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Metabolic disturbances due to a high-fat diet in a non-insulin-
resistant animal model
L Ramalho1,2, MN da Jornada3, LC Antunes3 and MP Hidalgo1,4

OBJECTIVE: Shift workers have metabolic changes more often than day workers. It is also known that night workers prefer foods
high in saturated fat. Such data suggest that shift workers are prone to cardiovascular disease. Therefore, the objective of this study
was to propose an animal model to test the effect of high-fat diet (HFD) based on shift workers’ diet.
METHODS: This is an experimental study with 20 Wistar rats. Ten rats were allocated to the control group (CG) and were fed
standard diet. Ten rats were allocated to the experimental group (EG) and were fed HFD (45% fat). Serum triglycerides (TG), glucose
and high-density lipoprotein-cholesterol (HDL-cho) were measured 5, 10 and 15 weeks after the beginning of the study. The
amount of visceral adipose tissue (VAT) was determined. Body weight was assessed weekly, and food and water intake were
measured daily. Student’s t-test was used for independent samples, and Po0.05 was considered significant.
RESULTS: After 15 weeks of intervention, the EG showed increased serum levels of TG (P= 0.001) and glucose (Po0.001) and
decreased HDL-cho (Po0.001) when compared with the CG. The EG showed increased VAT (P= 0.005) and liver weight (P= 0.01).
Food intake and water intake were higher in the CG (Po0.001 and Po0.001, respectively), whereas energy intake showed no
difference (P= 0.48). No difference was found in the weight of adrenal glands (P= 0.07) and body weight (P= 0.63).
CONCLUSIONS: The experimental diet was effective to show changes in the serum levels of glucose, TG and HDL-cho and visceral
fat in spite of no change in body weight in 15 weeks.
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INTRODUCTION
Over the past few years, there has been a significant increase in
the prevalence of nutrition-related diseases, such as obesity,
diabetes and cardiovascular diseases. Diet quality may be one of
the most important factors associated with hyperglycaemia,
hypertriglyceridaemia, hypertension, decreased high-density
lipoprotein-cholesterol (HDL-cho) and increased abdominal
circumference.
Shift workers are particularly affected by inadequate quality of

diet, mainly night workers who often have hypertriglyceridaemia
and hyperglycaemia, as well as lower levels of HDL-cho when
compared with day workers.1–4

It is known that night workers, at work, prefer cold snacks
containing high concentrations of saturated fat instead of hot
food. This population usually keeps this pattern also during the
period they are not working.5–7 Their diet also have several eating
events per day,8 including high consumption of fat,9,10 especially
saturated fat.6

It is difficult to distinguish factors related to chronic diseases in
human beings; therefore, experimental studies have tried to
develop a standardized diet for animal models. Studies with high-
fat diets (HFDs) have been conducted in animals, especially in
mice and rats, to induce metabolic changes. Some of these studies
have linked an HFD with hyperphagia, weight gain, increased
adiposity and suppression of hepatic glucose production stimu-
lated by insulin.11–13 Such conditions may lead to hyperinsuline-
mia and insulin resistance. These diet models often include
15–65% of fat from different sources (soybean oil, coconut oil,

olive oil, fish oil, lard and vegetable shortening, with lard and
vegetable shortening being commonly used by food industry) and
different times of study (3–32 weeks).14–18 The type of fat chosen
directly influences the biomarkers. Lard and vegetable shortening
are equally rich in saturated fatty acids and monounsaturated fatty
acids, therefore, they are used in studies for causing metabolic
changes effectively. Fat rich in polyunsaturated fatty acids are less
harmful because they prevent insulin resistance.12,19,20 Most
snacks contain fat, but experimental diets focus on only one type
of saturated fat, such as lard and coconut oil. A type of snack
frequently consumed by shift workers is fried meat stuffed pastry
(46% fat, 23.8% saturated fatty acids, 29.3% monounsaturated
fatty acids, 37.8% polyunsaturated fatty acids in 100 g).21

Hydrogenated fats, which are commonly used by the food
industry, are correlated with cardiovascular diseases, decreasing
HDL-cho and increasing low-density lipoprotein-low-density
lipoprotein cholesterol (LDL-cho).22

Based on such evidence, it is important to mimic an HFD similar
to the diet consumed by shift workers in order to analyse its
effects. Therefore, the objective of this study was to test the effect
of an HFD on metabolism in an animal model.

MATERIALS AND METHODS
Animals
Twenty male Wistar rats from the Reproduction and Experimentation
Centre of Laboratory Animals (CREAL, Centro de Reprodução e Experi-
mentação de Animais de Laboratório; Universidade Federal do Rio Grande
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do Sul, Porto Alegre, Brazil) were used. The animals were 60 days old at the
beginning of the study. They were housed in polycarbonate cages, five
animals per cage, kept at 22 ± 2 °C with a 12:12 h light:dark cycle (lights on
at 0700 hours) according to the Guide to the Use and Care of Laboratory
Animals.23,24 One animal died during the experiment. The study was
approved by the Ethics Committee of the Hospital de Clínicas de Porto
Alegre, and it was carried out in the Animal Experimental Unit of the same
institution. All procedures were performed in such a way as to minimize
pain and discomfort.

Diet
All rats were allowed ad libitum access to food and water. The HFD created
for this study consisted of 45.5% standard chow, 22.7% lard, 22.7%
vegetable shortening and 9% sucrose, whereas the standard diet (control
group (CG)) consisted of 100% chow Nuvilab CR-1-Nuvital (São Paulo,
Brazil). The chow diet provided 3.97 Kcal g− 1 and the HFD provided
6.25 Kcal g− 1, 0.18 and 2.84 Kcal g− 1 from fat, respectively. The HFD was
supplied in pellets similar to those used to offer standard diet. The HFD
was prepared every 4 days and stored in a refrigerator under controlled
temperature (7 °C, ± 2). The amount of fatty acids in each diet is described
in Table 1.25–27

Experimental procedures
The rats were randomized by weight and allowed a 1-week period of
adaptation to the laboratory conditions and chow diet. After this, the
animals were divided into two groups of 10 animals each: experimental
group (EG; receiving HFD) and control group (CG; receiving standart diet).
The treatment lasted 15 weeks. Food and water intake were measured
daily. Body weight was assessed weekly. Blood samples were collected in
non-starved animals at baseline and at 5, 10 and 15 weeks of the treatment
period for glucose, HDL-cho and triglycerides (TG) analysis. The samples
were obtained from the retro-orbital plexus after sedating the animals with
inhaled isoflurane (Isoforine, Cristália Produtos Químicos e Farmacêuticos
Ltda., São Paulo, Brazil). At the end of the treatment, the rats were killed by
decapitation to facilitate blood collection and no drugs were used before
this procedure. Epididymal and retroperitoneal fats were removed from
visceral adipose tissue (VAT), liver and adrenal glands and weighed using a
digital scale (Marte, model AS5500c, São Paulo, Brazil). This scale was also
used to determine the weight of food, water and animal’s body weight.
The experiment was performed one time by a non-blinded researcher.

Metabolite determinations
Serum levels of glucose, HDL-cho and TG were evaluated. Serum from
trunk blood was assayed for TG and glucose using the enzymatic
colorimetric assay kits produced by Roche Diagnostics (Mannheim,
Germany). Levels of HDL-cho were determined by the homogeneous
enzymatic colorimetric assay kits also produced by Roche Diagnostics.

Statistical analysis
Considering a 95% confidence level, 10 animals per group were used to
detect differences between the variables. The comparison between CG and
EG at baseline considered food, water and energy intake, as well as organ
weight. Data were expressed as mean± s.e.m. The statistical analysis was
performed using Student’s t-test for independent samples. The analysis of
CG vs EG at different time points (baseline, 5 weeks, 10 weeks, 15 weeks)
was performed using two-way analysis of variance and Tukey’s test (post
hoc analysis). A P-value o0.05 was considered to be statistically
significant. The statistical analysis was carried out using the Statistical
Package for the Social Sciences, version 18.0 (SPSS Inc., Chicago, IL, USA).

RESULTS
We investigated two groups of rats (n= 20). One group was fed an
HFD (45.5% chow) that sought to mimic the diet of shift workers
for 15 weeks. The other 10 rats were fed 100% chow (control
group).

Baseline
Data for serum glucose, TG and HDL-cho (mean± s.e.m.) are
shown in Table 2 and Figure 1. No significant difference was

Table 1. Content of fatty acids in the diet

CG EG

Saturated fatty acids (SFA)
Lauric acid (12:0) 0.10 0.04
Myristic acid (14:0) 1.36 1.13
Palmitic acid (16:0) 22.23 19.34
Stearic acid (18:0) 8.61 8.68
Arachidic acid (20:0) 0.08

Total% 32.3 29.27

Unsaturated fatty acids
Palmitoleic acid (16:1) 0.91
Oleic acid (18:1) 35.91 39.45
Linoleic acid (18:2) 31.69 20.65
Linolenic acid (18:3) 0.10 0.59
MUFA% 36.01 40.96
PUFA% 31.69 20.65

Total% 67.7 61.6

Abbreviations: CG, control group; EG, experimental group; MUFA, mono-
unsaturated fatty acid; PUFA, polyunsaturated fatty acid. Amounts
expressed as percentage (%) in 100 g of diet.

Table 2. Characteristics of the sample at baseline and after 15 weeks of a high-fat diet intervention

CG (n= 9) EG (n=10) T P

Baseline
Body weight (g) 254.23 (±6.89) 246.66 (±7.76) 0.72 0.47
Serum glucose (mg dl− 1) 152.40 (±4.11) 166.30 (±7.13) − 1.68 0.11
HDL-cholesterol (mg dl− 1) 49.60 (±1.40) 47.20 (±1.32) 1.24 0.23
Triglycerides (mg dl− 1) 88.40 (±8.68) 108.00 (±9.21) − 1.54 0.14

After 15 weeks
Body weight (g) 402.73 (±13.48) 391.24 (±19.08) 0.48 0.63
Visceral adipose tissue (g) 17.12 (±1.76) 34.22 (±4.70) − 3.26 0.005**
Liver weight (g) 11.33 (±1.50) 13.17 (±0.52) 2.62 0.01**
Adrenal gland weight (g) 0.05 (±0.005) 0.07 (±0.005) 1.89 0.07
Food intake (g per day per rat) 12.6 (±0.21) 7.9 (±0.23) 24.5 o0.001***
Water intake (ml per day per rat) 43.3 (±5.64) 22.6 (±4.71) 22.23 o0.001***
Energy intake (Kcal per day per rat) 50.6 (±0.65) 49.4 (±1.49) 0.70 0.48

Abbreviations: CG, control group; EG, experimental group; HDL, high-density lipoprotein. Data presented as mean (± s.e.m.). Student’s t-test for two
independent samples. Significant P-values: *Po0.05; **Po0.01; ***Po0.001.
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observed between the CG and EG at baseline for body weight,
serum glucose, HDL-cho and TG.

Metabolic parameters
The comparison of serum variables (mean± s.e.m.) at baseline, 5,
10 and 15 weeks between EG and CG are presented in Figure 1.
Glucose (F19,3 = 21.768; Po0.001), TG (F19,3 = 6.570; P= 0.001) and
HDL-cho (F19,3 = 7,409; Po0.001) had statistically significant
differences only at week 15. EG showed a significant increase in
the levels of serum glucose (CG= 166.88 ± 3.64, EG = 183.40 ± 4.89)
and TG (CG= 157.33 ± 21.51, EG = 299.10 ± 42.36) and a significant
decrease in HDL-cho (CG= 49.66 ± 2.19, EG = 40.40 ± 2.22).

Organs and tissues
The weights of VAT, liver and adrenal glands (mean± s.e.m.), as
well as body weights of the CG and EG are compared in Table 2

and Figure 2. VAT and liver weights of the EG were found to be
significantly higher than in the CG. No difference was found
between the EG and CG regarding body weight and the weight of
adrenal glands.

Food, water and energy intake
Food and water intake of both groups are shown in Table 2 and
Figure 3. Both food and water intake in the EG were lower than in
the CG. There was no difference between the groups in terms of
energy intake.

DISCUSSION
The model of diet used in our study caused metabolic changes,
but it did not increase body weight. To the best of our knowledge,
this is the first study designed to create an animal model diet
containing lard and shortening, both saturated fatty acids, which
are the most common types of fat found in processed food. Forty-
five percent of the energy contained in this diet was supplied by
fat compared with 4.5% in the control diet. The metabolic changes
confirmed that the quality of the diet composition can have a
direct influence on these markers.28,29

Body weight was not correlated with the amount of VAT. In our
study, we demonstrated that there is a non-causal relationship
between these variables. Controversy surrounds the results from
other studies showing an increase in body weight on an HFD.
Unlike our study, which contained shortening and lard, Sampey
et al.30 fed Wistar rats a lard-based 45% fat diet for 15 weeks
causing higher body weight. It may be that the variety of
ingredients used in manipulated HFDs and their flavours are
important to determine weight gain. Also, it is a reason for
concern that, in spite of the fact that the workers’ body mass index
is within normal limits, they may have increased visceral adiposity,
which is an important risk factor for cardiovascular disease.
In disagreement with other studies, the animals of our study

that were fed the HFD did not show hyperphagia because there
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was lower food intake, thus keeping their body weight and energy
intake similar to those in the CG.11,31 EG’s lower food intake may
have been due to an HFD with higher caloric density or less
palatability. According to Erlanson-Albertsson,32 an HFD can
upregulate the expression of hunger and satiety signals and, at
the same time, blunt the response to satiety signals. Conversely, it
has been reported that rats fed a higher calorie diet required
spontaneously increased basal energy expenditure, stimulating
thermogenesis as a compensatory mechanism in an attempt to
maintain body weight.33,34 In contrast to another study using
streptozotocin combined with an HFD to change metabolic
parameters and induce obesity and diabetes, hyperglycaemia
was induced only by the HFD, which makes this model
more similar to the natural course of disturbed metabolic
physiopathology.35

In our research, the latency period for the development of
metabolic changes was 15 weeks because of our attempt to
trigger the most natural response in established parameters. This
longer period allows a longer exposure to this type of food, as
seen in shift workers. The changes in our sample were similar to
those seen in shift workers after years of shift work. Shift workers
have increased serum TG and serum total cholesterol in an
intraindividual comparison.36 In terms of waist circumference, shift
workers showed more central adiposity than day workers. This risk
is increased in those who work night shifts for many years,
including visceral fat area.3,37–39 Night workers have higher risk to
develop diabetes, and in a study with women working night shifts,
they showed increased risk to develop type 2 diabetes in 3 years,
and the risk gets higher as the working years extend.40,41

Our study has some limitations. We did not weigh the animals’
muscles. Therefore, this could be a potential confounding variable.
According to the AIN-93M diet,42 the quantity of protein necessary
for long-term studies to support proper growth and its
maintenance is 12% of the energy intake. In the present study,
the EG received 10% of energy intake, thus it is unlikely that the
animals of this group had muscles’ atrophy. Furthermore, the
experimental diet was intended to mimic the night workers’ diet
because night workers eat a lower amount of proteins when
compared with day workers. They also consume smaller amounts
of some vitamins and minerals than day workers, such as
vitamin A, calcium and selenium.43 No mineral mixture was added
to the HFD. Therefore, there might have been loss of minerals’
quantity in the HFD, but unfortunately, we did not measure the
quantity of micronutrients present in lard and shortening. Also, we
cannot assume that physical activity had a role in weight gain
because it was not measured.
This study shows that feeding an HFD to experimental animals

for a sustained period can lead to changes in metabolic
parameters. Nevertheless, there was no significant increase in

body weight although there was an increase in VAT. Body weight
per se may not be a good predictor of metabolic change.
Metabolic changes are related to the development of chronic
diseases, such as a prediabetic state, type 2 diabetes, obesity and
nonalcoholic fatty liver disease. In addition, because meal
composition may be involved in the genesis of these diseases,
studies using HFD can contribute to a better understanding of the
metabolic physiopathology. Our results are robust as no difference
was observed between the CG and EG at baseline, indicating that
the animals were a homogeneous group at the beginning of
the study.
In conclusion, the experimental diet was effective in showing

that there were changes in serum glucose, TG and HDL-cho levels,
as well as fat in the visceral tissue in spite of no change in body
weight in 15 weeks.
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