and named
as Sh-EGFl-1.
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Figure 1. Structure of the predicted protein according to the sequence of a contig derived from
transcriptome data of S. horrens. (A) The sequence of the 378 bp coding region is shown in the
upper line while the predicted protein sequence of the 128 amino acids is shown in the bottom line.
Calcium-binding EGF-like domains were present in two locations, domain A from 38 to 72 amino
acids and domain B from 75 to 111 amino acids. The blue line at the bottom of the predicted protein
sequence is the Sh-EGFl-1 peptide sequence used in this study. (B) Three-dimensional structure of
the predicted protein with calcium-binding EGF-like domains A and B are shown in red and green,
respectively. The three-dimensional image was generated by Maestro (Schrödinger Release 2022-3:
Maestro, Schrödinger, LLC., New York, NY, USA, 2021).

2.2. Modeling of Sh-EGFl-1 Peptide

The Sh-EGFl-1 peptide sequence consisting of 45 amino acids was submitted to
I-TASSER for 3D structure prediction [33]. Structure refinement was performed using
ModRefiner and MolProbity [34,35]. Based on PROMOTIF prediction, the peptide has four
strands, two beta hairpins, seven beta turns, one gamma turn and three disulphide bonds.
A molecular dynamic simulation was performed to investigate the stability of Sh-EGFl-1
peptide interaction with human EGFR. The model reached an equilibrium state in the last
50 nanoseconds (ns) of the simulation, based on the average deviation of the RMSD value
of the backbone atoms, which was relatively 1 Å (Supplementary Figure S3).

Further comparison with EGF 1IVO showed that there were eight conserved residues
in Sh-EGFl-1. Three disulphide bonds and conserved residues of cysteine and glycine were
found inside the globular structure of both structures (Figure 2).

2.3. Molecular Docking Model between Sh-EGFl-1 Peptide and Human EGFR

Docking structures suggested by HADDOCK were scrutinized based on several pa-
rameters such as the HADDOCK score, binding affinity, dissociation constant, Z-score,
van der Waals forces and electrostatic energy [36]. Table 1 shows the values of the docked
complex structures produced by HADDOCK. The most reliable docked model of Sh-EGFl-1
to human EGFR was chosen to compare with 1IVO.

In terms of orientation, Sh-EGFl-1 was found to have a similar docking orientation to
1IVO EGF when docked to domains I and III of EGFR, except that the beta sheet rotated
90o clockwise (Figure 3). Active residue analysis in other protein kinase families revealed
that residues such as glycine, leucine and glutamic acid contributed to the hydrogen
bond strength towards protein kinase primary chains, including cyclin-dependent kinase
2 (CDK2) and fibroblast growth factor receptor 2 (FGFR2). Similar to glycine, its small
size causes the interaction to be more flexible when forming hydrogen bonds with the
ligand [37]. According to Bissantz et al. [38], the ideal distance between a hydrogen acceptor
and donor is 2.8 to 3.1 Å. In this study, the docking of Sh-EGFl-1 peptide with human
EGFR was estimated at 2.95 Å distance, which is close to the average length of an 1IVO
complex, 2.98 Å. Meanwhile, the RMSD value between the HADDOCK docking structure
of Sh-EGFl-1 and 1IVO is less than 3.0 Å (0.852 Å), which makes it an acceptable docking
model. According to the Critical Prediction of Interactions (CAPRI), the quality of a docking
structure relies on ligand–RMSD or l–RMSD values; values less than 10 Å is acceptable, less
than 5 Å is intermediate while less than 1 Å is the best [39]. This value is calculated based
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on the distance of the core hydrogen atom, alpha carbon, carbon, nitrogen and oxygen
between the two ligands of the models being compared, as well as based on the overlap
and the alignment of receptors. In this study, the value obtained for Sh-EGFl-1 peptide
with the human receptor docking model is 7.873 Å, which falls within the acceptable range.
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Table 1. Interaction profile analysis of Sh-EGFl-1 with human EGFR in 1IVO based on HADDOCK
simulation. Comparison was made against interaction of EGF–EGFR 1IVO.

Docking Results Human EGF-EGFR (1IVO) Sh-EGFl-1-Human EGFR

Binding affinity (kcal/mol) −15.4 −15.1
Dissociation constant, Kd (M) 5.2 × 10−12 7.8 × 10−12

Number of interacting residues in EGF 25 23
Number of hydrogen bonds 12 10

Number of residues aligned with EGF 1IVO - 8
Number of residues aligned with EGFR 1IVO - 14

RMSD (Å) (<3 Å) - 0.852
Ligand-RMSD (Å) (<10 Å) - 7.873

According to 1IVO crystal structure [31], the EGF binding site is located in domains
I and III of EGFR. Asn32 interacts with Gln16 in domain I while in domain III of EGFR,
Arg41 interacts with Asp355 of EGFR and Tyr13 interacts with Phe357 of EGFR. When
EGFR of the same location was examined, the model given by HADDOCK resulted in no
interaction at Asp355 but there was a hydrophobic interaction between Phe357 and Gly14,
while Gln16 may form a hydrogen bond with Thr34 of the Sh-EGFl-1 but at more than 3 Å
distance. However, there are three EGFR residues that simultaneously formed hydrogen
bonds and hydrophobic interactions with Sh-EGFl-1 residues. Two of the residues (Thr15
and Tyr45) were found in domain I and another residue (Ser418) is located in domain III.
Based on Figure 4, Thr15 formed a hydrogen bond with Cys25 and at the same time formed
a hydrophobic interaction with Val26. Tyr45 formed a hydrogen bond with Gly33 and
concurrently formed a hydrophobic interaction with Pro29. On the other hand, in domain
III, Ser418 formed a hydrogen bond with Asn1 and simultaneously formed a hydrophobic
interaction with Asp21.

After investigating the crystal structure of human EGF in 1IVO, the main residues
contributing to the interaction of the peptide with the receptor are Asn32 interacting within
domain I of EGFR and Tyr13 and Arg41 within domain III of EGFR. The benzene ring of
the aromatic amino acid, Tyr13, seems to stack upon the phenyl ring of another aromatic
amino acid, Phe357, in domain III of EGFR. At the same time, Arg41 interacts through
a salt bridge with Asp355 in EGFR while simultaneously forming van der Waals forces
with Tyr13 and Phe357. Meanwhile, Asn32 formed a hydrogen bond with Gln16 in the
domain I EGFR. The importance of these residues in receptor binding was revealed in a
mutation study where the replacement of Tyr13 with Val, Ile, Ala and Arg reduced the
binding activity up to more than 90% while replacement with Phe or Leu retained 75% of
the binding affinity [40]. However, in the HADDOCK model, Tyr13 in 1IVO was replaced
by Pro9, Asn32 was replaced by Val26, and Arg41 was replaced by His35 (Figure 5). All
three residues formed hydrophobic interactions with residues of the human receptor. The
replacement of proline with tyrosine could still allow the Sh-EGFl-1 peptide to interact
with human receptor because both residues have aromatic side chains, while histidine
and arginine have positive-charged side chains. Moreover, it is postulated that Thr15
in EGFR enhances the ligand binding of Sh-EGFl-1 peptide by forming simultaneous
interactions with two of Sh-EGFl-1’s residues: a hydrophobic interaction with Val26 as well
as a hydrogen bond with Cys25.

Kuo et al. [41] previously reported the dissociation constant (Kd) value of EGF and
the EGFR complex, obtained experimentally using a surface plasmon resonance (SPR)
and atomic force microscopy (AFM), which was approximately 1.77 × 10−7 M. However,
a lower Kd value was obtained for Sh-EGFl-1 and human EGFR (Table 1). The values
are different because docking is based on the scoring functions used. However, docking
of both human EGF and Sh-EGFl-1 peptide to EGFR showed almost similar values. A
lower Kd value means dissociation occurs at a slow rate and the binding affinity (Ka)
between these molecules is strong. Both Ka and Kd values are important to determine how
fast a ligand dissociates from its receptor is because the effect of a reaction to reach the
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equilibrium is different depending on types of molecules, and Kd determines the prolonged
effect of bound molecules [42].
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His35, respectively. The three-dimensional image was generated by Maestro (Schrödinger Release
2022-3: Maestro, Schrödinger, LLC, New York, NY, USA, 2021).
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HADDOCK appears to be a promising approach, as docking is assisted by given
data either from interface restraints of Nuclear Magnetic Resonance (NMR), mutagenesis
experiments or bioinformatics. The success of the HADDOCK model prediction is reflected
in recent CAPRI experiments and based on the number of structures calculated using
the software deposited to PDB [43]. Hydrogen bonding and hydrophobic interactions
affect the affinity binding energy between ligand and receptor. These two types of bonding
combined create a stronger bond when compared to hydrogen bonding alone. Hydrophobic
interactions stabilize ligands during binding interphase [44]. A hydrogen bond forms
between two electronegative atoms when hydrogen atoms act as donors and covalently
attach to the acceptor atom, such as nitrogen and oxygen, which carries free electron pairs.
Hydrogen bonds are mostly found in ligand–protein interactions, protein folding as well as
in enzyme catalytic reactions [45]. Upon protein binding, the active residues undergo quick
desolvation allowing the ligand to enter an active site and replace bulk water molecules by
forming hydrogen bonds with the ligand atom at a permissible energy [37].

2.4. Sh-EGFl-1 Peptide–EGFR Binding Assay

An experiment was performed to test the ability of Sh-EGFl-1 peptide interaction with
human receptor. Ligand binding assay, adapted from King et al. [46] was performed with
modifications using human cells. Both Sh-EGFl-1 and rhEGF were first conjugated with
N-hydroxysuccinimidobiotin (NHS-biotin) and were added to human cells. Any binding
of peptide to EGFR was detected through the reaction of NeutrAvidin conjugated with
horseradish peroxidase enzyme and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid
(ABTS) as substrate.

The graph in Figure 6 shows the absorbance readings at 405 nm, which was due to
the Sh-EGFl-1 and rhEGF binding reaction to the human receptor at 10, 50 and 500 nM.
The trend of the absorbance reading initially was similar for both peptides; there was an
increment at 10 nM of both peptides. However, for Sh-EGFl-1, a concentration of 500 nM
seems to promote interactions with EGFR the most, whereas for rhEGF, 10 nM is the
optimum concentration for binding. Interaction of Sh-EGFl-1 with the human receptor
increased by almost 10% when 500 nM Sh-EGFl-1 was introduced, as compared to rhEGF,
where the binding signal only increased 4% although the peptide concentration had been
increased ten times. The calculation for the relative binding percentage is available in
Supplementary Materials Table S4.

A similar ligand binding study was observed by King et al. [46] in which the binding of
biotinylated EGF to receptors, at concentrations ranging from 0.156 to 5 ng/mL, shows con-
sistent increases in the absorbance reading. The increasing binding activity was determined
by both the concentration of biotinylated EGF tested and the number of cells used. In this
study, inoculating about 80,000 cells gives a reproducible result as opposed to when lower
number of cells was used. Increasing the ligand concentration could improve assessment
of the binding signal of Sh-EGFl-1 peptide with human EGFR since the expected Kd value
during the plate assay is probably higher than the Kd value obtained by Kuo et al. [41]
through SPR and AFM.

2.5. Effect of Sh-EGFl-1 Peptide on Cell Proliferation and Cell Morphology

The number of the cells cultured in medium containing 10 nM Sh-EGFl-1, 50 nM
Sh-EGFl-1 and 50 nM rhEGF was significantly higher than that cultured in a serum-free
medium. Figure 7 shows that only cells cultured in a medium containing 10 nM Sh-EGFl-1
exhibited increased numbers until the end of the experiment on day 4. Although it shows a
stable increment throughout the experiment, it is considered as not significantly different
compared with the serum-free treatment. Interestingly, 50 nM for both recombinant human
EGF and Sh-EGFl-1 shows a temporary increment of cell numbers that lasted for 48 h. The
cell numbers in both treatments dropped drastically right after the medium change on the
next day onwards. This is probably due to the over dosage of growth factor, given that it
causes cells to lose their adherent property. As reported by Broecker et al. [47], increased
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an EGF concentration induced a loss of cell adhesion as the cell loses the integrin-mediated
signaling receptor, which is important for extracellular cell binding to the flask surface. This
eventually leads to cell cycle halting and contributes to apoptosis in addition to suppressed
proliferation activity.
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Based on morphological observations, slight changes of cell shape were observed
in most of the treatments during serum starvation, when cells started to lose adherence
(Figure 8). However, cells treated with 10 nm Sh-EGFl-1, 50 nM Sh-EGFl-1 and 50 nM
rhEGF showed better recovery as the cells were elongated when they attached to the flask
surface. Nevertheless, changing the medium after 48 h caused most of the cells to lose
attachment from the flask except in the presence of 10 nM Sh-EGFl-1.
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2.6. Effect of Sh-EGFl-1 on EGF Pathway

The EGF pathway induces the autophosphorylation of tyrosine kinase to activate
many signaling induction pathways, promoting cell proliferation, metabolism, protein
growth, differentiation and migration. The main purpose of EGFR activation via EGF
binding is to provide enough signal for cells to migrate from G1 state to S phase of the cell
cycle [22]. The key player of this signal is cyclin D that binds to CDK4/6 to phosphorylate
protein retinoblastoma [48,49]. Phosphorylated Rb releases E2F transcription factor to
participate in the transcription of cyclin E, thus leading to G1/S progression. There are
a few pathways that induce cyclin D expression including via ERK MAPK and AKT
signaling pathways [50,51].

Based on the heat map diagram (Figure 9), cells treated with 10 nM Sh-EGFl-1 showed
an upregulation of most genes involved in EGF/PDGF pathways. Gene expression profiling
of cells in serum-free medium as a negative control (NC) showed a similar pattern with
cells in 10 nM Sh-EGFl-1. However, cells in the 10 nM rhEGF showed the opposite gene
expression profile. Cells treated with Sh-EGFl-1 may be involved in various activities,
including angiogenesis, due to a relatively high expression of MAPK8, MAPK9, MAP2K7,
MKK, MAPK1, ELK1 and c-JUN. A high expression of Src, Ras, Kras and Raf indicates the
involvement of cells in migration, while Shc, Fos, IKK, MAP2K1 and EGF are related to
proliferation. Gene activation of PLCG1, GAB1, PIK3R1, GSK3B, AKT1/2/3 and MEK is
linked to differentiation, while Gr2, EGFR, PIK3R2, EGF, STAT5A and DUSP are involved



Mar. Drugs 2022, 20, 596 11 of 22

in the cell survival. Dual-specificity phosphatase enzyme (DUSP) is reported to be an
important protein in limiting the intensity and duration of EGF in keratinocytes, thus
acting as a positive feedback to this signaling [52]. Overall, Sh-EGFl-1 has activated three
signaling pathways: PI3K, MAPK and Rho.
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The PI3K signaling pathway regulates metabolism, proliferation, cell size, survival and
motility while the MAPK signaling pathway prevents apoptosis and initiates proliferation,
differentiation and cell migration [22]. Rho signaling pathway is activated to ensure
cells retain their shape through actin cytoskeleton rearrangement while migrating and
undergoing mitosis [53]. Based on the known MAPK signaling in mammalian species,
there are three common pathways involved depending on its stimuli. Growth factors
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induce RAS–RAF–MEK–ERK1/2, stresses induce RAC–MEKK–MKK4/7–JNK1/2/3 and
inflammatory cytokines induce the RHO–MEKK1–MKK3/6-p38 pathway [54]. Hence,
looking at the increased expression of RAS, RAF, MEK1/2 and ERK1/2, we concluded
that Sh-EGFl-1 does have an impact as a growth factor that activates MAPK through the
ERK1/2 pathway. Cells treated with Sh-EGFl-1 might not respond to proliferation due
to inflammation because IL-2 is minimally expressed. It is acceptable that no wound was
introduced during this experiment as wounds trigger lymphocyte to release lymphokines
such as IL-2, which bind to heparin sulphate and help T-lymphocytes to proliferate [55].

Based on the qPCR array result (Table 2), Sh-EGFl-1 is hypothesized to interact with
human EGFR. This interaction could probably initiate autophosphorylation by recruiting
adaptor proteins such as GRB2, SHC, NCK and STATs to the receptor [56]. The binding of
adaptor protein to EGFR could lead to various signaling pathways. As an example, GRB2
is the main component for EGFR signaling to activate RAS. The GRB2 domain can either
bind directly to EGFR or through adaptor protein SHC. Based on the increased expression
of SHC in the qPCR array, it is most likely that SOS binds to SHC to activate RAS. Activated
RAS will induce either RAF kinase or PI3K. The observed increase in gene expression of
MEK1/2 and ERK1/2 indicates that RAF probably has been induced by RAS to initiate a
cascade of genes to undergo phosphorylation and activate MEK1/2 and ERK1/2. Next,
ERK1/2 has possibly assisted in the transcription and translation of cyclin D in the cell
nucleus through the formation of the AP-1 complex. Increased ELK1 expression is predicted
to transcribe c-FOS since the c-FOS gene is also increased in the qPCR array. Then, c-FOS
could interact with c-JUN to form the AP-1 complex. This complex, together with c-MYC,
most likely induced the transcription of cyclin D in the nucleus [57].

Table 2. Expression profile of treatment medium containing Sh-EGFl-1 and rhEGF against serum-free
medium as the negative control, according to the signaling pathways activated by EGFR.

10 nM Sh-EGFl-1 10 nM rhEGF Negative Control

MAPK signaling

CBL − (1.00) − (0.96) −
SHC1 + (0.94) − (0.80) +
HRAS + (0.93) − (0.62) +

RASA1 (p120GAP) + (1.07) − (0.83) +
RAP1A + (1.14) − (0.80) unc.
ATF1 + (0.04) − (0.87) +
ATF2 + (0.89) − (0.67) +

NFATC3 + (1.22) − (0.96) −
CASP3 + (1.05) − (0.70) +
CASP9 + (0.93) − (0.63) +

MAP2K1 (MEK1) unc. (0.91) − (0.74) +
MAP2K4 (MKK4) unc. (0.84) − (0.51) +
MAP2K7 (MKK7) + (1.0) + (0.95) +

MAP3K2 (MEKK2) + (1.27) − (0.82) −
MAPK1 (ERK2) + (1.03) − (0.76) −

MAPK10 − (0.55) + (1.24) +
MAPK3 (ERK1) + (0.98) − (0.79) +

MAPK8 + (0.99) − (0.73) +
MAPK9 unc. (0.80) − (0.54) +
MKNK1 − (0.82) − (0.54) +

RPS6KA5 (p70S6K) + (0.97) unc. (0.75) +
RPS6KB1 (p70S6K) + (1.00) − (0.68) +

TP53 + (0.96) unc. (0.82) +
DUSP1 + (0.97) − (0.50) +
DUSP6 + (1.05) − (0.74) +
IKBKB + (1.05) − (0.73) +

PI3K signaling

SHC1 + (0.94) − (0.78) +
GRB2 + (1.07) − (0.76) +
GAB1 + (1.00) + (0.88) +

P13KCA + (1.47) − (1.08) −
PIK3R1 + (0.98) − (0.80) +
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Table 2. Cont.

10 nM Sh-EGFl-1 10 nM rhEGF Negative Control

MAPK signaling

PIK3R2 + (1.17) − (0.75) −
E1F4E + (1.28) + (1.24) −

PDPK1 (PDK1) unc. (0.95) − (0.86) +
AKT1 + (0.95) − (0.69) +
AKT3 + (1.11) − (0.87) unc.
TP53 + (0.96) unc. (0.82) +

IKBKB (IKK) + (1.06) − (0.73) +
GSK3A unc. (0.87) − (0.75) −
GSK3B + (1.06) − (0.84) unc.

RPS6KA5 (p70S6K) + (0.97) unc. (0.75) −
RPS6KB1 (p70S6K) + (1.00) − (0.68) −

NFKB + (1.02) − (0.90) −
CCND1 − (1.17) − (0.83) −

JAK-STAT signaling

SRC + (1.18) + (1.16) +
STAT3 + (1.06) − (0.89) unc.
STAT5 + (1.06) − (0.89) −
JAK1 + (1.02) − (0.77) −
FOS + (1.50) − (1.02) −
JUN + (1.32) unc. (0.98) unc.
ELK1 + (1.08) − (0.77) −

PLC gamma signaling

PLCG1 (PLC) + (1.18) − (0.89) −
PPP2CA (TSC2) + (0.94) − (0.69) −

PRKCA + (1.10) − (0.78) unc.
RPS6KA5 (p70S6K) + (0.97) unc. (0.75) −
RPS6KB1 (p70S6K) + (1.00) − (0.68) −

IKBKB (IKK) + (1.06) − (0.73) −
NFKB + (1.02) − (0.90) −

Rho signaling

RHOA + (1.08) − (0.84) unc.
Values in the parenthesis show the fold change of a treatment medium against serum-free medium. + Maximum
expression; −Minimum expression; unc. Unchanged.

Another possible route of Sh-EGFl-1 in promoting cell proliferation is by inducing
protein docking via GAB1 to activate PI3K. PI3K may have converted PIP2 to PIP3 to
allow the phosphorylation of AKT before activating PDK1. Upregulation of the AKT gene
may result in phosphorylation of NF-kappa B to ensure cell survival [58]. AKT could also
phosphorylate other substrates such as GSK-3 until GSK-3 expression is high enough to
suppress cyclin D production. However, suppression of TSC2 by AKT and mTOR activation
may occur based on the high expression of p70S6K and EIF4E. The activation of mTOR
is hypothesized to suppress 4E-BP so that cyclin D translation will occur with the help of
translation initiation factor EIF4E [22].

Sh-EGFl-1 could activate STAT1 and STAT3 by phosphorylating both molecules to
form complexes with JAK1 and JAK2 as intermediates. After forming the complexes, STAT1
and STAT3 move to the nucleus to start transcription. STAT3 may be induced without
JAK as intermediate, in which STAT3 is activated after Sh-EGFl-1 binds to EGFR through
c-Src. Besides that, Sh-EGFl-1 binding to EGFR could also activate the protein oncogene
Vav, a guanine nucleotide exhcange factor for the GTPase Rho family to activate the Rho
signaling pathway for actin cytoskeleton rearrangement. Vav is expected to induce RAC
to activate the JNK pathway [59]. Lastly, Sh-EGFl-1 binding most probably induced NCK
binding to the CBL domain, thus activating PAK1. This is due to increased expression of
MEKK1 and MKK4/7, which may have been induced by JNK through PAK1. Activated
JNK then entered the nucleus and phosphorylated the transcription factor c-FOS and c-JUN
to initiate cyclin D transcription.
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3. Discussion

Even though many animal and human studies have verified the benefits of sea cu-
cumber for wound healing, the mode of action through the molecular mechanism of this
therapeutic effect is not yet fully understood. Literature search revealed that most of the
bioactive compounds of sea cucumber could be involved during the first wound healing
process, particularly the inflammation phase [23,24,60,61]. For instance, unsaturated fatty
acids such as EPA and DHA are known to aid blood clotting, arginine helps to increase the
number of lymphocytes while saponin acts as surfactant during phagocytosis [7,10,62,63].
Nonetheless, the eradication of debris and microbes, as well as stabilization of reactive
oxygen species during this phase, are deemed useful for progression to the subsequent
healing phases, hence, accelerating the healing process [64].

The ability of the sea cucumber to undergo complete tissue regeneration within three
weeks has stimulated an interest to study this unique species. Extensive cell proliferation is
the backbone to the activity of cell molecules involved during tissue regeneration. Wound
healing processes in humans can be related to the sea cucumber’s ability to regenerate
organs. The basic processes for regeneration are cell dedifferentiation, trans-differentiation,
and both proliferation and migration, which are also part of the wound healing mecha-
nism [65]. Based on RNA sequencing analysis on the regeneration of the sea cucumber’s
organ after evisceration, there are several biological processes that are being identified daily.
These processes consist of wound healing (day 7 till 14), blastema formation (day 3 till 7),
lumen formation (day 7 till 14), intestine regeneration (day 14 till 21) and, lastly, growth
of intestine cells (day 21 until fully recovered). The genes that are identified to be highly
expressed are those related to extracellular matrix, muscle tissue regeneration and the three
signaling pathways for Wnt, BMP and EGF [66]. All these three pathways are important in
regulating the proliferation, differentiation, survival and apoptosis of cells, similar to the
process in humans [4,67].

Many studies reported that EGF binding to the EGFR binding site caused the joining
of two EGFR molecules at domains II and IV, and the process is known as dimeriza-
tion [31,68,69]. Before EGF binds to EGFR at domains I and III, the site is initially exposed,
where it looks like a C-shape structure in which domains II and IV are holding onto each
other through intramolecular interactions. Once EGF binds, the structure changes, dis-
turbing the interaction between domains II and IV thus exposing the domains to form
a heterodimer [70]. However, the changes in domains II and IV demand a higher EGF
binding affinity energy to domains I and III beforehand to overcome these intramolecu-
lar interactions [71]. After EGF binds to EGFR, the internalization of receptors occurs to
activate the cascades. At this moment, EGF molecules on the cells will deplete while the
number and size of cell vesicles will increase and move towards the cell perinuclear area
as a preparation for endocytosis [72]. The internalization process is a prominent EGFR
regulation because it determines whether a cell needs to continue the signaling according
to its pathway [73]. If Cbl or an adaptor protein like Shc is upregulated this indicates that
there is an interaction of EGF and EGFR, thus causing the internalization of receptor into
the cells [74].

The rationale of testing peptide concentrations at 10 nM was based on a study done
by Clark et al. [75]. In the study, the EGFR expression in carcinoma cells was prolonged for
10 h when 10 nM of EGF was exerted, as compared to only 4 h of EGFR expression in 0.4 nM
EGF. This is supported by another experiment by Zhao et al. [76] where cell proliferation of
CHO cells can only be induced when exerted with EGF concentrations below 0.1 ng/mL. In
contrast, cell proliferation at higher EGF concentrations (1 to 100 ng/mL) was suppressed.
The process of EGF binding to its receptor and the internalization of receptor took only
less than 30 min to accomplish, according to an experiment on HeLa cells [77]. However, a
previous study has reported that a prolonged ERK activation is required for cell transition
from G1 to S phase for proliferation purpose [78]. Based on cell proliferation assays and
morphological observations along with the qPCR assay after 4 h of peptide interventions,
Sh-EGFl-1 could have interacted with human receptors due to increased expression of the
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adaptor proteins Shc, Sos and Grb2. Sh-EGFl-1 has the ability to sustain a prolonged EGFR
effect in melanoma cells because the cells are able to maintain their adherent properties,
as well as survive and proliferate, albeit rather slowly. In fact, the interaction of 10 nM
Sh-EGFl-1 is more preferrable than recombinant human EGF at the same concentration.
However, we suggest that qPCR analysis at the time intervals of 24, 48 and 96 h along with
cell proliferation experiments should be done in the future to track the gene expression
changes of the cells.

EGF is among the growth factors that play an important role during this process. In
this study, we screened from our previous S. horrens’s genomic data (unpublished yet) and
narrowed down the Sh-EGFl-1 peptide as potential biomolecule to be related to wound
healing or tissue regeneration. Based on solid evidence of the molecular docking analysis,
the interaction of Sh-EGFl-1 with human receptors was further assessed by ligand binding
assays and its role in the EGF pathway was verified through a qPCR array analysis.

A relatively high expression of STAT3, c-Jun and c-FOS indicated that the cells were
in the process of transcription of cyclin D. The relationship of these genes with wound
healing has been proven by the fact that when STAT3 and AP1 complexes formed by c-Jun
and c-FOS genes were removed, wound healing was delayed [79]. During wound healing,
EGF induced cells to proliferate so that they are actively replacing the torn epithelium
cells [12]. In another experiment, EGF promotes the re-epithelization of keratinocyte
cells by activating EGFR expression but EGFR expression was diminished during chronic
wound healing, causing worsening pathogenesis [64]. EGF also activated fibroblast and
keratinocyte migration by regulating components of the extracellular matrix such as fibrillin,
collagen and matrix metalloproteinase to support tissue remodeling during the third phase
of the healing process [80].

4. Materials and Methods
4.1. S. horrens Protein Modeling and Interaction Study through Molecular Docking

Contig 498513 with 1093 bp was derived from transcriptomic data of S. horrens. The
sequence was submitted to ORFinder webserver for prediction of its coding sequence.
After obtaining the predicted coding sequence, the identity of the protein was identified
using Blastp. A domain homology search was also performed. The predicted protein
sequence was submitted to I-TASSER webserver for the prediction of its tertiary structure.
The predicted structure was refined using ModRefiner to get a structure similar to the
native protein structure in terms of hydrogen bonds, protein backbone topology and the
positioning of side chains. The structure was further refined using MolProbity where the
number of hydrogen atoms were checked or added if needed, at the right position. The final
structure was checked based on the available protein structure in PDBSum database using
EMBL-EBI webserver. The structure of S. horrens protein was analyzed using PROMOTIF to
obtain the structure summary, including the number of alpha helices, beta sheets, strands,
hairpins and disulphide bridges. PROCHECK program was run to obtain a summary in the
form of an image through Ramachandran plot, in which the unnecessary residues are shown
to give an idea of the structure quality (results are shown in Supplementary S1). Human
EGF and EGFR structures were obtained from crystal structure 1IVO in the PDB database.
The heterodimer form of EGF–EGFR consists of four chains; chains A and D make up EGFR
while chains B and C make up EGF. We edited the structure to become a homodimer where
only chain A and chain C were chosen as reference in our study. Bulk water molecules were
deleted to ease docking. The active residues for human EGFR (chain A) were retrieved from
the literature review of the 1IVO structure. The active residues for S. horrens protein were
searched using CPORT webserver. All the active residues identified were used as inputs
during the docking simulation. The docking simulation of S. horrens protein and human
EGFR was performed using HADDOCK version 2.2 webserver. The WeNMR grid-enabled
server was utilized to perform the docking simulations. The docked complex structures
produced by the HADDOCK were based on the Z-score, therefore the cluster with the
lowest Z-score value was chosen as the most reliable docked structure of the peptide to
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the receptor. Once finished, the binding affinity and Kd values of the docked structure
were predicted using PRODIGY webserver [81]. A docking comparison of S. horrens
protein with 1IVO was performed by aligning both models using PyMol version 2.3.2.
The LigPlot+ version 2.1 program was employed to analyze the docking results [82]. The
structure orientation, interacting residues, and number and types of bonding were carefully
inspected. The values of RMSD were also calculated and compared (results are shown in
Supplementary Material S2).

4.2. Sh-EGFl-1 Peptide Modeling and Interaction Study through Molecular Docking

As a result of S. horrens protein’s interaction study, a 45 amino acid sequence was
selected (NINEC FSSPC ENQGI CQDEI DGYNC VCQPG FTGTH CESSM LNHVI) and
named Sh-EGFl-1 peptide. The modeling and the docking processes for this short peptide
sequence were repeated as for the process done with S. horrens protein. The tertiary structure
of the peptide was predicted using I-TASSER webserver. Structure refinement was made
using ModRefiner then MolProbity. The refined model was accessed by PROMOTIF and
PROCHECK to obtain more detailed information, including the number of alpha helices,
beta sheet, loops, hairpins and disulphide bonds. A molecular dynamics simulation was
carried out on the refined peptide model using YASARA version 21.8.27 for 100 ns [83].
AMBER14 force field was used in the production run and RMSD values of the backbone
atoms were monitored.

All the amino acids of Sh-EGFl-1 were selected as active residues whereas the active
residues for human EGFR (chain A) were retrieved from the literature review of 1IVO
structure. All the active residues identified were used as inputs during docking. The
docking simulation of Sh-EGFl-1 and human EGFR (chain A) was performed using HAD-
DOCK2.2 webserver. The WeNMR grid-enabled server was utilized to perform the docking
simulations and the cluster produced with the lowest Z-score value was chosen for further
analysis. Once finished, the binding affinity and Kd values of the docked structure were
predicted using PRODIGY webserver. Docking comparisons of Sh-EGF-1 peptide with
1IVO were performed by aligning both models using PyMol version 2.3.2. The LigPlot+
version 2.1 program was employed to analyze the docking results. The structure orienta-
tion, interacting residues, and number and types of bonding were carefully inspected. The
values of ligand–RMSD were also calculated and compared.

4.3. Preparation of Peptide

A short peptide sequence derived from the protein translation of Contig 498513, was
submitted to order. The 4.9 kDa Sh-EGFl-1 peptide (H-NINEC FSSPC ENQGI CQDEI
DGYNC VCQPG FTGTH CESSM LNHVI-OH) was synthesized by Mimotopes Pty. Ltd.,
Australia through a Fmoc solid-phase peptide chemistry method. A master stock concen-
tration of 1 mg/mL was prepared by diluting lyophilized peptide with PBS buffer pH 7.4.
Recombinant human EGF (rhEGF) (H-MNSDS ECPLS HDGYC LHDGV CMYIE ALDKY
ACNCV VGYIG ERCQY RDLKW WELR-OH) was purchased from Thermo Scientific. For
the cell proliferation assay and morphology observation experiments, peptides were added
fresh into the serum-free growth medium to concentrations of 10 nM and 50 nM. For the
binding affinity assay experiment, biotinylation of Sh-EGFl-1 and rhEGF peptides with
NHS–biotin (Sigma Aldrich, Burlington, MA, USA) was performed according to the manu-
facturer’s instructions. The diluted peptides in PBS pH 7.4 were changed into carbonate
buffer 0.1 M carbonate buffer pH 9.5 (0.07 M sodium bicarbonate, 0.03 M sodium carbonate)
for an optimal biotinylation environment. A 10 X volume of cold acetone was added to the
peptides and vortexed for 15 s. The mixture was incubated for 30 min at −20 ◦C before
being centrifuged at 16,100× g for 24 min at 4 ◦C. The supernatant was discarded and the
pellet was air-dried and fully dissolved in carbonate buffer pH 9.5. A total of 20 mg/mL of
NHS–biotin was prepared in 1 mL DMSO. A volume of 0.13 µL and 0.1 µL of NHS–biotin
was added to the Sh-EGFl-1 and rhEGF peptides, respectively. Both reaction mixtures
were vortexed for a while and incubated in a thermoblock with 400 rpm shaking speed
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for 4 h at room temperature. Any unattached biotin molecules were sieved out using a
PD-10 desalting column containing Sephadex G-25 medium (GE Life Sciences, Chicago, IL,
USA ). PBS buffer pH 7.4 was used as eluent to collect the conjugated peptides out from
the column. The concentration of the biotin-conjugated peptides was determined using a
NanoDrop spectrophotometer (Thermo Scientific, Waltham, MA, USA) and BCA assay.

4.4. Cell Culture

Human melanoma cells (CRL-1872) were purchased from ATCC, Rocksville, MD,
USA. Cells were cultured in a complete growth medium, which consisted of Minimum
Essential Medium (MEM) (Gibco, Waltham, MA, USA) supplemented with 10% fetal bovine
serum (FBS) (Invitrogen, Waltham, MA, USA) and 1% antibiotic–antimycotic (Invitrogen,
Waltham, MA, USA), in a humidified incubator at 37 ◦C, equilibrated with 5% CO2. Cells
were subcultured every two days until reaching confluency in T25 flask (TPP, Trasadingen,
Switzerland) before being seeded in designated plates for specific experiment objectives.

4.5. Cell Proliferation Assay and Cell Morphology Observation

Cells were seeded at 80,000 cells per well in a 24-well plate containing 400 µL of
complete growth medium. After 24 h of culture, the medium was removed, washed
once with PBS, replaced with serum-free medium and left to culture for another 16 h.
The medium was removed and replaced with corresponding treatment medium, each
in triplicates; 10 nM and 50 nM of Sh-EGFl-1, 10 nM and 50 nM of rhEGF were used
as a positive control and serum-free medium was used as a negative control. Cells were
cultured in a single plate to track their growth every 24 h during the four days of experiment.
Medium was changed every two days to ensure that cells did not lack nutrients. A crossed
line was made at the bottom of each well to mark the four cell-counting areas that were
recorded daily using a microscope digital camera. Cells were counted manually based on
the images visualized using ImageJ version 2.0.

4.6. Binding Affinity Assay

Melanoma cells were seeded at 90% confluency in a 96-well plate and cultured in
a humidified incubator at 37 ◦C, equilibrated with 5% CO2 until the next day. When all
cells were attached to the surface, the plate was placed on ice for a while to reduce the
protein metabolism rate, so the cells were not easily detached. The medium was removed
and cells were washed twice using 200 µL of cold PBS buffer. A volume of 100 µL cold
formalin was added to the cells to enhance cell attachment to the surface. The plate was
placed on ice for the first 5 min, then continued for another 15 min incubation at room
temperature. Cells were washed twice using 200 µL of cold PBS. A total of 100 µL of
melanoma growth medium (MEM basal medium and 3% FBS) was added and cells were
incubated at 37 ◦C for 30 min. The medium was discarded and replaced with 100 µL of
treatment medium (MEM basal medium supplemented with 0.1% BSA, 200 mM HEPES
buffer and Sh-EGFl-1 and rhEGF at concentrations of 10, 50 and 500 nM respectively). Cells
were incubated at 37 ◦C for 1 h. The medium was discarded, and cells were washed twice
using 200 µL cold PBS and 0.3 M NaCl. A total of 100 µL horseradish peroxidase (HRP)
conjugated with NeutrAvidin solution (Thermo Scientific, Waltham, MA, USA) was added
with a concentration of 1:10,000 onto cells and incubated at 37 ◦C for 1 h. The medium
was discarded, and cells were washed twice with 200 µL of cold PBS and 0.3 M NaCl. A
total of 50 µL ABTS (Thermo Scientific, Waltham, MA, USA) was added as a substrate
for peroxidase. The plate was incubated at room temperature for 25 min and the reaction
was stopped by adding 50 µL of 1% SDS. An absorbance reading at 405 nm was recorded
using microplate reader (Thermo Scientific, Waltham, MA, USA). The experiment was run
in triplicates.
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4.7. Gene Expression Analysis of EGF Pathway

Cells were seeded at 80,000 cells per well of 24-well plates in 400 µL of complete
growth medium. Cells were grown in MEM basal medium supplemented with 10% FBS
and 1% antibiotic–antimycotic in a humidified incubator at 37 ◦C, equilibrated with 5% CO2.
After 24 h of culture, the medium was removed, washed once with PBS, replaced with
serum-free medium and left to culture for another 16 h. Medium was removed and replaced
with corresponding treatment medium each in triplicates; 10 nM and 50 nM of Sh-EGFl-1,
10 nM and 50 nM of rhEGF were used as a positive control and serum-free medium was
used as a negative control. Cells were harvested after 4 h. Medium was removed and
200 µL of Trizol reagent (Thermo Scientific, Waltham, MA, USA) was immediately added.

4.8. RNA Extraction

RNA extraction was performed according to Trizol reagent manufacturer’s protocol.
An elution volume of 15 µL RNase-free water was added before the concentration and
purity were determined using NanoDrop.

4.9. cDNA Synthesis

A total of 100 ng RNA was used initially for the cDNA synthesis reaction. The
reaction was carried out according to RT2 First Strand Kit’s protocol (Qiagen, Venlo,
The Netherlands). Genomic DNA was removed according to the manufacturer’s protocol
prior to cDNA strand generation.

4.10. Quantitative Real-Time PCR Containing Array of EGF Pathway Genes

The 10 µL cDNA of human skin cells was diluted with 91 µL prior to qPCR reac-
tion. Primer pairs of 84 genes involved in the EGF pathway, five housekeeping genes
such as ribosomal protein large, P0 (RPL0), glyceraldehyde-3-phosphate-dehydrogenase
(GAPDH), beta-actin (ACTB), beta-2-microglobulin (B2M) and hypoxanthine phosphori-
bosyltransferase 1 (HPRT1), one positive control gene for genomic DNA contamination,
three reverse transcription control genes and three PCR-positive controls were included
in the Qiagen PAHS-040ZA qPCR array plate (Qiagen, Venlo, The Netherlands). A list
of all genes analyzed in this study is available in Supplementary Materials Table S7. The
mixture reaction was prepared according to the protocol and run using BioRad CFX96TM.
Samples of 10 nM rhEGF and 10 nM Sh-EGFl-1 were prepared in duplicates. The following
thermal profile was applied: 1 cycle at 95 ◦C for 10 min, 40 cycles at 95 ◦C for 15 s, 60 ◦C
for 1 min, with the ramp rate from 95 ◦C to 60 ◦C was set at 1 ◦C every second. The data
were then analyzed through Qiagen web portal. Data for serum-free medium were selected
as a control group and the differences in gene expression between control and treatment
groups were calculated using the 2ˆ(−delta delta CT) method. The difference, known as
fold change, was obtained from the delta delta CT values, which are the genes of interest
and the average housekeeping genes, followed by the delta delta CT (delta CT (treatment
group)—delta CT (control group)).

5. Conclusions and Future Perspective

Our study revealed that Sh-EGFl-1 activates the EGFR pathway and induces cell
proliferation via PI3K–AKT–GSK3, Ras–Raf–MEK–ERK–MAPK, PLC gamma, STAT and
Rho signaling pathways. Among the suggestions that can be done to further this study is
to test the effect of Sh-EGFl-1 on gene expressions involved in the EGF/PDGF pathway
during a longer cell culture period. Also, a comparative analysis of gene expression can be
performed to see the development of EGFR phosphorylation activity in relation to time. In
silico prediction of EGF-like peptide is an advantage of this research because it can be syn-
thesized for use in any biopharmaceuticals application i.e., as a serum substitute [28,84,85],
and also in medicine i.e., during chronic wound healing [12,86]. Combining Sh-EGFl-1
with other growth factors such as FGF or PDGF may speed up the wound healing process
as they work synergistically to trigger more pathways [87–89].
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Overall, this work successfully answered one of many biological questions regarding
the therapeutic effect of S. horren’s wound healing, based on the role of Sh-EGFl-1 to increase
cell proliferation. As a unique marine organism that has the ability to regenerate, there are
many more useful biomolecules from Asia’s sea cucumber species that could be explored
for various applications in life sciences.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20100596/s1, Supplementary Materials S1: S. horrens protein
modeling, Supplementary Materials S2: S. horrens protein docking, Figure S3: RMSD of Sh-EGFl-1
model from the starting structure as a function of simulation time in nanoseconds, Table S4: relative
binding percentage of Sh-EGFl-1 and rhEGF, Table S5: cell counting data, Figure S6: cell morphology
observations, Table S7: human EGF/PDGF RT2 Profiler PCR array.
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