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Abstract: Suspended particles affect the state and vitality of the marine ecosystem. In situ probing
and accurately classifying the suspended particles in seawater have an important impact on ecolog-
ical research and environmental monitoring. Individual measurement of the optical polarization
parameters scattered by the suspended particles has been proven to be a powerful tool to classify
the particulate compositions in seawater. In previous works, the temporal polarized light pulses
are sampled and averaged to evaluate the polarization parameters. In this paper, a method based
on dense sampling of polarized light pulses is proposed and the experimental setup is built. The
experimental results show that the dense sampling method optimizes the classification and increases
the average accuracy by at least 16% than the average method. We demonstrate the feasibility of
dense sampling method by classifying the multiple types of particles in mixed suspensions and
show its excellent generalization ability by multi-classification of the particles. Additional analysis
indicates that the dense sampling method basically takes advantage of the high-quality polarization
parameters to optimize the classification performance. The above results suggest that the proposed
dense sampling method has the potential to probe the suspended particles in seawater in red-tide
early warning, as well as sediment and microplastics monitoring.

Keywords: classification; suspended particles; polarized light pulses; dense sampling

1. Introduction

The ocean is the most important resource endowed by nature, which contains the
abundant resources necessary for the survival and development of human society [1].
While the ocean continues to create huge benefits for modern society, its own ecology has
also encountered great challenges to human life and production [2–4]. As an important and
essential component in seawater, the suspended particles significantly influence the optical
properties of seawater, as well as the marine ecological environment [5,6]. For example,
certain harmful types of microalgae rapidly cause algae blooms in a short period, which is a
threat to marine organisms [7–9]. Microplastic has become a prevalent, widespread element
of marine litter, threatening marine organisms and human health [10–12]. The accumulation
and transportation of sediments such as silts, have a great impact on the stability of the
estuarine and seacoast [13,14]. Therefore, the development of effective detection and
accurate classification and identification of these different suspended particles is of far-
reaching significance [15,16]. At the same time, the detected particle information is also
helpful to interpret the data of marine science macroscopic researches, and further, promote
the development of remote sensing in marine monitoring [17,18].
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Optical methods are currently one of the most popular methods to detect the sus-
pended particles, due to the advantages of high resolution, non-contact, and rich infor-
mation [19,20]. In recent years, many in situ optical instruments have been applied to the
acquisition of suspended particles in seawater such as YSI EXO [21,22], AC-S [23], BB9 [24],
and LISST-200X [25]. However, these methods use bulk measurement to obtain comprehen-
sive information of suspended particles in seawater, and cannot obtain information on the
morphology and internal structure of individual seaweed particles. The Flow cytometers,
such as FlowCytobot, individually measure the scattered intensity and fluorescence or
sometimes the images of the particles to classify the particles in seawater. However, its
dependency on the pretreatment is based on the hydrodynamic focusing system, limiting
its application in the seawater [26,27].

Polarization is the fundamental property of light. Compared with traditional optical
methods, polarized light can carry richer information [28]. The polarization information dif-
ferences can be utilized for the analysis and identification of biological tissue lesions [29,30],
and for the identification and classification of atmospheric and marine particles [31,32].
However, the polarization parameters are affected by the comprehensive effects of particles,
including size, refractive index, shape, morphological structure, and microstructure. In
2018, Wang et al. obtained the polarized pulses of temporal signals through an experi-
mental setup, and the signal-to-noise ratio of the system was bigger than 5. Then, they
used a low-pass filter to suppress the high-frequency noise and used a threshold limit to
acquire the polarized pulse signal. Finally, all the samplings in each polarized light pulse
are calculated as an average value (PLP-Ave). This method is applied to differentiate the
suspended particles of different physical and microstructural properties, which is impor-
tant for monitoring microalgae, microplastics, and silt concentrations [33]. In 2019, Liao
et al. applied the PLP-Ave method and developed a new in situ prototype, whose ability to
the classification of the suspended particles in seawater has been demonstrated by field
deployments [34]. In 2020, Li et al. used the PLP-Ave method to probe the collapse and
regeneration of the cyanobacterial gas vesicles exposed to different static pressures [20]. In
addition, Wang et al. chose samples with distinctive microstructural features, and then con-
ducted simulations and calculations to examine how these features affect the polarization
of the scattered photons using the PLP-Ave method [35].

This paper will introduce a method for optimizing the classification of suspended par-
ticles in seawater by dense sampling of polarized light pulses. The laboratory experiment
which is free of the pretreatment of the samples, preliminarily shows that this method has
local optimal characteristics and significant classification performance. Through the dense
sampling of polarized light pulses, the characteristic information of the suspended particles
can be obtained comprehensively, and a large number of local effective characteristics of
the suspended particles can be improved to achieve high accuracy. In practical applications,
the PLP-All model is more accurate and flexible in the mixed experiment prediction. These
results show that using the dense sampling of polarized light pulses is beneficial to the
more accurate classification of suspended particles. In addition, it brings a good application
method for identifying and classifying suspended particles in seawater.

2. Methods and Materials
2.1. Principle of the Experimental Setup

A polarized light scattering method for differentiating suspended particles of differ-
ent physical and microstructural properties can detect and classify the suspended parti-
cles [33,35]. On this basis, we built an experimental setup using a similar principle, which
is free from the pretreatment of the samples. It achieves the classification of suspended
particles in seawater by individual particle measurement and machine learning algorithms.

The experimental setup includes four parts: Optical path, photoelectric convertor,
analog-to-digital conversion, and the sampling system. The sampling system consists of a
sample pool and a flow circulation system. The sample pool has one inlet and one outlet.
In addition, the sample is pumped by a pumper to enter the sample pool through the
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inlet and leave the sample pool through the outlet by another pumper. The particles in
the sample are suspended and pass through the scattering volume of the setup, whose
polarization parameters can be efficiently and accurately measured.

Figure 1 shows the optical path of the setup. A 520 nm laser is the light source with
2-mm beam size and 0.7 W maximal power. Since most of the microalgae have a low
absorption coefficient and high scattering coefficient at 520 nm [36], using the 520 nm laser
the light is more conducive to reflecting the structure of microalgae and highlighting the
differences between them. A polarization state generator (PSG) converts the light into the
desired polarization states. The beam is completely reflected by the equilateral prism to
obtain the obliquely illuminating light. Then, the illuminating light passes through Lens
1 and the transparent ceramic window 1, which is focused into a tiny light spot. Once
the suspended particle passes through the light spot, it will be illuminated, and the 120◦

scattered light will pass through the transparent ceramic window 2 and be received by Lens
2. Note that windows 1 and 2 do not change the polarization states of the light passing
through them. In addition, the 120◦ scattering angle has been proven to be sensitive to
the microstructure in our previous work, which helps in identifying and distinguishing
different suspended particles in seawater [35]. Then, the 120◦ scattering angle is used to
maintain consistency with the previous work [33].
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Figure 1. Schematic diagram of the optical system of the experimental setup.

Lens 2 consists of a series of lenses and a pinhole. The size of the pinhole is 100-micron
and its position is the imaging point of the light spot by the lenses before the pinhole. The
pinhole is followed by a short focal length lens to convert the scattered light to the parallel
light beam before entering the polarization state analyzer (PSA). Therefore, the scattering
volume as the intersection volume of the illuminating optical path and the receiving optical
path, is determined by the pinhole and the light spot. Moreover, in this work, the scattering
volume is less than 0.01 microliter. If the volume concentration of the suspended particles
is less than 105 per milliliter, there is only one particle in the scattering volume at most,
based on which the measurement of the individual particle can be realized. Therefore,
the requirement for the volume concentration does not depend on the particle size, but
depends on the scattering volume, which is determined by the pinhole and the light spot
of the experimental device. In the measurement, if a single particle passes through the
scattering volume, its scattered light contributes to the signal. When there are no particles
in the scattering volume, the electronic noise, environmental light, and the scattering of
water contribute to the background, which is smaller than the particle. Therefore, the
signals are a series of temporal pulses.

PSG and PSA are the important components of the experimental setup, which realize
the key functions of polarized light illumination and detection in the system. PSG is
composed of the fixed linear polarizer, achromatic half-wave plate, and achromatic quarter-
wave plate. In addition, the independent rotating motors carried by one-half wave plate
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and one-quarter wave plate change the direction of the fast axis of the wave plate. In our
self-written application interface, the operator can set the rotation angle of the motor to
obtain the desired polarization of the incident light, thereby obtaining more abundant
polarization information of the particulate matter.

PSA is composed of three non-polarizing cube beam splitters, which divide the
incident parallel beam into four parts. The two parts are analyzed with 0 and 45◦ linear
polarizers and other analyzers. The other two parts are analyzed by left-hand and right-
hand circular analyzers. The left-hand circular analyzer consists of a 135◦ fast-axis oriented
quarter-wave plate and a 90◦ linear polarizer. In addition, the right-hand circular analyzer
consists of a 45◦ fast-axis oriented quarter-wave plate and a 90◦ linear polarizer.

Then, the 120◦ backward scattered light by the suspended particles in the scattering
volume is divided into four channels by the PSA and converted into the four voltages by
the four independent photoelectric converters. In addition, it is simultaneously digitized
into a four-channel signal by a data acquisition card (DAQ). Thereafter, the four-channel
signals are transferred into the polarization state of the scattered light by the instrument
matrix gained from a polarization calibration procedure [34].

Using the experimental setup, we can measure the polarization state of the light
scattered by the suspended particles and obtain a series of temporal pulses. Due to the
individual measurement of the setup, each pulse originates from an individual particle. By
processing these pulses, we can get the polarization parameters of suspended particles.

2.2. Samples

The suspended particles used in this experiment consist of five types of microal-
gae, two types of microplastics, and one type of sediment. The five types of microalgae
(Dunaliella salina (DS), Cryptomonassp. (CP), Chaetoceros debilis (CD), Phaeocystis globosa (PG),
and Thalassiosira weissflogii (TW)) were bought from Shanghai Guangyu Biological Technol-
ogy Co., Ltd., which carried out a large-scale cultivation of liquid microalgae species based
on the production environment including the temperature, nutrient salt formula, and light
intensity. In particular, DS has a unique economic value in medicine and health care [37],
CD is often used in research studies for oceanography and aquaculture [38], PG is toxic
and will cause red tide [39], CP and TW are important components for the phytoplankton
ecosystem and productivity [40,41].

In addition, other suspended particles (monodispersed polystyrene microspheres,
2 µm (PS-02) and 10 µm (PS-10), silicon dioxide pellets, 10 µm (SD-10)) were bought from
Big Goose (Tianjin) Technology Co., Ltd. They are all white suspensions obtained by
dispersing white solid powder in water. The SD-10 mother suspension was prepared
by mixing 250 mg of silicon dioxide pellets in 10 mL of 50% ethanol water solution.
Moreover, the PS-02 and PS-10 mother suspensions were prepared by mixing 250 mg of
monodispersed polystyrene microspheres in 10 mL of deionized water solution.

Filtered seawater is used in this work. We obtained the surface seawater from Yantian
Port in Shenzhen, and filtered it in the lab with a 0.2-micron filter membrane. The filtered
seawater is prepared in advance to dilute the mother suspensions of the particles.

2.3. Polarized Light Pulse Processing Algorithm

Figure 2a shows the temporal signals of a suspension measured by the setup, which is
a series of polarized light pulses. The envelope of pulses is obtained by the treatment of
low-pass filtering. The polarized light pulses include the information of the particle and
the noises. In addition, the filtering can reduce the noisy fluctuation that originated from
the electronic noise or environmental noise. However, there is still residual noise in the
pulses.



Sensors 2021, 21, 7344 5 of 15

Sensors 2021, 21, x FOR PEER REVIEW 5 of 15 
 

 

low-pass filtering. The polarized light pulses include the information of the particle and 
the noises. In addition, the filtering can reduce the noisy fluctuation that originated from 
the electronic noise or environmental noise. However, there is still residual noise in the 
pulses. 

When a single suspended particle passes through the scattering volume, it stays for 
a while during which it is continuously illuminated and its scattered polarization states 
are measured. The width of the polarized light pulse is the settling time that the particle 
stays in the scattering volume. In this case, the particle would be sampled many times by 
the setup. For example, in Figure 2b, a pulse’s settling time is about 2 ms and if the sam-
pling rate of the DAQ is 200 K sampling per second, then this pulse consists of 400 sam-
plings and the particle is measured 400 times at one measurement. We have 400 scattered 
polarization states of the particles. Considering that the particle is moving in the scattering 
volume, we obtain abundant data of this particle and the method of extracting the infor-
mation from these data is a serious issue. Due to the noises from the electronic system and 
the environmental light, in previous researches, we first averaged all of the samplings in 
each polarized light pulse (PLP-Ave) to reduce the influence of the noises on the signals 
before classifying the suspended particles. 

 
Figure 2. The dense sampling of polarized light pulses: (a) The temporal signals; (b) polarized light 
pulse processing algorithm. 

In this work, we introduce the polarized light pulse processing algorithm and inves-
tigate the benefit or loss of the averaging of the polarized light pulses to achieve more 
efficient and accurate classification than before. We divide the polarized light pulses with 
specific methods into four samplings (PLP-4), 10 samplings (PLP-10), 100 samplings (PLP-
100), and all points (PLP-All), as shown in Figure 2b. For example, in the PLP-4 method, 
we divide the polarized light pulses into four parts and average each part to obtain four 
values for one pulse, which is considered as four samplings. Similarly, we get 10 sam-
plings for one pulse in the PLP-10 method, and 100 samplings in the PLP-100 method. For 
the PLP-All method, all the samplings are considered. Generally, the averaging will sup-
press the noise and enhance the signal-noise-ratio, and finally help in extracting the infor-
mation from the polarized light pulse. However, the averaging will omit the detailed in-
formation. Definitely, the PLP-All method suffers the most from the noise and the values 
are most inaccurate. Therefore, this investigation will try to estimate the benefit and loss 
of the averaging of the pulses using the polarized light pulse processing method. 

  

Figure 2. The dense sampling of polarized light pulses: (a) The temporal signals; (b) polarized light
pulse processing algorithm.

When a single suspended particle passes through the scattering volume, it stays for a
while during which it is continuously illuminated and its scattered polarization states are
measured. The width of the polarized light pulse is the settling time that the particle stays
in the scattering volume. In this case, the particle would be sampled many times by the
setup. For example, in Figure 2b, a pulse’s settling time is about 2 ms and if the sampling
rate of the DAQ is 200 K sampling per second, then this pulse consists of 400 samplings and
the particle is measured 400 times at one measurement. We have 400 scattered polarization
states of the particles. Considering that the particle is moving in the scattering volume,
we obtain abundant data of this particle and the method of extracting the information
from these data is a serious issue. Due to the noises from the electronic system and the
environmental light, in previous researches, we first averaged all of the samplings in each
polarized light pulse (PLP-Ave) to reduce the influence of the noises on the signals before
classifying the suspended particles.

In this work, we introduce the polarized light pulse processing algorithm and inves-
tigate the benefit or loss of the averaging of the polarized light pulses to achieve more
efficient and accurate classification than before. We divide the polarized light pulses with
specific methods into four samplings (PLP-4), 10 samplings (PLP-10), 100 samplings (PLP-
100), and all points (PLP-All), as shown in Figure 2b. For example, in the PLP-4 method,
we divide the polarized light pulses into four parts and average each part to obtain four
values for one pulse, which is considered as four samplings. Similarly, we get 10 samplings
for one pulse in the PLP-10 method, and 100 samplings in the PLP-100 method. For the
PLP-All method, all the samplings are considered. Generally, the averaging will suppress
the noise and enhance the signal-noise-ratio, and finally help in extracting the information
from the polarized light pulse. However, the averaging will omit the detailed information.
Definitely, the PLP-All method suffers the most from the noise and the values are most
inaccurate. Therefore, this investigation will try to estimate the benefit and loss of the
averaging of the pulses using the polarized light pulse processing method.

2.4. Analytical Methods

Stokes vector, S, as shown in Equation (1) is always used to describe the polarization
state of light [42].

S =


I
Q
U
V

 (1)
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where I is the total light intensity, and Q, U, V are the residual 0◦, 45◦, and right-circularly
polarization, respectively.

As shown in Equation (2), q, u, and v are polarization parameters normalized by light
intensity I, which can be dimensionless and range from −1 to 1.

q =
Q
I

, u =
U
I

, v =
V
I

. (2)

The degree of polarization (DOP) as shown in Equation (3) commonly represents the
proportion of polarized light in the total light intensity, ranging from 0 to 1, which is also
used to characterize the depolarization ability of particles when they are illuminated by a
polarized light [43].

DOP=

√
Q2 + U2 + V2

I
(3)

For classification problems, the results of machine predictions and actual values will
deviate. The confusion matrix is a standard measure that represents accuracy evaluation,
including true positive (TP), false positive (FP), true negative (TN), and false negative
(FP) [44]. Each row of this matrix represents an instance in the actual class, and each
column represents an instance in the predicted class. It can clearly express the correct
classification and misclassification of each category on the visual system. Therefore, the
evaluation model’s advantages and disadvantages standards introduce accuracy, which is
computed from the confusion matrix using Equation (4).

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

where TP denotes that the positive class is judged as a positive class, FP denotes that the
negative class is judged as a positive class, TN denotes that the positive class is judged as a
negative class, and FN denotes that the negative class is judged as a negative class.

As shown in Equation (5), the mean-square error (MSE) is a measure that reflects the
degree of difference between the estimator and the true value. x̂ is the estimator of the
sample, and x is the true value of the sample. When the sample is constant, their distance
function is an index used to evaluate the quality of an estimator.

MSE(x̂) = E(x̂ − x)2 (5)

2.5. Algorithm Theory

As one of the most traditional neural networks, the main characteristic of backpropaga-
tion neural network (BPNN) is that the signal propagates forward and the error propagates
backward. Backpropagation is the standard method for training artificial neural networks.
This method helps in calculating the gradient of the loss function with respect to all the
weights in the network. By fine-tuning the weight of the neural network based on the
error rate obtained in the previous period, it can reduce the error rate and improve the
generalization and reliability of the model. Therefore, the training and test sets of the BPNN
algorithm model that we built use the polarization parameter data, which is measured
by the suspended particles in the experimental device. As shown in Figure 3, the input
layer of the network training uses X = [I, q, u, v, DOP], and there are five input nodes.
Through multiple experiments, the hidden layer is set to three layers, which are five nodes,
six nodes, and four nodes. Finally, there are four nodes in the output layer, corresponding
to four types of suspended particles. In addition, we built the algorithm model using
the sigmoid nonlinear transfer function, which minimizes the actual output and expected
output error function of the system by revising weights and thresholds repeatedly.
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3. Results
3.1. Classification of the Four Types of Microalgae

In this paper, we built the BPNN model which is used to classify the four types of
microalgae, DS, CP, CD, and PG for each method of the polarized light pulse process
algorithm. The dataset prepared by the PLP-Ave method is used as input data for training
and testing and finally, for building the PLP-Ave model. Similarly, we built the PLP-4
model, PLP-10 model, PLP-100 model, and PLP-All model. For each model, the total
number of dataset is 11,000. We used the random function of MATLAB to sort the dataset
of each model. Then, 70% of the disordered dataset is used for training and 30% is used for
testing.

After training for 100 epochs, the model tends to converge and the results are shown
in Figure 4. Figure 4a shows the confusion matrix of PLP-Ave model. As can be seen, the
classification accuracy for the DS, CP, and PG are less than 80%, and some errors are around
10%. The average accuracy of PLP-Ave model is only 80.77%. In Figure 4b, the classification
accuracy of PLP-All model for all the types of microalgae is larger than 90%, and for PG
it is larger than 99%. The average accuracy of PLP-All model is 97.32%. Next, we collect
the average accuracy of the different methods in Figure 4c. As can be seen, the PLP-All
model has achieved the best classification accuracy, and the PLP-Ave model’s accuracy is
minimal. In addition, the classification accuracy for the suspended particles increases with
the sampling numbers in the different methods. Note that the PLP-All model suffers the
most from the noises in the data. However, since it contains most of the information about
the particles, it achieves the best classification accuracy.
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The classification accuracy of the four types of microalgae in general is shown in
Table 1. In this case, the classification accuracy of the model trained by the data of PLP-All
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model is larger by 16.55% than the PLP-Ave model, which indicates that this model has
stronger feature extraction capabilities. These high-precision results are consistent in both
the training and prediction sets, which also prove that the model we trained has a strong
generalization ability.

Table 1. Accuracy of PLP-Ave model and PLP-All model.

Dataset Training Set Test Set

PLP-Ave model 80.87% 80.77%
PLP-All model 97.80% 97.32%

3.2. The Mixed Experiment Prediction

To check the flexibility and feasibility of the above models, we used them to classify
the four types of microalgae cells in the mixed suspensions. First, we measured the four
types of microalgae suspensions separately. In order to collect enough particles, we added
2 milliliter of DS to the filtered seawater and measured for 3 min, then recorded the
resulting pulse number which is 720 pulses. Similarly, the same steps were performed for
CP, CD, and PG, respectively. In addition, we obtained the polarized light pulse numbers,
2160 pulses for CP, 576 pulses for CD, and 648 pulses for PG. Then, we mixed the four
microalgae suspensions together, Groups 1, 2, and 3. In each group, the respective volumes
were carefully chosen to ensure that the obtained pulse number by the setup for each type
of microalgae was consistent with the preset pulse number. Then, the mixed suspensions
were separately measured by the experimental setup and each measurement lasted 3 min.
The obtained data were fed into the PLP-Ave and PLP-All models respectively to predict the
number of microalgae cells in each group. For the pulses of temporal signals information,
we need to accumulate enough pulses to obtain most of the particle information. In addition,
the machine learning of BPNN algorithm needs enough characteristics of particles in order
to correctly identify the category of particles.

Table 2 collects the preset pulse number by the calculated volume and the predicted
pulse number by the models for the three mixed suspensions, which can be regarded
respectively as the true value and the predicted value by the models. There are obvious
differences between the preset pulse numbers and the predicted pulse numbers gained by
the PLP-Ave model. The largest error of PLP-Ave model occurs at Group 1, the predicted
pulse number for DS is 100, while the preset pulse number is 40, and the relative error is
about 60%. However, the largest error of PLP-All model occurs in the same group, the
predicted pulse number for DS is 100, while the preset pulse number is 75, and the relative
error is about 25%. Generally, the errors between the preset and predicted pulse numbers
of PLP-All model are much smaller than the PLP-Ave model. Note that the shape and
microstructure of some specific microalgae are not obvious, and an excessive increase in
number cannot be well identified by the PLP-All model. Therefore, some specific type
of the microalgae worsens the errors of the PLP-All model. However, most other types
of the microalgae are good and acceptable, which are quite different from the PLP-Ave
model. The results indicate that the PLP-All model is flexible and feasible for use in the
classification of the microalgae in mixed suspensions.

Table 2. The predicted results of mixed suspensions.

Preset Pulse Number PLP-Ave Model
Prediction

PLP-All Model
Prediction

Group 1 100, 100, 100, 100 115, 104, 133, 40 115, 103, 99, 75
Group 2 200, 300, 100, 200 292, 258, 80, 194 214, 308, 108, 194
Group 3 200, 400, 100, 300 280, 320, 84, 286 234, 364, 100, 268
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3.3. Comparative Analysis

Based on the classification performance of the PLP-All model, we tested a diverse
particle group that consists of five types of microalgae, two types of microplastics, and one
type of sediment, and the results are shown in Figure 5. Since TW and PG can both cause
a red tide, we added TW into the group to confirm that the PLP-All method has a strong
generalization ability and strong feature extraction ability. Through the confusion matrix
of PLP-Ave model in Figure 5a, it can be seen that the highest classification accuracy for the
eight suspended particles is less than 80%, and the lowest classification accuracy is 65.11%.
The average accuracy of PLP-Ave model is only 80.20%. In Figure 5b, the classification
accuracy of PLP-All model for all types of the suspended particles is larger than 81%,
and for PS-10 it is larger than 99%. The average accuracy of PLP-All model is 90.90%.
In addition, we noticed that all the suspended particles classification accuracy increase
and the maximal increase in the accuracy is about 19.47%. Moreover, for PS-02, which
has a rather high accuracy, the PLP-All model still improves the classification accuracy.
Meanwhile, for the total effects, half of the particle’s classification accuracy increases by
more than 10%.
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The classification accuracy of the eight suspended particles in the training and test sets
using the PLP-Ave and PLP-All models are shown in Table 3. The model’s classification
accuracy which is trained by the data of the PLP-All model is larger by 10.70% than the
PLP-Ave model, which indicates that this model has stronger feature extraction capabilities.

Table 3. Accuracy of PLP-Ave model and PLP-All model.

Dataset Training Set Test Set

PLP-Ave model 79.89% 80.20%
PLP-All model 90.80% 90.90%

In general, for the diverse particles classification results in Figure 5, as compared
with the PLP-Ave model, the PLP-All model effectively improves the classification accu-
racy. These results show that the PLP-All model has a strong generalization ability and
impressive classification performance.

4. Discussion
4.1. Training Details of Different Models

To further show the classification effects of the polarized light pulse processing algo-
rithm, we provide the training details of all the models for different parts. As the number
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of epoch increases, the accuracy and MSE of these different models are evidently differ-
ent, as shown in Figure 6a,b. Of note, when the number of epoch is less than 30, all the
models increase sharply, but fluctuate strongly and show little differences in accuracy
when compared with each other. However, as the number of epoch increases by more
than 40, the PLP-Ave model converges to the stable value at first, but then its accuracy
becomes worse. On the contrary, the accuracy performance of the PLP-All model is better
than the other four models, but converges most slowly. Meanwhile, we can easily see that
the models’ accuracy increases with the sampling number of the polarized light pulse.
Moreover, these models still have a large difference in MSE. The MSE of PLP-All model
reduces the fastest and reaches a lower value of about 0.05. In addition, after the MSE’s
stable value reduces with the sampling number, these training details indicate that the
PLP-All method has better classification ability, as shown in Figure 6. All of these results
emphasize that the PLP-All method can effectively distinguish the CD algae with large
differences in the microstructure. In addition, the PLP-All method can still distinguish
the microalgal samples (DS, CP, PG) with little differences in appearance and structure.
This is related to the effect of polarization information on size, shape, microstructure, and
morphology, in order to extract high-quality data from the polarization pulses.
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4.2. Accuracy of Four Microalgal Samples

Figure 4c shows the average accuracy of five models. Here, as shown in Figure 6,
we provide the accuracy of five models for four microalgal samples. From Figure 7, the
accuracy of the three types of microalgae (DS, CP, PG) increases with the sampling number
of the polarized light pulse, which is consistent with the average accuracy in Figure 4c.
However, the CD is a little different, and its accuracy increases when the sampling number
grows from 4 to 100, and finally reaches the maximum in the PLP-All model. In addition,
the accuracy of PLP-Ave is larger than PLP-4 and PLP-10, which is quite different from
the other models. Therefore, we notice that the accuracy of CD samples is larger than the
other microalgal samples. In addition, the accuracy changes in a different manner than the
models for the four samples.



Sensors 2021, 21, 7344 11 of 15

Sensors 2021, 21, x FOR PEER REVIEW 11 of 15 
 

 

the accuracy of PLP-Ave is larger than PLP-4 and PLP-10, which is quite different from 
the other models. Therefore, we notice that the accuracy of CD samples is larger than the 
other microalgal samples. In addition, the accuracy changes in a different manner than 
the models for the four samples. 

Essentially, the accuracy of models for the microalgal samples is subjected to the sen-
sitivity of the polarization parameters to the physical properties of the microalgae cells. 
The CD cells have flagella and their shape are long oval, which is quite different from the 
other microalgae. This specific microstructure contributes to the higher accuracy of CD at 
all the models than the other microalgae. 

In addition, we should recall that the averaging in the polarized light pulse will re-
duce the noise and then, lead to the accurate measurement of the polarization parameters. 
However, the samplings of the polarized light pulse will increase the information amount, 
which are both positive for the classification results. When we divide the polarized light 
pulse in 4, 10, and 100 times or take all the sampling points of the polarized light pulse 
into account, we suffer more from the noise but increase the information amount of the 
microalgae cells. As a result, the classification accuracy would be the tradeoff between 
these two factors. For CD, averaging plays a more important role at first, thus the accuracy 
of PLP-Ave is larger than PLP-4 and PLP-10, but then the information amount increases 
and dominates the classification. Therefore, the accuracy of PLP-100 and PLP-All is larger 
than PLP-Ave. Moreover, the inherent difference between the microalgal types and the 
tradeoff between the averaging and information amount determine the classification ac-
curacy of the models. 

 
Figure 7. The average accuracy of five polarized light pulses processing methods for signal particles. 

4.3. Origin of the performance of PLP-All Method 
Of note, the PLP-All method suffers the most from the noise of the data, but the clas-

sification accuracy is the best. Evidently, the increase of the data amount is one origin for 
the best performance. In addition, in Figure 4c, it can be seen that increasing the data 
amount will promote the accuracy. However, we would like to emphasize another origin, 
which is possibly more essential than the amount of data. Figure 8 shows part of the data, 
[I, q, u, v], of a polarized light pulse processed by the PLP-Ave and PLP-All methods, 
respectively and their original signal. The red lines are the average values given by the 
PLP-Ave method and the blue lines are the temporal values given by the PLP-All method. 
The temporal values change in the polarized light pulse. Here, we can imagine that if we 
use the average values given by the PLP-Ave method to replace those of the PLP-All 
model, the same data amount is ensured, but the classification effect would be no better 

Figure 7. The average accuracy of five polarized light pulses processing methods for signal particles.

Essentially, the accuracy of models for the microalgal samples is subjected to the
sensitivity of the polarization parameters to the physical properties of the microalgae cells.
The CD cells have flagella and their shape are long oval, which is quite different from the
other microalgae. This specific microstructure contributes to the higher accuracy of CD at
all the models than the other microalgae.

In addition, we should recall that the averaging in the polarized light pulse will
reduce the noise and then, lead to the accurate measurement of the polarization parameters.
However, the samplings of the polarized light pulse will increase the information amount,
which are both positive for the classification results. When we divide the polarized light
pulse in 4, 10, and 100 times or take all the sampling points of the polarized light pulse
into account, we suffer more from the noise but increase the information amount of the
microalgae cells. As a result, the classification accuracy would be the tradeoff between
these two factors. For CD, averaging plays a more important role at first, thus the accuracy
of PLP-Ave is larger than PLP-4 and PLP-10, but then the information amount increases and
dominates the classification. Therefore, the accuracy of PLP-100 and PLP-All is larger than
PLP-Ave. Moreover, the inherent difference between the microalgal types and the tradeoff
between the averaging and information amount determine the classification accuracy of
the models.

4.3. Origin of the Performance of PLP-All Method

Of note, the PLP-All method suffers the most from the noise of the data, but the
classification accuracy is the best. Evidently, the increase of the data amount is one origin
for the best performance. In addition, in Figure 4c, it can be seen that increasing the data
amount will promote the accuracy. However, we would like to emphasize another origin,
which is possibly more essential than the amount of data. Figure 8 shows part of the data,
[I, q, u, v], of a polarized light pulse processed by the PLP-Ave and PLP-All methods,
respectively and their original signal. The red lines are the average values given by the
PLP-Ave method and the blue lines are the temporal values given by the PLP-All method.
The temporal values change in the polarized light pulse. Here, we can imagine that if we
use the average values given by the PLP-Ave method to replace those of the PLP-All model,
the same data amount is ensured, but the classification effect would be no better than the
PLP-Ave model. Therefore, the key origin of the best performance of PLP-All method is
implied by the time-changing values of polarization parameters of the individual particle,
as shown in Figure 8.
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Moreover, Figure 8 shows the original signals in the pulse, which are noisy and not
filtered by the low-pass filter. If we use these original signals to feed the classifier, the
data amount is the same, but the final classification effect is the worst. Although the entire
information of the particle is in the original signal, the noises destroy the classification
ability. The envelope of the pulse gained by the low-pass filtering in Figures 2 and 8
possibly loses some particle information, but it reduces the noise, which indicates that the
PLP-All method takes advantage of the denoised and high-quality data.

For each suspended particle crossing the scattering volume, the transient location and
orientation change with the time, according to the setup’s optical system, which leads to
the changes of their scattered polarization states and parameters. Note that the polarization
parameters are sensitive to the structures and orientation of the particles. Therefore, they
can well characterize this essential information, and finally provide high-quality data. The
dense sampling of each pulse records these transient states of the individual particle, which
enhances the information collection. In summary, the PLP-All method takes advantage of
the polarization parameters and dense sampling, and then achieves the best performance.

In addition, compared with the existing classification methods of suspended par-
ticles, the method proposed in this paper has the advantage of not requiring a sample
pretreatment and the ability of detecting the rich polarization information of the individual
particles. However, the time efficiency needs to be enhanced in the next step. Moreover,
beyond the current Stokes vector measurement, the Muller matrix measurement of the
individually suspended particles may be added to the future worklist.

4.4. Comparative Different Machine Learning Algorithms

To further confirm that the different polarized light pulse methods for particle classifi-
cation depend little on the machine learning algorithm, we additionally built the support
vector machine (SVM) algorithm. SVM was used to classify the four types of microalgae,
DS, CP, CD, and PG for different polarized light pulse process methods and the results are
shown in Table 4. A comparison of Tables 1 and 4 showed that the classification accuracy
of the PLP-Ave model using the BPNN algorithm was larger by about 6% than the SVM
algorithm. Similarly, the accuracy of PLP-All model was larger by about 3% than the SVM
algorithm. This indicates that the BPNN algorithm was more powerful in extracting the
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polarization parameter features for achieving higher accuracy than the SVM algorithm. In
addition, we would like to emphasize that the different machine learning algorithms led to
the similarly excellent performance of PLP-All method for particle classification.

Table 4. Accuracy of PLP-Ave and PLP-All models using the SVM algorithm.

Dataset Training Set Test Set

PLP-Ave model 74.39% 74.38%
PLP-All model 94.71% 94.57%

5. Conclusions

In this paper, we proposed an optimization method for the classification of suspended
particles in seawater by dense sampling of polarized light pulses. We built an experimental
setup to measure the suspended particles and collect the polarized light pulses. Then, we
investigated the classification results of the four types of microalgae using different dense
sampling methods. For each method, we sampled the pulse with a certain number and
then built the specific model to classify the four types of microalgae. The results showed
that the classification accuracy increased with the sampling numbers. In addition, the
PLP-All model achieved the best classification performance. Moreover, we classified the
four types of microalgae cells in the mixed suspensions and the results indicated that
the PLP-All model was feasible. Furthermore, we conducted eight types of suspended
particles including microalgae, microplastics, and sediment, and the classification results
showed that the PLP-All model had a good generalization ability. In the discussion part,
the classification accuracy increased with the sampling number, but the MSE decreased.
In addition, for each type of microalgae, the PLP-All model was still the best and the
dense sampling improved the classification performance. Finally, the best performance of
the PLP-All model can be attributed to taking advantage of the high-quality polarization
parameters and dense sampling. In summary, the method based on dense sampling of
polarized light pulses had an excellent ability of classifying the suspended particles. It
can be expected that the underwater polarization scattering instrument equipped with
dense sampling can effectively and accurately help in obtaining the information of particle
compositions in seawater. Furthermore, the dense sampling idea can be used in the future
development of Muller matrix polarimetry of the suspended particles.
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