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Biological features 
between miRNAs and their targets 
are unveiled from deep learning 
models
Tongjun Gu1,2*, Mingyi Xie3,4,5, W. Brad Barbazuk1,4,6 & Ji‑Hyun Lee2,7*

MicroRNAs (miRNAs) are ~ 22 nucleotide ubiquitous gene regulators. They modulate a broad range 
of essential cellular processes linked to human health and diseases. Consequently, identifying miRNA 
targets and understanding how they function are critical for treating miRNA associated diseases. 
In our earlier work, a hybrid deep learning-based approach (miTAR) was developed for predicting 
miRNA targets. It performs substantially better than the existing methods. The approach integrates 
two major types of deep learning algorithms: convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs). However, the features in miRNA:target interactions learned by miTAR have 
not been investigated. In the current study, we demonstrated that miTAR captures known features, 
including the involvement of seed region and the free energy, as well as multiple novel features, 
in the miRNA:target interactions. Interestingly, the CNN and RNN layers of the model perform 
differently at capturing the free energy feature: the units in RNN layer is more unique at capturing 
the feature but collectively the CNN layer is more efficient at capturing the feature. Although deep 
learning models are commonly thought “black-boxes”, our discoveries support that the biological 
features in miRNA:target can be unveiled from deep learning models, which will be beneficial to the 
understanding of the mechanisms in miRNA:target interactions.

miRNAs are small non-coding RNAs that have an average length of ~ 22 nucleotides (nts)1. They typically form 
base-pairs with their target RNAs within the RNA-induced silencing complex and act to repress gene expression 
post-transcriptionally2. It has been reported that miRNAs play key roles in a variety of biological processes and 
human diseases3–5, and several miRNA-targeted therapeutics have undergone clinical trials for treating human 
cancers6–8 Thus, it is important to identify the targets of the miRNAs to better understand the function and 
regulation of miRNAs.

Recently, we developed a hybrid deep learning-based approach to predict miRNA targets, named miTAR​
9. miTAR integrates two major deep learning (DL) algorithms, convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs). CNNs are designed to learn spatial features and RNNs are designed to learn 
sequential features. Our approach has the advantages of learning both the intrinsic spatial and sequential features 
of miRNA:target interactions. We applied miTAR on two datasets, DeepMirTar and miRAW​10,11; both contain 
a large number of widely used validated miRNA:targets pairs (positive pairs) and negative pairs (miRNAs and 
non-target pairs) (Details in the Methods). We obtained two models: miTAR1 trained on the DeepMirTar dataset; 
and miTAR2 trained on the miRAW dataset. We have demonstrated that miTAR has substantially improved per-
formance relative to all current DL approaches9; however, the features miTAR learned have not been investigated, 
which is important for the understanding of the mechanisms in miRNA:targets interactions.

Multiple common features have been widely used in predicting miRNA targets. They are seed match, free 
energy, target site accessibility, and sequence conservation12,13. The seed region of a miRNA is thought to be 
important for miRNA to recognize its target. It is commonly defined as seven nucleotides starting from the 
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second nucleotide of the miRNA14. There are multiple types of seed match, but the most effective miRNA targets 
include a perfect Watson–Crick match between the 2–7 nucleotide of miRNA and its target RNA/gene3,12. Thus, 
in the current study, we defined the seed region as the 2–7 nucleotide region of a miRNA. Free energy can be used 
to measure the binding between miRNAs and their targets and is widely used in miRNA target prediction. Free 
energy is a negative real value. The lower the value the stronger the binding, therefore, the target is more likely 
to be a true target of the miRNA with lower free energy13. Site accessibility is the measure of how accessible the 
target region for a miRNA binding is; sequence conservation is a measure of how conserved the target sequence 
is across species. They both are also widely used in many studies12,13.

DL has been successfully applied in many scientific fields; however, the interpretation of DL models is not well 
studied15,16. Interpretation of DL models is not only critical for developing robust and reliable new models but also 
important for understanding the underlying biological mechanisms. Thus, the interpretation of DL models has 
been reignited in recent years. However, among the recent developments, the majority were applied to image and 
natural language processing, such as gradient-based approaches, Grad-CAM++, Layer-wise Relevance Propaga-
tion, Local Interpretable Model-agnostic Explanations16,17. A few approaches have been applied to biological data. 
Zhou and Troyanskaya18 used in-silico mutagenesis analysis to evaluate the impact of genomic sequence features. 
Shrikumar et al.19 used deepLift, a Gradient-based backpropagation method, to discover transcription factor 
motifs. As far as we are aware, no methods have been applied to DL models on miRNA target interpretation. In 
this work we applied multiple approaches, including a series of in-silico mutagenesis analyses and correlation 
analyses, to demonstrate that our DL model can capture both known and novel features existing in miRNA:target 
interaction. Furthermore, we demonstrated that CNN and RNN perform differently on capturing features.

Results
In‑silico mutagenesis analyses demonstrated that miRNA seed region significantly impacts 
miRNA:target interactions.  We first examined whether the seed region plays an important role in the 
prediction. We defined the seed region as the six nucleotides from miRNA position 2nd to 7th in the miRNA, 
which is the least number of nucleotides forming perfect matches between miRNAs and their targets12. We 
performed in-silico mutagenesis analysis by changing the nucleotides of the seed region in miRNAs to ‘N’s and 
then compared the performance on predicting miRNA target between the wild-type miRNA sequences and 
the altered sequences. The seed region significantly alters the prediction probability on both DeepMirTar and 
miRAW positive and negative miRNA:target pairs (p-values < 0.05 after Bonferroni multiple testing correction). 
The alteration is much larger in DeepMirTar positive pairs and miRAW negative pairs (Fig. 1). In addition, we 
mutated the seed region to ‘G’s, which is the nucleotide with the least number at the seed region in the DeepMir-
Tar and miRAW datasets. We obtained similar results (Supplementary Fig. 1). The consistent results between 
the two types of mutagenesis analysis suggest the seed region plays an important role in the interactions of 
miRNA:target for a large portion of the known miRNA:target pairs.

CNN and RNN behave differently at capturing the free energy.  CNN excels in learning spatial 
features and RNN discerns sequential features20. To evaluate the performance of CNN and RNN in our models, 
we calculated the free energy for each pair of miRNA:target. The free energy is less for miRNA:target pairs with 
more base-pairings, which can be considered a spatial feature. We performed Spearman’s correlation coefficient 
analysis between the free energy and the layer output of CNN and RNN. We first did the correlation analysis 
for the output of each CNN unit with the free energy using the DeepMirTar positive miRNA:target pairs. We 
found that the maximum (max) correlation is 0.32 and the minimum (min) correlation is − 0.34 (Table 1). Then 
we summed the unit outputs of CNN per each feature map and performed the correlation analysis between the 
summed feature map output and the free energy. The max and min correlations are increased: 0.51 for the max 
correlation and − 0.53 for the min correlation (Table 1). Furthermore, we summed the outputs for all the units 
of CNN and correlated it with the free energy. The max and min correlations are further increased: the max cor-
relation is 0.59 and the min correlation is − 0.56 (Table 1). Similar results were obtained for the negative pairs in 
DeepMirTar, and miRAW positive and negative pairs (Table1 and Supplementary Table 1). The analysis results 
suggest CNN captures the spatial features in the interactions of miRNA:target and the features captured by the 
units within a feature map or across feature maps of CNN are partially overlapped.

We conducted a similar analysis for the RNN layer. First, we did Spearman’s correlation coefficient analysis 
between each unit output and the free energy. The max (0.36) correlation is close to the CNN max unit correla-
tions and the absolute min (− 0.19) correlation is smaller than the CNN min unit correlation for the DeepMirTar 
positive pairs; while the max (0.22) and min (− 0.30) correlations for the miRAW positive pairs are larger for 
the RNN layer than the CNN layer (max: 0.19 and min: − 0.19). These results indicate that RNN also captures 
the spatial features. However, when we summed the unit outputs of RNN, the max and min correlations for the 
summed output of RNN are largely reduced for both datasets and also for the negative pairs from both datasets 
(Table 1 and Supplementary Table 1). The results imply the free energy feature is captured independently across 
units of RNN. Therefore, collectively the CNN layer is better at capturing the spatial features than the RNN layer.

Features identified from in‑silico mutagenesis analyses from the DeepMirTar dataset.  Both 
the seed region and the free energy are common features in miRNA:target interactions, which are captured 
by our models as demonstrated in the previous sections. In addition to the analysis of the known features, we 
explored whether we could identify novel features using our models from the two datasets (DeepMirTar and 
miRAW). We did six types of nucleotide in-silico mutagenesis analysis on the positive pairs of DeepMirTar and 
miRAW: one-, two-, three-, four-, five-, and six-nucleotide mutation. We measure how the mutation alters the 
prediction output compared to that of the wild-type sequence input. The larger the alteration in prediction out-
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Figure 1.   The impact of the alteration at the seed region for two models with the matched dataset (miTAR1 
with DeepMirTar; miTAR2 with miRAW). Left figure (a) shows the alteration for the positive miRNA:target 
pairs from DeepMirTar and miRAW. Right figure (b) shows the alteration for the negative pairs from the same 
two datasets. Y axis is the average prediction probability with standard errors. Prediction probability represents 
the probability predicted by our models for a sequence being a target sequence of a miRNA. Ref_miTAR1_Pos 
and ref_miTAR2_Pos represent the prediction probability from the raw sequences. MutSeed2-6_miTAR1_Pos 
and MutSeed2-6_miTAR2_Pos represent the prediction probability from the altered sequence (seed region was 
mutated to ‘N’s).

Table 1.   The maximum (Max) and minimum (Min) correlation coefficient (Cor) between the outputs of CNN 
and RNN layer with the highest free energy for the positive pairs from DeepMirTar and miRAW. *The p-values 
(Pval) are from Spearman’s correlation coefficient analysis testing the coefficient equals to zero and adjusted for 
the multiple comparisons.

UnitCount MinCor MinCor_Pval MaxCor MaxCor_Pval

DeepMirTar CNN positive vs the highest binding energy

Raw 21,438 − 0.34 1.85E−104 0.32 2.78E−96

CombinePerFeatureMap 640 − 0.53 5.93E−287 0.51 1.21E−255

CombineAllUnits 2 − 0.56 0 0.59 0

miRAW CNN positive vs the highest binding energy

Raw 17,486 − 0.19 2.77E−32 0.19 3.19E−31

CombinePerFeatureMap 632 − 0.46 2.26E−209 0.40 7.31E−152

CombineAllUnits 2 − 0.61 0 0.57 0

DeepMirTar BiRNN positive vs the highest binding energy

Raw 58 − 0.19 4.17E−33 0.36 4.16E−117

Combine_AllUnits 2 − 0.10 1.27E−08 0.22 1.82E−44

miRAW BiRNN positive vs the highest binding energy

Raw 64 − 0.30 4.23E−81 0.27 1.89E−66

Combine_AllUnits 2 − 0.14 8.95E−18 0.20 1.26E−36
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put, the more likely that nucleotide is more important to the miRNA:target interactions. For multi-nucleotide 
mutagenesis analyses, the step between each mutation is one nucleotide. The miRNA positions were labeled with 
the letter, L, and the target RNA positions were labeled with the letters, LT.

For the DeepMirTar positive pairs, two peaks were found within the distribution for all six mutagenesis 
analyses (Fig. 2). In the one-nucleotide mutation examination, one peak was found in the vicinity of miRNA 
nucleotide 7 (labeled miTAR1_L7) and one peak was found near nucleotide 14 (labeled miTAR1_L14). With 
more nucleotides being mutated, the two peaks become deeper, and the summit of the miTAR1_L14 peak is 
shifted towards L16 while the summit of the miTAR1_L7 peak shifts between L7 and L8. Because the nucleotides 
in the multi-nucleotide mutagenesis analyses were mutated from larger positions to smaller positions (details 
in “Methods”), the nearby nucleotides at smaller positions were still included in the mutagenesis analysis. Nev-
ertheless, the changes of the peaks suggest the nearby nucleotides are important. Notably, the five-nucleotide 
mutation reaches the largest alteration on the prediction probability. The alteration is larger than 50% at the 
summit for the miTAR1_L14 peak of the five-nucleotide mutagenesis analysis suggesting that the mutation 
alters the prediction from being a target of miRNA to a non-target. This further supports the importance of the 
nearby nucleotides. The six-nucleotide mutation also generates strong alterations but less than the five-nucleotide 
mutation, suggesting more nucleotide alterations beyond five continuous nucleotides may not greatly affect the 
miRNA:target interactions.

To determine the impact of the single nucleotide from the six types of multi-nucleotide mutagenesis analy-
sis, we summed the impact of the single nucleotide mutation and multi-nucleotide mutation. For the multi-
nucleotide mutation, the single nucleotide impact was calculated from two adjacent types of multi-nucleotide 
mutation. An example was shown in Supplementary Fig. 2. In the end, we added all the single nucleotide impacts, 
and the average value was used to represent the overall importance of a single nucleotide (details in “Methods”). 
The results are shown in Fig. 3 for the DeepMirTar dataset. Consistent with the single nucleotide mutagenesis 
analysis, miTAR1_L7 and miTAR1_L14 show the strongest impact in the two peaks. In the first peak, nucleotides 
L4 to L7 show stronger impacts than others. Thus, these four nucleotides were selected as a feature and labeled 
miTAR1_L4-4. In the second peak, nucleotides L13 to L16 show stronger impacts than others. Similarly, these 
four nucleotides were selected as another feature and labeled miTAR1_L13-4.

Features identified from in‑silico mutagenesis analyses from the miRAW dataset.  We per-
formed analyses on the miRAW dataset similar to those performed on the DeepMirTar dataset. For the miRAW 
positive pairs, at one-nucleotide mutation, one peak appears around the target RNA location LT9. In the 
multi-nucleotide mutagenesis analyses, a second peak appears (labeled L11, the first summit in two-nucleotide 
mutagenesis analysis), and it becomes stronger than the LT9 peak with an increased number of mutant nucleo-
tides (Fig. 4). With more nucleotides being mutated, the two peaks become deeper and the summits for both 
peaks are shifted toward larger positions: the summit for the LT9 peak shifts to LT11; the summit for the L11 
peak shifts to L14. Similar to the analysis for the DeepMirTar positive pairs, the changes of the two peaks indi-
cate the nearby nucleotides are important for miRNA:target interactions. We also observed that from three-
nucleotide mutations, the growth of the LT9 peak slows down. We did seven- and eight-nucleotide mutagenesis 
analyses specifically for the miRAW positive pairs. The LT9 peak reaches its maximum alteration on prediction 
output at seven-nucleotide mutations, which is almost the same as the six-nucleotide mutation (Supplementary 
Fig. 3). Although the L11 peak does not reach its maximum alteration, the increase on the summit slows down 

Figure 2.   The prediction probability for the DeepMirTar positive pairs for six types of in-silico mutagenesis 
analyses: the one-, two-, three-, four-, five-, and six-nucleotide mutation. The miRNA positions were labeled 
with the letter, L, and the target RNA positions were labeled with the letter, LT. For the multi-nucleotide 
mutation, the prediction probability was recorded at the stop position of the mutation. miRNA nucleotides were 
ordered from 5′→3′ and the target nucleotides were ordered from 3′→5′. L0 is the prediction probability of the 
raw sequence.
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(Supplementary Fig. 3). The results also support that, similar to the DeepMirTar dataset, miRNA:target interac-
tions do not benefit greatly beyond six continuous nucleotides.

To obtain the single nucleotide impacts from miRAW in a similar fashion to the analysis of the DeepMirTar 
dataset, we accumulated the impacts with or without surrounding nucleotides from one-nucleotide mutagen-
esis analysis and two adjacent types of mutagenesis analyses. The results are shown in Fig. 5. For the LT9 peak, 
nucleotides 7 to 11 show stronger impacts than others and were selected as one feature, labeled miTAR2_LT7-5. 
Because the target sequences were ordered from 3′→5′ and the miRAW dataset extended five nucleotides on 
both ends of the target site, miTAR2_LT7-5 locates towards the 3′ end of the target that most likely matches the 
5′ end of miRNA by complementary base-pairing. Thus, miTAR2_LT7-5 potentially base pairs with the seed 
region of miRNAs. For the L11 peak, nucleotides 10 to 13 show stronger impacts than others, and were selected 
as another feature and labeled miTAR2_L10-4.

The independent and joint effects of the identified features.  We first evaluated the independ-
ent and joint effects of three regions: the seed region, and two regions identified from DeepMirTar dataset 
(miTAR1_L4-4 and miTAR1_L13-4). We mutated the three regions separately to obtain the independent effects 
and two of the three regions to obtain the joint effects. The results were shown in Fig. 6. The seed region (labeled 
as seed2-6) and miTAR1_L4-4 show similar effects on the prediction probability (~ 0.16 reduction on prediction 
probability for both regions) while miTAR1_L13-4 has a larger effect (~ 0.48 reduction on prediction probabil-
ity). Because the miTAR1_L4-4 is part of the seed region, and the similarity observed for the DeepMirTar data-
set, miTAR1_L4-4 is most likely the key element of the seed region. The same conclusion is also supported by the 
joint effects: the joint effects of seed region and miTAR1_L13-4 are similar to the joint effects of miTAR1_L4-4 

Figure 3.   Average nucleotide alterations on prediction probability for the DeepMirTar positive pairs. L marks 
the position of miRNA nucleotides and LT marks the position of target nucleotides.

Figure 4.   The prediction probability for the miRAW positive pairs for the one-, two-, three-, four-, five-, and 
six-nucleotide mutation. The labels have the same meaning as shown in Fig. 2.
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and miTAR1_L13-4 (~ 0.72 reductions). However, the joint effects reduced the prediction probability at a rela-
tively larger scale than the sum of the independent effects from the miTAR1_L4-4 and miTAR1_L13-4 region 
(0.72 > 0.48 + 0.16).

We conducted a similar analysis for the seed region, miTAR2_LT7-5 and miTAR2_L10-4 (Fig. 6) in the 
miRAW dataset. The seed region generates a small but statistically significant effect (~ 0.01 reduction on 
prediction probability; p-value = 0.0 from Mann–Whitney U test). The miTAR2_LT7-5 shows a larger effect 
with ~ 0.22 reduction on prediction probability, while miTAR2_L10-4 generates the largest independent effect 

Figure 5.   Average nucleotide alterations on prediction probability for the miRAW positive pairs. L marks the 
position of miRNA nucleotides and LT marks the position of target nucleotides.

Figure 6.   The joint and independent impacts of two types of features identified from the in-silico mutagenesis 
analyses. All the analyses were done using the data from positive pairs of DeepMirTar (the first six columns 
with the label of miTAR1) and miRAW (the remaining columns with the label of miTAR2). The Y axis is the 
average prediction probability with standard errors. Ori marks the prediction probability for the raw sequences. 
seed2-6 marks the prediction probability after altering the seed region. L13-4 marks the prediction probability 
after altering the region from L13 to L16. L4-4 marks the prediction probability after altering the region from 
L4 to L7. LT7-5 marks the prediction probability after altering the region from LT7 to LT11. L10-4 marks the 
prediction probability after altering the region from L10 to L13.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23825  | https://doi.org/10.1038/s41598-021-03215-w

www.nature.com/scientificreports/

(~ 0.61 reductions) suggesting the L10-4 region is potentially the biggest factor for the miRAW dataset. The 
joint effect of the seed region and miTAR2_L10-4 (~ 0.66 reductions), and the joint effect of the miTAR2_L10-4 
and miTAR2_LT7-5 (~ 0.65 reductions) show similar impacts on prediction probability. The joint effect from 
the seed region with the miTAR2_LT7-5 generates the smallest impact (0.23 reduction), which is similar to the 
independent effect of miTAR2_LT7-5. The joint effect analyses for the miRAW dataset imply that miTAR2_LT7-5 
potentially replaces the role of the seed region in miRNA:target interactions. Nevertheless, the joint effects with 
the seed region from the DeepMirTar and miRAW datasets suggest that the seed region plays a fundamental role 
in the miRNA:target interactions, while the other features boost the impact of the seed region.

Base‑pairing pattern in the identified features.  It is well known that the base-pairing is extensive 
within the seed region of canonical miRNA targets. To examine whether the newly discovered features share the 
same level of base-pairing as the seed region, we used miRanda to predict the alignment between miRNA and 
its matched target. Then we counted how many base-pairings appeared at the feature regions. We first examined 
the 3,958 DeepMirTar positive miRNA:target pairs for the three regions: the seed region, miTAR1_L4-4, and 
miTAR1_L13-4 (Table 2). The seed region has an average of ~ 89.02% base-pairing, which is much higher than 
the base-pairing at miTAR1_L13-4 (~ 66.57%). Surprisingly, the miTAR1_L4-4 portion of the seed region has 
higher base-pairing (~ 94.76%) than the entire seed region which suggests that miTAR1_L4-4 may be the core of 
the seed region. We also examined miTAR1_L7 and miTAR1_L14. The base-pairing at miTAR1_L7 (~ 92.90%) 
lies in between miTAR1_L4-4 and the seed region; miTAR1_L14 (~ 68.12%) has higher base-pairing than the 
miTAR1_L13-4. We further extracted the miRNA:target positive pairs that alter the prediction probability > 0.48 
(the average alteration on prediction probability) for miTAR1_L13-4. We obtained relatively higher base-pairing 
for the extracted pairs than all pairs at the seed region, while relatively lower base-pairing at miTAR1_L13-4 
region. The results indicate that the base-pairings at miRNA 13 to 16 are much lower than the seed region, but 
that alterations to these base-pairings potentially impact the binding between miRNAs and their targets.

We did the same analysis for the 32,661 miRAW positive pairs at the seed region, miTAR2_L10-4 and 
miTAR2_LT7-5 (Table 2). The base-pairing at miTAR2_L10-4 is much lower than at miTAR2_LT7-5 (56.4% vs 
86.5%). The base-pairing at miTAR2_LT7-5 is comparable to the seed region (86.5% vs 94.5%), suggesting that 
miTAR2_LT7-5 plays a similar role as the seed region. We also extracted the miRAW positive pairs that alter the 
prediction probability > 0.61 by miTAR2_L10-4 and the positive pairs that alter the prediction probability > 0.23 
by miTAR2_LT7-5 (0.61 and 0.23 are the average alteration on prediction probability for the respective features). 
We observed lower base-pairing for the extracted pairs than all pairs at miTAR2_L10-4. Compared to the higher 
base-pairing at miTAR2_LT7-5 for the extracted pairs versus all pairs, the results suggest that despite the base-
pairing probability at miRNA 10–13 being much lower, it is important for the miRNA:target interactions.

We also compared all the regions across the two datasets (Table 2). Base-pairing is the highest at miTAR1_
L4-4 for all the datasets, followed by miTAR1_L7, and then the seed region. The results further support that 
miTAR1_L4-4 is very possibly the core element of the seed region. The base-pairing at miTAR1_L14 is higher 
than miTAR1_L13-4 for DeepMirTar dataset, and both regions have higher base-pairing for DeepMirTar than 
miRAW indicating that miTAR1_L13-4 and miTAR1_L14 may be more important for the pairs in DeepMirTar 
than miRAW. The base-pairing at miTAR2_L10-4 for miRAW is the lowest for all the datasets. The base-pairing 
at miTAR2_LT7-5 is much higher for miRAW than DeepMirTar, and it is comparable to the base-pairing at the 
seed region for DeepMirTar. This further supports that miTAR2_LT7-5 potentially replaces the role of the seed 
region for the pairs in miRAW.

Methods
Datasets and models.  The DeepMirTar and miRAW datasets were collected from two studies10,11 in our 
earlier work and the details are in9. Here is a brief description. DeepMirTar contains 3,908 positive miRNA:target 
pairs and 3,898 negative miRNA:target pairs. The positive pairs were originally obtained from three resources: 
miRecords, miRTarBase, and CLASH data. And only the target sites located in 3′UTRs with canonical seeds and 
non-canonical seeds were included in DeepMirTar10. The negative pairs were also obtained directly from the 
study of DeepMirTar10. First, they shuffled the canonical and non-canonical seed region of the real mature miR-
NAs until the region does not match the same region of all the real mature miRNAs. Then, a target region that 

Table 2.   The percentage of the base pairing for the features identified from DeepMirTar and miRAW datasets.

Features identified from DeepMirTar 
dataset Seed region

Features 
identified from 
miRAW dataset

L7 L14 L4-4 L13-4 L2-6 L10-4 LT7-5

deepMirTar

All pairs 92.90% 68.12% 94.76% 66.57% 89.02% 70.55% 54.47%

Extracted_L13-4 91.48% 66.26% 94.53% 64.73% 90.01% 69.59% 54.35%

miRAW​

All pairs 95.39% 59.53% 96.07% 58.48% 94.46% 56.36% 86.49%

Extracted_L10-4 95.85% 57.44% 96.18% 55.64% 94.75% 53.56% 87.56%

Extracted_LT7-5 97.30% 63.25% 97.76% 60.67% 96.51% 56.48% 90.40%
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matches the canonical and non-canonical seed region requirement for these shuffled miRNAs were obtained 
using miRanda21. These pairs were taken as negative pairs of the DeepMirTar dataset.

miRAW contains 32,660 positive and 31,993 negative pairs that were collected from two resources: Diana 
TarBase and MirTarBase. The positive target site sequences were obtained by cross-referencing with PAR-CLIP, 
CLASH, and TargetScanHuman 7.1. It contains many non-canonical targets. The negative target site sequences 
were obtained from the experimental validated non-target genes using two criterions: a maximum length of 30 nts 
and form a stable base-pairing. All the target and non-target site sequences were trimmed to the same length at 
30 nts and further extended five nts on both sides. Thus, the length of the target sequences for miRAW is 40 nts. 
The length of the target sequences for DeepMirTar is highly variable, therefore, the target sequences were pad-
ded to the length of 53 nts, which is the longest target sequence of DeepMirTar. All the miRNA sequences from 
DeepMirTar and miRAW were padded to the length of the longest miRNA, 26 nts. In our previous work, we 
concatenated the sequence of a miRNA from 3′ to 5′ with its target sequence from 5′ to 3′. In our current work, 
we presented the results for miRNA sequences in the order of 5′ to 3′, and target sequences in the order of 3′ to 5′.

The miTAR model has six layers, including one embedding, CNN, Max pooling, and BiRNN layer, and two 
dense layers (details are in9). The inputs for the miTAR are the concatenated sequences of miRNAs and their 
matched target sites. The model trained on DeepMirTar was labeled miTAR1, and the model trained on miRAW 
was labeled miTAR2.

The processes for in‑silico mutagenesis experiments.  We performed multiple types of mutagenesis 
analysis, including seed region mutation to evaluate and validate the known features and one- to six-nucleotide 
mutation to discover novel features. For each type of mutation, we altered the testing region/nucleotides in the 
input sequences to ‘N’/‘N’s and ran the prediction using the appropriate model on the matched dataset: we ran 
the miTAR1 model on DeepMirTar dataset; and miTAR2 on the miRAW dataset. The prediction probability 
(the probability predicted by our models for a sequence being a target site of a miRNA) was recorded for the 
original sequence and the altered sequence. The prediction probability from the original sequence was taken as 
the control to measure the effect of the mutation. The statistical analysis for the alteration on prediction between 
the wild-type sequence and the mutated sequence was carried out using the Mann–Whitney U test. Multiple 
testing correction was performed using Bonferroni correction. The threshold was set at a p-value of 0.05 after 
the Bonferroni correction.

For multi-nucleotides mutagenesis analysis, the step for each mutation was one nucleotide. The alteration at 
the edge of the wild-type sequences was done by padding zero. The location for each multi-nucleotide mutation 
was recorded at the stop location of the mutation. For example, the L3, L4, and L5 nucleotides were mutated for 
three-nucleotide mutation recorded at miRNA location L5.

Free energy and base‑pairing calculation.  The base-pairing was obtained by aligning each pair 
of miRNA:target using miRanda (v1.9)21 with default settings except -sc 0 -en 0. The highest binding energy 
reported by miRanda for each pair was used for the correlation analysis with each of the CNN and RNN outputs. 
Using the function of Spearmanr from Python SciPy library, Spearman correlation coefficient and the corre-
sponding p-value were calculated. The base-pairing in specific regions between miRNAs and their targets were 
counted by a customer script. The T:G/U:G was taken as one base pairing.

Accumulative in‑silico mutagenesis analysis.  The impact of the nucleotide in a multi-nucleotide 
environment was evaluated using the following steps. Firstly, we performed the mutation analysis in the order 
from one- to six-nucleotide. Secondly, we calculated the impact of a nucleotide in the multi-nucleotide environ-
ment as the difference between the adjacent multi-nucleotide mutations. For example, the impact of the miRNA 
nucleotide 7 (L7) in the vicinity of three nucleotides on the left can be obtained by the differences between the 
three-nucleotide mutation at L6 and four-nucleotide mutation at L7 (formula (1); Supplementary Fig. 2); and 
the impact in the vicinity of three nucleotides on the right can be obtained by the differences between the three-
nucleotide mutation at L10 and four-nucleotide mutation at L10 (formula (2); Supplementary Fig. 2). Thirdly, 
we summed the differences from every two adjacent types of mutagenesis and used the average value to demon-
strate the impacts of the nucleotide [formula (3)].

where e represents the prediction probability difference between the mutated sequence and the original sequence; 
super-script 3 and 4 represent the number of nucleotides mutated; L6, L7, and L10 represent the miRNA nucleo-
tide 6, 7, and 10 respectively; and l and r represent left and right.

Figure plots.  We used the R package, ggplot2, to plot Figs. 1, 2, 4, 6, Supplementary Fig. 1, and Supplemen-
tary Fig. 3.

(1)e
3l
L7 = e

4
L7 − e

3
L6,

(2)e
3r
L7 = e

4
L10 − e

3
L10,

(3)e
3
L7 = (e3lL7 − e

3r
L7)/2,
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Discussion
DL models are normally “black boxes” to many users. For example, what features a DL model prioritized are 
hard to interpret. In our current work, we explore what we learned from our previously developed DL models7. 
Mutation and correlation analyses demonstrate that the models learned at least two known features: the seed 
region and free energy. Furthermore, we identified that CNN and RNN behave differently in learning the free 
energy feature. In the end, we performed mutagenesis analysis and identified multiple known and novel core 
elements that most likely play important roles in the miRNA:target interactions.

For DeepMirTar dataset, two regions were identified with the highest impact on the prediction probability: 
miTAR1_L4-4 with summit L7 and miTAR1_L13-4 with summit at L14. The miTAR1_L4-4 region overlapped 
with the seed region and has almost the same impacts on the prediction probability from independent and joint 
mutagenesis analyses (Fig. 6). Further, the miTAR1_L4-4 has the highest base-pairing, even higher than that 
of the seed region (Table 2). The seed region is thought to be an important element for miRNA recognition of 
their targets and is widely used in miRNA target prediction3,12. Our analysis suggests that four of the six nucleo-
tides may define the core element of the seed region, and L7 is the most important site within the seed region. 
miTAR1_L13-4 is a reported feature that impacts the efficiency of miRNA’s function3, which is consistent with 
our result. We further identified that L14 is the most important site in miTAR1_L13-4 region. The joint effect of 
the miTAR1_L4-4 and miTAR1_L13-4 is similar to the joint effects of miTAR1_L13-4 and the seed region, which 
is higher than the sum of independent effects of miTAR1_L4-4 and miTAR1_L13-4 (Fig. 6). Similar observations 
were obtained with the miRAW dataset. The results indicate the seed region may serve as the basis to nucleate 
the interactions between miRNAs and their targets.

The two regions (miTAR2_L10-4 and miTAR2_LT7-5) identified from the miRAW dataset were not reported 
in other studies. Because miTAR2_LT7-5 locates towards the 3′ end of the target that most likely matches the 
5′ end of miRNA by complementary base-pairing, and the seed region only minorly impacts the prediction 
probability in miRAW, it is possible that miTAR2_LT7-5 replaces the role of the seed region for the miRNAs in 
miRAW. This is further supported by the independent and joint mutagenesis analysis results (Fig. 6) and base-
pairing analysis (Table 2). miTAR2_L10-4 locates at the 3′ side of the seed region in miRNAs. It is reported that 
the base-pairing beyond the seed region (towards the 3′end) defines the specificity for both canonical and non-
canonical miRNA targets and is potentially essential for non-canonical miRNA targets22. Since miRAW contains 
both a large number of canonical and non-canonical miRNA targets10, their function most likely would be 
impacted by the two regions. Currently, no DL studies perform analyses from the perspective of target sequences. 
We demonstrate that the RNA/gene sequence (LT7-5) may contribute to the interaction with miRNAs. One 
possible reason may reflect evolutionary selection—under selection pressure, genes may increase nucleotide 
diversity to favor or impair miRNA binding.

In this study, we demonstrated using spearman’s correlation coefficient analysis that the RNN units is more 
unique than the CNN units on capturing the free energy feature in both DeepMirTar and miRAW datasets. One 
possible reason may be the order of RNN and CNN in miTAR. In miTAR, the RNN layer is behind the CNN 
layer. In order to determine whether and how large the order of the layers impact the performance of the layers, 
we performed the same correlation analysis for the Dense layer that is behind the RNN layer. Interestingly, we 
observed that most of the minimum and maximum correlations are not statistically significant (p-value > 0.05) 
(Supplementary Table 1). Of these significant correlations, there are no apparent changes between the unit and 
combined correlations (the changes of the correlation coefficients are within 0.01). The analysis results indicate in 
addition to the order of the CNN and RNN, the nature of CNN and RNN may play a role to explain the behavior 
differences observed in the correlation analyses.

miRNAs have been reported in many studies that are involved in many diseases, and various methods 
have been developed to predict miRNA-disease association23–25. In our earlier work, we demonstrated that 
miTAR performs substantially better than other alternatives. In the current work, we identified novel features in 
miRNA:target interactions. With a better approach and understanding of miRNA:target interactions, our work 
can contribute to the prediction of miRNA-disease association. We plan to integrate other omics data, for example 
gene expression, from a specific disease tissue to give a quantitative measurement of the impacts of miRNAs on 
their targets in the specific disease. These measurements can be used to improve the miRNA functional similarity 
used in miRNA-disease association analysis. Further, a network can be built between miRNAs and their target 
genes to explain the underling mechanism on the development of the disease.

In summary, using multiple approaches, we revealed multiple known and novel features from DL models 
that contribute to the interaction between miRNAs and their targets. Our analysis will not only benefit the 
understanding of the mechanism in miRNA’s functional process but also supplies a conceptual framework for 
unveiling the DL models.
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