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Abstract: Off-flavors produced by undesirable microbial spoilage are a major concern in wineries, as
they affect wine quality. This situation is worse in warm areas affected by global warming because of
the resulting higher pHs in wines. Natural biotechnologies can aid in effectively controlling these
processes, while reducing the use of chemical preservatives such as SO2. Bioacidification reduces the
development of spoilage yeasts and bacteria, but also increases the amount of molecular SO2, which
allows for lower total levels. The use of non-Saccharomyces yeasts, such as Lachancea thermotolerans,
results in effective acidification through the production of lactic acid from sugars. Furthermore,
high lactic acid contents (>4 g/L) inhibit lactic acid bacteria and have some effect on Brettanomyces.
Additionally, the use of yeasts with hydroxycinnamate decarboxylase (HCDC) activity can be useful
to promote the fermentative formation of stable vinylphenolic pyranoanthocyanins, reducing the
amount of ethylphenol precursors. This biotechnology increases the amount of stable pigments and
simultaneously prevents the formation of high contents of ethylphenols, even when the wine is
contaminated by Brettanomyces.

Keywords: wine; yeasts; non-Saccharomyces; off-smells; volatile acidity; ethylphenols; pyranoantho-
cyanins; pH control; bioprotection

1. Introduction

Wine quality is strongly and negatively affected by some microbial metabolites with
low sensory thresholds and negative olfactory impact, including reduced sulfur com-
pounds [1,2], volatile acidity [3], ethylphenols [4,5], and acetaldehyde [6]. The sensory
impact is quite variable because sensory thresholds can range from very low values (H2S,
1.6 µg/L) to very high concentrations (volatile acidity 0.3–0.6 g/L), so the range is about 1
million times (Table 1). This makes the analytical approach very specific and makes the
use of sensitive and reproducible techniques based mainly on gas chromatography–mass
spectrometry (GC-MS or GC-MS/MS) instruments essential for their determination [7].
These analytical methods often require specific sample preparations and concentrations:
headspace (HS), dynamic headspace (DHS), solid-phase microextraction (SPME), and
Twister [7].
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Table 1. Wine off-flavors produced by microbial metabolites.

Compound Sensory
Threshold

Off-Flavor
Concentration 1 Descriptor Reference

H2S 1.6 µg/L >1.6 µg/L Rotten
eggs/putrefaction [2]

Volatile acidity 0.3–0.6 g/L >0.8 g/L
legal limit 1.2 g/L Vinegar [7–9]

Ethyl acetate 12 mg/L >150 mg/L Glue, solvent [7]

4-Ethylphenol 230 µg/L >425 µg/L Phenolic, stable,
leather, horse sweat [5,10,11]

Acetaldehyde 100–125 mg/L >125 mg/L Fruity, rotten apples,
nut-like, sherry [6]

1 The sensory threshold and off-flavor perception can be variable depending on the structure, composition, and
sensory buffering effect of the wine.

The control of fermentative purity as well as the development of wild spoilage mi-
croorganisms in wines are related to pH and sulfur dioxide contents. In warm areas affected
by global warming, pH values have been increasing in recent years, which are associated
with higher alcoholic strength and intense phenolic ripening [12–14], especially in varieties
that accumulate high potassium contents in berries [15,16]. A high pH produces wines that
are more chemically and microbiologically unstable, and therefore are more susceptible
to microbial spoilage, including off-flavor formation. Wine pH can range from 2.8 to 4.5,
although most wines are in the 3 to 4 range. However, wines below 3.5 are very stable and
usually less affected by microbial developments, while wines with pHs close to 4 are very
risky as many spoilage bacteria and yeasts can easily develop in them during processing
and especially during aging and storage.

Yeast species can help in the biocontrol of off-flavor formation via bioprotection as a
result of competition with or the elimination of wild spoilage microorganisms [17–19], by
acidity production [20–23], by nutrient competition and depletion [24,25], by the depletion
of off-flavor precursors [26], or by the adsorption of defective molecules on cell walls [27,28]
(Figure 1).

This review is focused on the elimination of off-flavors by using non-Saccharomyces
yeasts that are able to control pH by bioacidification or to decrease the concentration of
precursors of molecules responsible for sensory defects.
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2. Bioprotection

Bioprotection is a current concept, so its definition is still under discussion. How-
ever, it can be considered the active or passive use of some microorganisms to preserve
foods and beverages and to exclude other spoilage microorganisms, thus avoiding the
production of off-flavors, sensory alterations, or even the formation of toxic molecules.
Bioprotection is a hot topic in enology and foods; several reviews have recently been pub-
lished [29–31]. Bioprotection can be achieved by the production of molecules or metabolites
with antimicrobial effects such as organic acids [32]; toxins such as killer factors [33–35];
deleterious chelates such as pulcherrimin [25,36]; glucanases [30,37]; ethanol produced in
the fermentation of sugars; as well as by nutrient depletion [38] (Figure 1).

The application of bioprotective microorganisms can be scheduled at several stages of
the winemaking process [31]. During the prefermentative stage or during prefermentative
maceration, they can be applied directly on the grapes (harvesting machine) to control
wild yeast [39,40], mold, and bacteria populations [19,41]. During fermentation, they can
be applied to control the development of spoilage yeasts and bacteria and the oxidative
processes, and frequently also to improve the sensory profile of wines by producing flavor
compounds [18,42]. Finally, they can be applied after fermentation to protect and stabilize
wines during barrel and bottle aging.

Bioprotection has been proposed as an effective biotool to reduce SO2 levels in wines
[19,41]. The non-Saccharomyces Torulaspora delbrueckii (Td) and Metschnikowia pulcherrima (Mp)
have been used to produce industrial fermentations without added sulfites. These bioprotective
non-Saccharomyces may control some spoilage microorganisms and prevent chemical and
enzymatic oxidation [41,43].

Regarding off-flavor formation, Metschnikowia fructicola has been successfully used to
reduce the production of ethyl acetate by apiculate yeasts such as Hanseniaspora uvarum
during cold soak [44].

3. Bioacidification by Lachancea thermotolerans (Lt)

Acidification and pH control are key tools in enology to preserve wine stability and
prevent microbial spoilage. Tartaric acid, the strongest acid in grapes, is systematically
used in many wines, particularly in warm areas, to improve chemical stability, enhance
color and stabilize anthocyanins, increase the levels of active molecular SO2, and improve
wine freshness [45]. Additionally, other acids such as malic, lactic, and citric acid can be
used in enology, as can alternative physicochemical processes such as exchange resins and
electrodialysis [45]. Acidification with up to 4 g/L tartaric acid is allowed in wines [9].

Bioacidification with Saccharomyces cerevisiae (Sc) through malic acid production has
been previously studied. Some Sc strains can produce up to 1 g/L [46] when acidification
occurs at the beginning of fermentation (days 2–6). However, the production at the highest
level takes place in musts with low malic acid content and low acidity. Moreover, the
effect on pH from increasing malic acid by 1 g/L is low and can be degraded by lactic acid
bacteria, and thus malic acidification by Sc is not an effective biotechnology in winemaking.
Other acids such as lactic, fumaric, and citric acids are also produced by Sc, but at low
concentrations and with little impact on wine pH.

Lactic acid is also used for wine acidification, and the sensory effect is better in
postfermentation acidifications. Even when often associated with dairy products, the
sensory profile of lactic acid is fresh and citric [47]. Lactic acid is also authorized
by the OIV for wine acidification. However, the use of lactic acid bioproduction by
Lachancea thermotolerans is a natural and powerful biotool to control wine pH [20–23,48,49].
Some strains are capable of producing more than 16 g/L [21]. This amount is likely to be
excessive in enological applications, and thus the use of strains with yields ranging from
5 to 8 g/L may be more appropriate [50–52]. With these conditions, it is easy to achieve
pH reductions of 0.4–0.5 units [50–52], which is more effective than the usual acidification
with tartaric acid. The production of L(+)-lactic acid [53] is done by the metabolization
of sugars so that some reduction in alcoholic strength can be obtained, ranging from
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0.2 [50] to 0.9% vol. [52]. Additionally, this strong reduction in pH favors higher levels of
molecular SO2 under enological conditions (Table 2), which is very effective in controlling
undesirable spoilage microorganisms and off-flavor production. The usual total SO2
contents (40–60 mg/L) at the typical high pH of grape juice in warm areas (3.7–4.0) can
produce ineffective molecular SO2 contents (<0.5 mg/L) (Table 2). These conditions are
suitable for the development of spoilage microorganisms that may increase the content
of off-flavors or even allergenic or toxic molecules in wines, such as biogenic amines or
ethyl carbamate, which can increase during wine aging. The same levels of total SO2 at
pH 3.4–3.5 that can be obtained by Lt acidification during fermentation can easily produce
molecular SO2 levels above 0.8 mg/L, resulting in a more protective effect and a safer
situation (Table 2).

Table 2. Bioacidification by Lachancea thermotolerans strain L31 and effect on pH and molecular SO2 in several fermentations
with red and white varieties in different Spanish regions. Colors indicate the effectiveness of molecular SO2 from unideal
(red) or less than optimal (yellow) to optimal (green) depending on the increase in acidity.

Variety (Region) Inoculation Lactic Acid (g/L) and
Initial→Final pH

Effect of Acidity on the
Molecular SO2 (mg/L) * Reference

Tempranillo (Ribera del
Duero) Sequential with S. cerevisiae 0.91→6.60 g/L

3.90→3.63 0.42→0.77 [50]

Tempranillo (Ribera del
Duero)

Mixed with O. oeni and
sequential with S. cerevisiae

0.91→7.50 g/L
3.90→3.31 0.42→1.56 [50]

Tempranillo (Mancha) Sequential with S. cerevisiae 3.8→3.4 0.50→1.22 Unpublished
Albariño (Rias

Baixas-O Rosal) Sequential with S. cerevisiae 0.05→2.7 g/L
3.12→2.85 2.07→3.63 [50]

Airén (La Mancha) Sequential with S. cerevisiae 0.05→4.20 g/L
3.75→3.35 0.51→1.25 [51]

* Comparison for a total content of SO2 of 50 mg/L.

Therefore, Lt fermentations are a potent biotool to promote wine stability by reducing
pH and increasing molecular SO2 levels. The use of Lt in sequential fermentations produces
a significant reduction in pH and a concomitant effect on molecular SO2 (Figure 2). To
produce complete fermentations without residual sugars, it is necessary to inoculate some
non-Saccharomyces yeasts because most Lt strains have fermentative powers ranging from
7% to 9% v/v [20,23].

 

Molecular SO2 (mg/L)<0.4 >0.8

%
 E

th
an

ol
 

Fermentation Time (days)

7–9% vol.

1 2 3 4 5 6 7 8

pH4–3.8 3.8–3.6 3.6–3.4

1
2
3
4
5
6
7
8
9

La
ct

ic 
ac

id
 (g

/L
)

1
2
3
4
5
6
7

3–8 g/L

L. thermotolerans

S. cerevisiae
12–15% vol.

Sequential 
inoculation

0.4–0.5

Figure 2. Sequential fermentations with Lachancea thermotolerans (green yeasts—bottom left) and
Saccharomyces cerevisiae (pink yeasts—center). Effect on lactic acid production (green line), alcohol
content (blue line), pH, and molecular SO2.



Molecules 2021, 26, 4571 5 of 12

A typical stage in the stabilization of red wines is the need to carry out malolactic
fermentation (MLF) and improve the sensory profile. However, MLF results in a reduction
of pH, and in warm areas the sensory perception can be flat with a less crispy acidity
sensation in the mouth. In these winemaking regions, it could be interesting to preserve
malic acidity by inhibiting MLF and simultaneously lower the pH by producing lactic
acid with Lt. It should be noted that lactic acid is a strong inhibitor of MLF at high doses,
which occurs in many enzymatic processes and is known as product inhibition. It has
been observed that lactic acid concentrations above 4 g/L produce a strong inhibition
of MLF [32] and significantly decrease lactic acid bacteria populations. At lower values
(2 g/L), a significant delay of MLF is observed [32]. Therefore, in addition to pH control by
Lt acidification, effective inhibition of MLF can be obtained when lactic acid production is
higher than 4 g/L. Furthermore, other malic-acid-preserving additives such as fumaric acid
or chitosan can be used to control MLF [54]; the former is in the final stages of evaluation
at the OIV [55] and the latter is also authorized for organic wines. Additionally, it has been
observed that fumaric acid production can be increased by engineered Sc to more than
5 g/L [56]. Overproduction is done by overexpression of the RoPYC gene, so perhaps in
some countries where the use of engineered yeasts is allowed, it can aid in inhibiting MLF
along with Lt.

Another interesting application of Lt is the control of volatile acidity levels and most
likely of ethyl acetate contents as well [57]. In addition, several authors have reported low
volatile acidity contents (<0.5 g/L) in sequential fermentations with Lt [20,22,50,58], even in
ternary fermentations with Lt and other non-Saccharomyces, such as Metschnikowia pulcherrima,
Torulaspora delbrueckii or Hanseniaspora vineae [59], and ethyl acetate contents similar to Sc
controls [50].

Lactic acid production and pH reduction by Lt also have concomitant effects on color
due to the increased amounts of pyrylium cation in the wine, resulting in a hyperchromic
effect and color protection [60,61].

Furthermore, Lt fermentations have shown preliminary positive effects on Brettanomyces
control, likely due to acidification and the high contents of lactate [52].

4. Apiculate Yeasts and Volatile Acidity

Traditionally, apiculate yeasts (Hanseniaspora/Kloeckera species), usually involved in the
early fermentation phases, have been considered overproducers of volatile acidity and ethyl
acetate [62]. Pure culture fermentations of Hanseniaspora uvarum and Kloeckera apiculata have
been reported to produce up to 0.98 and 1.5 g/L acetic acid, and 408 and 225 mg/L acetoin,
respectively. In fact, they usually release high contents of acetate esters during fermentation;
such is the case for the accumulation of ethyl acetate with concentrations between 450 and
760 mg/L. However, not all species behave in the same way and some of them, such as
Hanseniaspora vineae (Hv), have shown a high ability to decrease volatile acidity in sequential
fermentations with Saccharomyces cerevisiae compared to single Sc fermentations [63,64]. In
triplicate fermentations of white wines, the Sc control produced 0.45 g/L acetic acid, but the
sequential fermentation with Hv/Sc produced 0.36 g/L [65]. Additionally, Hv can produce
significant amounts of floral and fruity acetate esters, benzenoids, and terpenes, improving the
aroma profile of flat neutral varieties [63,64,66,67]. Furthermore, Hv is better adapted to the
fermentation process and it is possible to select strains capable of reaching 10% ethanol [68].
The use of other Hanseniaspora species such as H. opuntiae fermenting Cabernet Sauvignon
red grapes has also shown low volatile acidity values together with positive fruity and floral
profiles [69,70].

5. Biocompatibility

The use of non-Saccharomyces in ternary cultures (two non-Saccharomyces species and
one Saccharomyces species) in sequential or mixed fermentations has several advantages
in terms of aroma improvement, control of spoilage microorganisms, and depletion of
off-flavors; however, it is very important to ensure the biocompatibility of the strains used.
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When Lt has been used in co-inoculation with Hv, Td, and Mp, the latter has shown very
good compatibility with Lt, reaching even higher levels of acidification than using only
Lt in sequential fermentation with Sc [59]. However, the simultaneous use of Lt and Td
decreased acidification, and the pH was higher compared to Lt alone, but lower than in
the Sc control. The Lt and Hv strains showed the worst effectiveness on pH reduction,
despite our high expectations of the complementary effect of both yeasts on acidity and
aroma. This may be caused by the extra consumption of thiamine and pantothenate by
Hv and the potential depletion of these important micronutrients, particularly of thiamine.
The genes for thiamine biosynthesis in Hv and other Hanseniaspora species have not yet
been identified, and this may explain the increased requirements of this vitamin in Hv
fermentations [68,71,72]. Thiamine consumption and depletion may affect the development
of other non-Saccharomyces species when used in co-fermentation.

6. Depletion of Off-Flavor Precursors

The production of some off-flavors that are extremely deleterious to wine quality,
such as ethylphenols (EPs) [4,5], is highly dependent on precursor content. EPs are formed
from hydroxycinnamic acids (HCAs) or their tartaric esters (TE-HCAs) by the sequential
activities of hydroxycinnamate decarboxylase (HCDC) and vinylphenol reductase (VPR)
from Brettanomyces/Dekkera [4,10]. Several technologies have been proposed to control
Brettanomyces in wines, including emerging non-thermal technologies, some additives,
and biotechnologies [4,73]. Many Sc strains express HCDC activity, but VPR activity has
not been described in this species. Some Sc strains express HCDC activity with high
intensity with the ability to transform most hydroxycinnamic acids into vinylphenols (VPs)
(Figure 3). Moreover, it has been observed that these VPs can spontaneously react with
grape anthocyanins to form vinylphenolic pyranoanthocyanins (VPAs) [74,75], which are
stable pigments under enological conditions, as they are less affected by pH, oxidations,
and sulfur dioxide bleaching than grape anthocyanins [61,76–79]. The use of Sc with
an appropriate expression of HCDC activity is a powerful and natural biotool to favor
the enzymatic metabolization of HCAs to VPs and the subsequent reaction with grape
anthocyanins to form VPAs. This biological process blocks the EP precursors into stable
VPAs, which are positive in terms of color stability, but also preserves the wines from the
effect of Brettanomyces/Dekkera. When 10 commercial yeasts with verified HCDC activity
were used to ferment red musts and subsequently contaminated with Brettanomyces, the
4EP content ranged from 22 to 498 µg/L, which is below or close to the sensory threshold
of 4EP in wines [26]. However, in the control yeast (without HCDC activity), the 4EP
content was 1150 µg/L, more than twice the sensory threshold [26]. Furthermore, most of
the HCAs in grapes are found as tartaric esters (TE-HCAs); that is, caftaric, coutaric, and
fertaric acids are reservoirs of HCAs that can be released by acid hydrolysis during aging.
The use of cinnamyl esterase enzymes during fermentation can release the HCAs which,
using Sc with HCDC activity, can be transformed into VPs and subsequently into VPAs by
condensation with grape anthocyanins [26]. In addition, the use of some non-Saccharomyces
yeast strains such as Torulaspora delbrueckii or Metschnikowia pulcherrima can enhance the
formation of VPAs [60,80].



Molecules 2021, 26, 4571 7 of 12

Molecules 2021, 26, 4571 7 of 12 
 

 

and sulfur dioxide bleaching than grape anthocyanins [61,76–79]. The use of Sc with an 
appropriate expression of HCDC activity is a powerful and natural biotool to favor the 
enzymatic metabolization of HCAs to VPs and the subsequent reaction with grape antho-
cyanins to form VPAs. This biological process blocks the EP precursors into stable VPAs, 
which are positive in terms of color stability, but also preserves the wines from the effect 
of Brettanomyces/Dekkera. When 10 commercial yeasts with verified HCDC activity were 
used to ferment red musts and subsequently contaminated with Brettanomyces, the 4EP 
content ranged from 22 to 498 μg/L, which is below or close to the sensory threshold of 
4EP in wines [26]. However, in the control yeast (without HCDC activity), the 4EP content 
was 1150 μg/L, more than twice the sensory threshold [26]. Furthermore, most of the 
HCAs in grapes are found as tartaric esters (TE-HCAs); that is, caftaric, coutaric, and fer-
taric acids are reservoirs of HCAs that can be released by acid hydrolysis during aging. 
The use of cinnamyl esterase enzymes during fermentation can release the HCAs which, 
using Sc with HCDC activity, can be transformed into VPs and subsequently into VPAs 
by condensation with grape anthocyanins [26]. In addition, the use of some non-Saccharo-
myces yeast strains such as Torulaspora delbrueckii or Metschnikowia pulcherrima can enhance 
the formation of VPAs [60,80]. 

 
Figure 3. The depletion of ethylphenol precursors by the metabolization of hydroxycinnamic acids 
to vinylphenols and the blocking of this by reaction with grape anthocyanins to form vinylphenolic 
pyranoanthocyanins. 

7. Increasing the Implantation of Non-Saccharomyces as Bioprotective Tools Using 
Emerging Non-Thermal Technologies 

To achieve a good effectiveness with non-Saccharomyces yeasts in off-flavor control 
through bioprotection, acidification, and improved sulfur dioxide efficiency or precursor 
depletion, it is necessary to reach a good implantation of the intended species. One of the 
main drawbacks of non-Saccharomyces yeasts is the low fermentative power (<10% vol. 
and in many species <4% vol.) and the low fermentative yield, which generally results in 
poor implantation compared to Sc. To improve this, the use of non-thermal emerging tech-
nologies is compelling and effective because they can effectively eliminate wild yeasts, 
but also have little impact on the sensory components of the musts, that is, the aroma, 
pigments, and flavors [73,81–83]. 

The emerging non-thermal technologies include pressurization technologies (high 
hydrostatic pressure, HHP [84], and ultra-high-pressure homogenization, UHPH [85]), 
pulsed electric fields (PEFs) [86], pulsed light (PL) [87], irradiation (βI) [88], cold plasma 
(CD) [89], and ultrasound (US) [90]. All of them except US have demonstrated a good 

G

O+

OCH3

OCH3

O

OH

OH

OH

M3G
(grape)

G

O
+

OCH3

OCH3

O

OH

OH

O

OH

R
2

R1

M3G4-vinylphenolic 
pyranoanthocyanin

(wine)
O

OH

R
1

OH

R2

Hydroxycinnamic acid
(grape)

OH

R1
R2

Vinylphenol

Yea
st w

ith 

hydroxycinnamate 

decarboxylase 

activity

(fermentation)

OH

R1
R2

Ethylphenol

Vinylphenol 
reductase activity

(spoilage)
Brettanomyces

Figure 3. The depletion of ethylphenol precursors by the metabolization of hydroxycinnamic acids
to vinylphenols and the blocking of this by reaction with grape anthocyanins to form vinylphenolic
pyranoanthocyanins.

7. Increasing the Implantation of Non-Saccharomyces as Bioprotective Tools Using
Emerging Non-Thermal Technologies

To achieve a good effectiveness with non-Saccharomyces yeasts in off-flavor control
through bioprotection, acidification, and improved sulfur dioxide efficiency or precursor
depletion, it is necessary to reach a good implantation of the intended species. One of the
main drawbacks of non-Saccharomyces yeasts is the low fermentative power (<10% vol.
and in many species <4% vol.) and the low fermentative yield, which generally results
in poor implantation compared to Sc. To improve this, the use of non-thermal emerging
technologies is compelling and effective because they can effectively eliminate wild yeasts,
but also have little impact on the sensory components of the musts, that is, the aroma,
pigments, and flavors [73,81–83].

The emerging non-thermal technologies include pressurization technologies (high
hydrostatic pressure, HHP [84], and ultra-high-pressure homogenization, UHPH [85]),
pulsed electric fields (PEFs) [86], pulsed light (PL) [87], irradiation (βI) [88], cold plasma
(CD) [89], and ultrasound (US) [90]. All of them except US have demonstrated a good
capacity to inactivate wild yeasts and even bacteria in grapes and musts, and preserve
sensory and nutritional quality. HHP can produce reductions in wild yeast populations
of more than 4-log [91,92], but residual bacterial counts can remain. UHPH is capable of
producing sterilization with the elimination of yeast, bacteria, and even spores, depending
on the in-valve temperature [85,93]. Pulsed technologies (i.e., PEFs and PL) have shown
an inactivation capacity around or above 2-log for wild yeasts in grapes [94–96]. The
antimicrobial performance of PEFs can be greatly enhanced in combination with mild
temperatures (50 ◦C) [97].

The inactivation of wild yeasts by emerging non-thermal technologies in grapes or
grape must is a useful technology to facilitate the implantation of non-Saccharomyces starters
that can be used to control off-flavor formation. Several non-thermal technologies have
shown high efficiency in increasing the implantation of non-Saccharomyces yeasts, such as
HHP [92] and PEFs [95]. The high effectiveness of UHPH also makes it a leading technology
not only for improving yeast implantation, but also for reducing SO2 levels due to its ability
to inactivate oxidative enzymes [85].

In addition, when used on grapes, several of these non-thermal technologies are
able to increase the extraction of phenolic compounds, thus improving the tannin and
anthocyanin content of the wine. An increase in anthocyanin extraction ranging from
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23% to 63% by HHP [98,99], 21% to 29% by PEFs [100], and the same contents but with
reductions of more than 50% in maceration time by US [101] have been published.

8. Conclusions

The use of non-Saccharomyces in wine fermentation is a verified biotechnology to
improve the sensory profile, and is also a powerful biotool to control off-flavor formation
by the biocontrol of spoilage microorganisms, by pH control and the improvement of
molecular SO2 contents by acidification, and by the depletion of precursors, among many
other potential future possibilities.
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