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Abstract: Obesity can be caused by microbes producing metabolites; it is thus important to determine
the correlation between gut microbes and metabolites. This study aimed to identify gut microbiota-
metabolomic signatures that change with a high-fat diet and understand the underlying mechanisms.
To investigate the profiles of the gut microbiota and metabolites that changed after a 60% fat diet
for 8 weeks, 16S rRNA gene amplicon sequencing and gas chromatography-mass spectrometry
(GC-MS)-based metabolomic analyses were performed. Mice belonging to the HFD group showed
a significant decrease in the relative abundance of Bacteroidetes but an increase in the relative
abundance of Firmicutes compared to the control group. The relative abundance of Firmicutes, such
as Lactococcus, Blautia, Lachnoclostridium, Oscillibacter, Ruminiclostridium, Harryflintia, Lactobacillus,
Oscillospira, and Erysipelatoclostridium, was significantly higher in the HFD group than in the control
group. The increased relative abundance of Firmicutes in the HFD group was positively correlated
with fecal ribose, hypoxanthine, fructose, glycolic acid, ornithine, serum inositol, tyrosine, and
glycine. Metabolic pathways affected by a high fat diet on serum were involved in aminoacyl-
tRNA biosynthesis, glycine, serine and threonine metabolism, cysteine and methionine metabolism,
glyoxylate and dicarboxylate metabolism, and phenylalanine, tyrosine, and trypto-phan biosynthesis.
This study provides insight into the dysbiosis of gut microbiota and metabolites altered by HFD and
may help to understand the mechanisms underlying obesity mediated by gut microbiota.

Keywords: obesity; gut microbiota; metabolite; high-fat diet

1. Introduction

Obesity is defined as the excessive accumulation of fat and it results from an imbalance
between energy intake and expenditure [1,2]. It is associated with substantial health risks,
such as type 2 diabetes, strokes, arthritis, and several types of cancers [3]. Over the past
few decades, there has been a remarkable increase in obesity amongst individuals of all
ages across the globe. Moreover, no single factor successfully explains the cause of this
obesity epidemic [4]. It is well known that obesity is a complex multifactorial disease that
is influenced by genetic and environmental factors [5].

Many resident bacteria adapt to the gut environment and develop complex interactions
with other bacteria. Gut bacterial communities have many different forms of coexistence,
such as constant competition, mutualism, and antagonism [6]. Gut microbiota has drawn
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considerable attention from the scientific community over the last decade because of its
ability to directly affect the health or disease status of an individual. Obesity-related
changes in gut bacteria may contribute to weight gain and inflammation, which has been
thought to be one of the hallmarks of HFD-induced obesity or obesity-related diseases. For
example, gut microbiota can influence the effector molecules that determine fat storage in
adipocytes, thus affecting host nutrients acquisition and energy homeostasis [7]. In particu-
lar, the community structure of gut bacteria has been implicated in the etiology of obesity in
animal studies. For example, the diversity of bacteria differed between the lean and obese
mice groups, with obese mice group showing an increase in the Firmicutes/Bacterioidetes
ratio [8–11]. However, in a human translation of this result, association between the
Firmicutes/Bacterioidetes ratio and obesity has been controversial [12].

To understand the complex association between human and microbial ecosystems,
it is important to adopt comprehensive analytical approaches that capture the dynamic
interactions between diet, microbiota, and the human host [13]. In this context, com-
bining the different omic sciences has received considerable interest in obesity research.
Metabolomics can help define the metabolites (qualitatively and quantitatively) that are
involved in host-microbe interactions, such as those originating from the bacterial conver-
sion of nutrients and host metabolites in the gut lumen that are subsequently transported
throughout the body [14]. High-throughput analytical platforms, such as gas chromatogra-
phy mass spectrometry (GC-MS), have recently been used to improve our understanding of
disease processes [15], biomarker discovery [16], and especially, microbiome-host interac-
tions [17,18]. A number of metagenomic and metabolomic approaches are being developed
to characterize the phenotype of obese individuals and to represent the crucial metabolic
processes that govern the human-bacteria interplay [19]. However, the correlation between
gut microbiota and metabolites remains to be fully understood in the context of obesity.

In the present study, 16S rRNA gene amplicon sequencing and GC-MS-based
metabolomics were applied to understand the different gut microbiota and metabolite
profiles from the serum and fecal sample of the high-fat diet (HFD) and control groups.
Understanding the changes in the microbiota and metabolites of HFD-induced obese mice
will help in the diagnosis of biomarkers and treatment of obesity.

2. Results
2.1. Body Weight and Fat Accumulation

By the end of the 8 week high-fat diet (HFD) feeding period, the average body weight
of the HFD group significantly increased compared to that of the control group (Figure 1A).
The levels of total cholesterol (TCHO-P III) and glucose (GLU-P III) in the serum were
also significantly increased in the HFD group (Figure 1B,C). There was also a significant
increase in adipose tissue weight in the HFD group (Figure 1D). In conclusion, these results
show that 8 weeks of HFD induced obesity.

2.2. The Composition of the Gut Microbiota

To examine whether HFD affects the gut microbiota, bacterial 16S rRNA gene sequenc-
ing of fecal samples was performed. A total of 1,171,031 sequences were obtained from
12 fecal samples. The number of reads per sample ranged from 13,908 to 191,289. The
number of sequences per sample was normalized based on the minimum number of reads
and used for the analysis. The beta diversity was assessed by principal coordinate analysis
(PCoA) on weighted Bray-Curtis distance matrices. PCoA revealed that HFD influenced
the composition of the gut microbiota (PC1, 37.29%) (Figure 2A). Obesity is known to
reduce bacterial diversity and richness [12,20]. However, in the present study, the alpha
diversity indices for the observed species, Shannon, Simpson, and Chao1 (richness and
evenness), did not differ significantly between the control or HFD groups (Figure 2B).
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Figure 1. (A) Body weight changes in the control group and high fat diet (HFD) group. (B) Total
cholesterol (TCHO-P III) in serum samples. (C) Serum glucose (GLU-P III) levels. (D) Weight of the
adipose tissue. **, p < 0.01; ***, p < 0.001.

At the phylum level, the HFD group showed a significant decrease in the relative abun-
dance of Bacteroidetes but an increase in that of Firmicutes, compared to the control group
(Figure 2C,D) (p < 0.001). Obesity has been associated with a low ratio of Bacteroidetes
to Firmicutes, which is consistent with the results of the present study. The differentially
abundant taxa were further confirmed by linear discriminant analysis effect size (LEfSe),
which exploits linear discriminant analysis (LDA) to identify features that are statistically
different among classes [21]. Figure 2E shows the most relevant clades identified by LEfSe
(LDA score > 3.0). The resulting cladogram revealed that Muribaculaceae, Butyrivibrio,
Lachnospiraceae UCG_001, Rumicoccus, and Oxalobacter were more dominant in the control
group than in the HFD group, whereas the HFD group was enriched with Enterohabdus,
Eggerthellaceae, Coriobacteriales, Butyricinomas, Oscillibacter, and Ruminiclostridium.

Significant bacterial differences at the genus level in the gut bacteria of the HFD and
control groups are shown in Figure 3. The relative abundances of 12 taxa, i.e., Enterorhabdus
(p < 0.01), Butyricimonas (p < 0.05), Lactococcus (p < 0.01), Blautia (p < 0.01), Lachnoclostrid-
ium (p < 0.01), Oscillibacter (p < 0.01), Ruminiclostridium (p < 0.01), Harryflintia (p < 0.01),
Lactobacillus (p < 0.01), Oscillospira (p < 0.05), Erysipelatoclostridium (p < 0.01), and Bilophila
(p < 0.01), were significantly higher in the HFD group than in the control group. Conversely,
the control group had significantly higher relative abundances of Butyrivibrio (p < 0.01) and
Parasutterella (p < 0.01).
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Figure 2. (A) Beta diversity analysis of the control and HFD groups. (B) Alpha diversity analysis of the control and
HFD groups. (C) Comparison of microbiota composition at the phylum level. (D) Relative abundance of Bacteroidetes
and Firmicutes. (E) Cladogram, generated using the linear discriminant analysis effect size (LEfSe) method, shows the
phylogenetic distribution of microbes that are associated with the control and HFD groups. Taxonomic levels of phylum,
class, and order are labelled, while family and genus are abbreviated. Plots were represented using LEfSe. Colored
regions/branches indicate differences in the bacterial population structure between the control and HFD groups. Regions in
green indicate clades that were enriched in the HFD group compared to those in the control group, while regions in red
indicate clades that were enriched in the control group as opposed to those in the HFD group. ***, p < 0.001.
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to all tests to correct for multiple testing.

To investigate the differences in microbial functions between the control group and
HFD group, based on the KEGG database, we adopted PICRUSt using 16S rRNA gene
profiles (Figure S1 and Tables S1 and S2).

2.3. Serum and Feces Metabolites

To study the different metabolite profiles in the serum and feces of the HFD and
control groups, partial least squares discriminant analysis (PLS-DA) was applied to GC-MS
data (Figure 4). The PLS-DA model of serum and fecal samples showed clear separation
between the control and HFD groups, indicating that the metabolic profiles of the HFD
group were different from those of the control group.
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Figure 4. Supervised partial least squares discriminant analysis (PLS−DA) score plot derived from
the GC−MS data of (A) serum and (B) fecal samples of HFD and control groups. Permutation tests
with 200 iterations were performed to validate the goodness of fit of the original model.

Among the 127 metabolites that were detected in the serum, those that significantly
contributed to clustering between the control and HFD groups were identified according to
a threshold of variable importance in projection (VIP) > 1.0, p < 0.05. Figure 5A shows the
relative differences between the metabolites identified from the serum and fecal samples of
the control and HFD groups. Serum from the HFD group showed high levels of inositol
(p < 0.001), tyrosine (p < 0.01), and glycine (p < 0.01). In contrast, the HFD group had
significantly lower levels of 2-oxobutyrate (p < 0.001), threonine (p < 0.01), serine (p < 0.01),
leucine (p < 0.01), lysine (p < 0.001), methionine (p < 0.05), valine (p < 0.01), and galactitol
(p < 0.01) compared to the control group (Figure 5A). In the present study, the serum
levels of lysine and methionine were negatively correlated with obesity, while inositol and
tyrosine were positively correlated with obesity. The results for lysine and methionine were
similar to the results from previous studies [22,23]. Similarly, He et al. [24] reported that
the serum of obese individuals had high levels of inositol and tyrosine using NMR-based
metabolomic technology, which is consistent with our results for inositol and tyrosine.

Among the 355 metabolites detected in fecal samples, those that significantly con-
tributed to the discrimination were identified according to a threshold of VIP > 1.0,
p < 0.05. The levels of ribose (p < 0.01), hypoxanthine (p < 0.01), fructose (p < 0.01),
glycolic acid (p < 0.05), and ornithine (p < 0.05) were significantly higher in the HFD
group than in the control group (Figure 5B). Ribose is known to affect gut activity [25,26].
However, many studies have shown variations in the levels of fecal ribose between HFD
and control groups [27,28]. The HFD group had higher levels of hypoxanthine than the
control group, in contrast to other studies [29].
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2.4. Metabolic Pathway Analysis

Metabolic pathway analysis was performed to identify relevant metabolic pathways
affected by a high fat diet. This analysis shows metabolic pathways by enrichment analy-
sis and impact values by topology analysis. Important pathways were identified, based
on the pathway impact and −log (p) value. Metabolic pathways affected by a high fat
diet on serum were involved in aminoacyl-tRNA biosynthesis, glycine, serine, and thre-
onine metabolism, cysteine and methionine metabolism, glyoxylate and dicarboxylate
metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis (Table S3). Figure S2
shows a schematic of the affected metabolic pathways by a high fat diet on serum. Metabolic
pathways affected by a high fat diet on feces were involved in glutathione metabolism,
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phenylalanine, and tyrosine and tryptophan biosynthesis (Table S4). Figure S3 shows a
schematic of the affected metabolic pathways by a high fat diet on feces.

2.5. Correlation between Microbiota and Metabolites

To understand the relationships between gut microbiota and the metabolites in serum
and feces, Pearson correlations were used to generate a correlation matrix (|r| > 0.7). Fruc-
tose levels in feces were positively correlated with the relative abundance of Enterorhabdus
(r = 0.702), Lactococcus (r = 0.774), Lachnoclostridium (r = 0.766), Oscillibacter (r = 0.753),
and Ruminiclostridium (r = 0.707) that belong to the phylum Firmicutes. Glycolic acid
levels in feces correlated positively with the relative abundance of Lactobacillus (r = 0.724).
Serum inositol levels correlated positively with the relative abundance of Butyricimonas
(r = 0.701), Harryflintia (r = 0.766), Oscillibacter (r = 0.733), and Ruminiclostridium (r = 0.793).
Serum glycine levels correlated positively with the relative abundance of Lactobacillus
(r = 0.722). Serum 2-oxobutyrate levels correlated negatively with the relative abundance
of Harryflintia (r = −0.712) and Oscillibacter (r = −0.710).

Serum threonine levels correlated negatively with the relative abundance of Har-
ryflintia (r = −0.727), Oscillibacter (r = −0.714), and Erysipelatoclostridium (r = −0.786).
Serum serine levels correlated negatively with the relative abundance of Harryflintia
(r = −0.764), Oscillibacter (r = −0.724), and Erysipelatoclostridium (r = −0.833). Serum
methionine levels correlated negatively with Erysipelatoclostridium (r = −0.749) (Figure 6).
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3. Discussion

In previous studies of associations between diet and obesity, it was found that body-
weight gain was significantly associated with the amount of fat in the diet rather than
protein or carbohydrate. In this study, a 60% fat diet (soybean oil) was used, which is the
most used in animal obesity studies. De Wit et al. [30] reported that the quality of dietary fat
affects the gut microbiota composition. In their study, only the saturated fats (palm oil diet)
altered the microbial diversity and increased the Firmicutes to Bacteroidetes ratio, whereas
unsaturated fats (olive oil or safflower oil) did not affect microbial diversity. In addition,
recent studies reported that unsaturated fats upregulated specific bacteria (Lachnospira,
Roseburia, and unclassified Ruminococcaceae) associated with positive metabolic health and
leanness, whereas saturated fats had a positive effect on the abundance of Bilophila, which
has a genotoxicity [31,32]. These results suggested that the quality and the amounts of fat,
were associated with gut microbiota composition. High-fat diet-induced obesity is known
to be associated with a low ratio of Bacteroidetes to Firmicutes; this is consistent with the
results of the present study. However, some recent studies have reported controversial
results, indicating that weight loss did not change the ratio of Firmicutes to Bacteroidetes,
and suggest that the Firmicutes to Bacteroidetes ratio is not important for obesity [33,34].
Alternatively, Gupta et al. [35] proposed a new index (Gut Microbiome Health Index)
that compares the relative abundances of two sets of microbial species associated with
good and adverse health conditions. Therefore, the difference between obese and lean
states can be explained at the species level of the gut microbiota. In the present study, the
relative abundance of Firmicutes, such as Lactococcus, Blautia, Lachnoclostridium, Oscillibacter,
Ruminiclostridium, Harryflintia, Lactobacillus, Oscillospira, and Erysipelatoclostridium was
significantly higher in the HFD group than in the control group. These bacteria are
known to be significantly associated with inflammation-mediated obesity [36]. Gonzalez-
Quintel et al. [37] reported that increased levels of circulating lipopolysaccharide-binding
protein were observed in obese individuals. Lipopolysaccharides derived from gram-
negative bacteria are thought to generate chronic low-grade inflammation. Subsequently,
inflammation is associated with the onset of obesity or obesity-related diseases, such as
insulin resistance [38].

In the present study, Lactobacillus, Blautia, Bilophila, Enterorhabdus, Oscillibacter, and
Erysipelatoclostridium were significantly higher in the HFD group than in the control group.
Ignacio et al. [39] demonstrated that Lactobacillus was more abundant in obese and over-
weight children than in lean children and that it correlated positively with body mass index
(BMI). Many studies have reported that Blautia is positively correlated with obesity [40–42].
Hu et al. [41] reported that, during the inhibition of obesity using long-chain bases from
sea cucumber, the abundance of Blautia and Enterorhabdus, which belong to gram-negative
bacteria, decreased. The author also showed that these changes were accompanied by a
decrease in the lipopolysaccharide level, which is associated with inflammation. Similarly,
Oscillibacter is known to have a positive correlation with obesity and increased permeability
of the mouse colon [43]. The increasing relative abundance of clusters containing Bilophila
and Erysipelatoclostridium has also been positively associated with HFD and inflammation
due to progressing obesity [44–46].

Branched-chain amino acids (BCAAs), such as valine and leucine, are associated with
obesity [47,48]. Considering that BCAAs are essential amino acids for animals and can
only be obtained from dietary intake or bacterial metabolism [49], gut microbiota may be
important for the supply of BCAAs, such as leucine and valine, to the hosts [50]. Kim
et al. [51] reported that, in humans, plasma levels of valine and leucine were higher in
overweight/obese males than in lean controls. Newgard et al. [52] reported that important
enzymes of the catabolic pathway for BCAAs had lower activities in the adipose tissue of
obese mice, leading to an increase in BCAA levels [53]. However, other metabolomic studies
have reported a decrease in the serum levels of BCAAs in HFD-induced obese mice [22,54],
which is consistent with our results of lower levels of valine and leucine in the HFD
group. Lysine acetylation might be an important factor that affects obesity by regulating
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energy homeostasis [55]. Zhang et al. [56] reported that most acetylphosphate-generating
enzymes are derived from Firmicutes that have higher lysine acetylome-to-metaproteome
ratios than other bacterial phyla. Threonine levels were higher in the serum from the
control group. In addition, metabolic pathway analysis revealed that glycine, serine, and
threonine metabolism is affected by high fat diets. Ma et al. [57] reported that dietary
supplementation with threonine not only led to a significant decrease in the overall body
weight but also in that of the epididymal and perirenal fat pads, suggesting that threonine
might be negatively associated with obesity. In the present study, glycolic acid levels were
higher in the fecal sample from the HFD group and high fat diet affected glyoxylate and
dicarboxylate metabolism, as shown in the results of metabolic pathway analysis. Glycolic
acid is involved in glyoxylate and dicarboxylate metabolism and is reported as one of the
most probable metabolic pathways used for the classification of obesity-related diseases [58].
Glyoxylate and dicarboxylate cycles are related to energy metabolism [59]. Glycolic acid
is a precursor of oxalate. Taylor et al. [60] reported that the levels of oxalate correlated
positively with obesity. In the present study, the levels of glycine were higher in the HFD
group than in the control group and high fat diets affected the glycine, serine, and threonine
metabolism in metabolic pathway analysis. Creatine in muscle is biosynthesized from
glycine and broken down to endogenous creatinine [61]. Previous studies have reported
increased urinary excretion of creatinine in obese participants and HFD-fed obese mice,
presumed to be the result of skeletal and cardiac muscle hypertrophy to support and move
the increased body mass [62]. Many studies suggest that creatine metabolism is associated
with obesity [63,64]. Kazak et al. [64] reported that inactivated glycine amidinotransferase,
an enzyme involved in creatine biosynthesis, makes mice prone to diet-induced obesity due
to the suppression of elevated energy expenditure, which occurs upon high-calorie feeding.
In the present study, Lactobacillus was positively correlated with the relative abundance
of glycine (r = 0.722) and glycolic acid (r = 0.724). However, little is known about the
relationship between gut bacteria and metabolites.

It is important to explore the correlation between gut microbes and metabolites because
obesity can be caused by microbes that produce many metabolites. This study provides
insights into the changes induced by HFD in gut microbiota and metabolites. However,
HFD feeding for 8 weeks did not reduce alpha diversity in the present study. Additionally,
our results for some microbiota and metabolites were not in agreement with those of
previous studies on obesity. This might have been due to the small number of experimental
animals or due to unclear patterns of changes in the gut microbiota or metabolites caused by
obesity. Further studies are needed to ascertain the effects of obesity on the gut microbiota
and metabolites.

4. Materials and Methods
4.1. Animals and Treatment

The experiments were approved by the Animal Ethics Committee of the Dongshin
University (Approval No. 2019-07-02). To evaluate the effects of obesity, C57BL/6 mice
were purchased from SamTako BioKorea (Osan, Korea) and acclimatized for 7 days. Ac-
cording to the type of diet, 12 mice were divided into two groups (Research Diet, Inc.
Product #D12492, New Brunswick, NJ, USA) and given tap water for 8 weeks: (1) control
group (n = 6); (2) obesity group with a HFD (D12492 Rodent Diet with 60% fat, 20% protein,
20% carbohydrate, Research Diets, Inc., New Brunswick, NY, USA) (n = 6). Ingredients
used for the control and obesity group diets are provided in Tables S5 and S6.

The body weights of the mice were recorded once per week. All mice were anes-
thetized with 50 mg/kg Zoletil (Virbac, TX, USA). To determine metabolites in the serum,
the collected whole blood was centrifuged at 12,000 rpm using a Legend micro 17-R
(Thermo Fisher Scientific, Waltham, MA, USA). TCHO-P III and GLU-P III levels were
measured. Mice were euthanized using Zoletil over-dosing, then the abdominal fat tissues
were collected and the weights of these tissues were measured.
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4.2. DNA Extraction and 16S rRNA Gene Amplicon Sequencing

Fecal samples were collected from laboratory mice 8 weeks after they were adminis-
tered a 60% fat diet. In total, 500 µL of methanol was added to each 100 mg of fecal sample
and then vigorously extracted. Fecal DNA was extracted using the AccuFAST automation
system (AccuGene, Inc., Incheon, Korea), according to the manufacturer’s instructions. For
MiSeq sequencing, bacterial genomic DNA amplification was performed using primers
containing 515fb and 806rb and Nextera adaptor sequences to target the V4 hypervariable
region of the 16S rRNA genes [65]. The 16S rRNA genes were amplified using 25 poly-
merase chain reaction (PCR) cycles and KAPA HiFi HotStart ReadyMix (Roche sequencing,
Pleasanton, CA, USA). The PCR products (~250 bp) were purified using HiAccuBeads
(AccuGene, Inc., Incheon, Korea). Amplicon libraries were pooled at equimolar ratios. The
pooled libraries were sequenced on the Illumina MiSeq system using the MiSeq Reagent
Kit v2 for 500 cycles (Illumina, San Diego, CA, USA). The raw sequencing reads for all raw
data sets were subjected to reference-based chimera filtering using VSEARCH v2.10.3 [66].
The chimeric filtered sequences were assigned to operational taxonomic units (OTUs) by
OTU picking using the QIIME pipeline (http://www.qiime.org/, accessed on 1 May 2021).
Sequences were clustered using UCLUST into OTUs based on the SILVA 132 (pre-clustered
at 97% similarity threshold) database.

4.3. Sample Derivatization and GC-MS Analysis

A total of 200 µL of cold methanol was added to 20 µL of serum or a freeze dried fecal
(50 mg) sample and then vigorously extracted. After centrifugation at 12,000 rpm, 5 min,
at 4 ◦C, 100 µL of the supernatant was freeze-dried. Equal volumes of each sample were
collected and prepared for quality control analysis. The methods of sample derivatization
and GC-MS analysis have been described previously [67]. Briefly, 80 µL of O-methoxyamine
hydrochloride (20 mg/mL) was added to each freeze-dried sample and incubated (75 rpm,
30 ◦C, 90 min) in the dark. Silylation was performed by adding 30 µL of N-methyl-N-
trimethylsilyl-trifluoroacetamide. Each sample was vortex mixed, shaken (75 rpm), and
incubated at 37 ◦C for 30 min. After centrifuging the sample at 13,000 rpm for 10 min, GC-
MS analysis was performed on the supernatant. The derivatized samples were analyzed
using a QP 2020 GC-MS (Shimadzu, Kyoto, Japan). The GC oven temperature was initially
held at 80 ◦C for 2 min and finally increased to 330 ◦C at a rate of 15 ◦C/min and held
for 6 min. The m/z range was set to 85–500, with electron impact ionization (70 eV). A
GC solution (Shimadzu, Kyoto, Japan) was employed to obtain chromatograms and mass
spectra. The data were converted into a netCDF file after GC-MS analysis and processed
for peak detection and alignment using the MetAlign software. MetAlign parameters were
set according to the AIoutput scaling requirements: a peak slope factor of 2, peak threshold
of 10, average peak width at half height of 25, and peak threshold factor of 4. The resulting
data (CSV-format file) were imported into the AIoutput software for peak identification
and prediction.

4.4. Data Processing and Statistical Analysis

The GC-MS data was analyzed with the help of principal component analysis (PCA)
and PLS-DA to visualize the variance of metabolites and using SIMCA-P 15.0 (Umetrics,
Umea, Sweden). For model validation, a 200-fold cross validation was performed. Metabo-
lites with a VIP > 1.0, and a p < 0.05 were considered different across the two groups. The
mass spectra data of the metabolites were compared with the help of the AIoutput software,
NIST 14.0 library, and the human metabolome database (HMDB, http://www.hmdb.ca,
accessed on 1 May 2021). Metabolic differences between groups were examined for statis-
tical significance using Student’s t-test. To determine statistically significant differences
between the two groups in microbial analysis, the non-parametric Mann-Whitney U test
was used for unpaired data. The Benjamini-Hochberg algorithm was used to control the
false discovery rate [68]. A FDA of 5% was applied to all tests to correct for multiple testing.
Predictive functional analysis OTU picking from the 16S amplicon sequencing data was

http://www.qiime.org/
http://www.hmdb.ca
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performed using QIIM [69] and the greengenes database [70], and functional analysis was
conducted on the OTU data using PICRUSt [71]. The predictive functional analysis results
were annotated with the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway [72].

4.5. Metabolic Pathway Analysis

Metabolic pathway analysis was performed with the MetaboAnalyst web software
(metaboanalyst.ca) and the KEGG by filtering the dataset using the FDR-adjusted
p value < 0.05 and impact value > 0.1 to reveal how significant metabolites are involved in
different pathways [73].

4.6. Correlation Analysis

Associations between metabolites and microbes were assessed using Pearson’s corre-
lation analysis. A FDR of 5% was applied to all tests to correct for multiple testing.

5. Conclusions

In the present study, HFD feeding had a remarkable effect on changes in the gut
bacterial ecosystem, which can adversely affect obesity. The increased relative abundance
of Firmicutes in the HFD group showed a positive correlation with some metabolites,
suggesting that it may play a key role in the development of obesity in response to a HFD.
This study provides insight into the dysbiosis of the gut microbiota and metabolites altered
by a HFD and may help to understand the mechanisms underlying obesity mediated by
gut microbiota.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11080482/s1, Figure S1: Distribution of level 1 KEGG functional categories from the
CON (green) and HFD (red) groups, Figure S2: Summary of pathway analysis (serum), Figure S3:
Summary of pathway analysis (fecal sample), Table S1: The secondary function of the predicted gene,
Table S2: The tertiary function of predicted gene, Table S3: Metabolic pathways affected by a high
fat diet on serum, Table S4: Metabolic pathways affected by a high fat diet on fecal, Table S5: Diet
ingredients of the control group, Table S6: Diet ingredients of the high fat diet group.
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