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Abstract. Within VECMAtk platform we perform Uncertainty Quan-
tification (UQ) for multiscale fusion plasmas simulations. The goal of
VECMAtk is to enable modular and automated tools for a wide range of
applications to archive robust and actionable results. Our aim in the cur-
rent paper is to incorporate suitable features to build UQ workflow over
the existing fusion codes and to tackle simulations on high performance
parallel computers.
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1 Introduction

Thermonuclear fusion can potentially provide a carbon free and safe solution to
the provision of base load electricity. Heat and particle transport will play the
key roles in determining the size and efficiency of future fusion power reactor, so
understanding their mechanisms is an important milestone towards the realiza-
tion of fusion-based electricity. Our present understanding is that turbulence at
small space and time scales is responsible for much of this transport, but the pro-
files of temperature and density evolve over much larger space and time scales.
To study these phenomena, multiscale and multiphysics applications have been
developed throughout the years. Notable efforts in Europe lean toward imple-
menting such applications by following a workflow approach, in which several
single-scale (or single-physics) codes are coupled together [1,2].

When one element in such a workflow is a turbulence code, whose outputs are
inherently noisy due to the chaotic nature of the turbulence (intrinsic uncertain-
ties), or if input data such as external sources contain uncertainties (extrinsic),
these need to be propagated through different models of the workflow. The goal,
therefore, is to produce temperature and density profiles, along with their con-
fidence intervals. This information will then allow for an improved validation of
the simulation results against the experimental measurements that come with
error bars.
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Uncertainty quantification in the existing fusion workflow is implemented
with the VECMA open source toolkit1, which provides tools to facilitate the
verification, validation and uncertainty quantification (VVUQ) process in mul-
tiscale, multiphysics applications [3]. So far we have integrated two elements
from this toolkit: the EasyVVUQ library [4] to incorporate uncertainty quan-
tification (UQ) and sensitivity analysis (SA) in a non-intrusive manner, and the
QCG Pilot-Job middleware [5] to execute efficiently the large number of tasks
or samples prepared by EasyVVUQ.

In this work we focus on the different sampling methods used to quantify
the uncertainties, their results and performance for two different black box use
cases: on the entire workflow for extrinsic uncertainties coming from the heat-
ing source terms and boundary conditions for temperature profiles (on electron
and ions), and on the turbulence model for uncertain ions and electron tem-
peratures values and gradients. This paper is organized as follows. After a brief
overview on the background theory for uncertainty quantification, we present
the various sampling methods used in our application that are also available
in the EasyVVUQ. We then describe our two use cases together with UQ and
SA results for the method that demonstrates the best performance. Finally, we
conclude with future works related to more intrusive approaches.

2 Theory Overview

We consider a numerical model M that has a number d of uncertain input
parameters Q1, Q2, ..., Qd, and gives the output Y :

Y = M(x,Q). (1)

Here, Q is the vector [Q1, Q2, ..., Qd] and x is a space variable. The model can
also depends on other variables (e.g. time) and on additional but invariant input
parameters. In this study we focus on the uncertain parameters (Qi)d

i=1 and how
the uncertainty is propagated through the model M. That way we can quantify
the uncertainty in the output Y and identify the relative contribution of each
Qi into this uncertain result.

First, we assume that the uncertain parameters are statistically independent
components, and each one has an univariate probability density function fQi

,
hence the vector Q can be described by the joint probability density function:

fQ =
d∏

i=1

fQi
. (2)

Thereafter, we seek relevant properties of the output Y that characterize the
uncertainty propagation and where possible, we build an approximation of the
unknown output distribution fY .

1 www.vecma-toolkit.eu.

http://www.vecma-toolkit.eu
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2.1 Statistical Moments

The principal aim of UQ is to describe the output distribution fY through useful
statistics [6,7]. Several metrics are based on statistical moments, and among
these the most commonly used are the mean E and the variance V:

E[Y ] =
∫

ΩY

yfY (y)dy, (3)

V[Y ] =
∫

ΩY

(y − E[Y ])2fY (y)dy. (4)

Here, ΩY is the output space.
The mean indicates the expected value of the model output Y and the vari-

ance measures how much the output varies around the mean. In general, instead
of using the variance, we take its square root to obtain the standard deviation σ:

σ[Y ] =
√

V[Y ]. (5)

The advantage of using σ instead of the variance is that, like the mean, σ has
the same units as Y and that makes it easier to interpret.

Another useful measure for UQ is percentiles which can be used to define
confidence intervals [6].

2.2 Sensitivity Analysis

The principal aim of SA is to evaluate the contribution of different inputs param-
eters (Qi)d

i=1 to the uncertainty in output Y . Among the various sensitivity met-
rics that exist, we choose in this study the variance-based sensitivity analysis by
computing the Sobol indices [8,9]. It is the most commonly used metric as it
allows to measure sensitivity across the whole input space and can cope with
nonlinear outputs.

There are several orders of Sobol indices. Here, we select two of the most-
used indices in UQ: the first-order Sobol index Si and the total order index STi.
They measure the direct effect of the parameter Qi on the variance of Y and the
interactions between Qi and other parameters, respectively:

Si =
V[E[Y |Qi]]

V[Y ]
, (6)

STi = 1 − V[E[Y |Q−i]]
V[Y ]

. (7)

We denote by E[Y |Qi] the conditional mean, which represents the expected value
of Y for a fixed value of Qi, and by Q−i all uncertain parameters except Qi.

The first-order Sobol index, also known as the main effect index, cannot
exceed one, and if it is close to zero we can claim that its input parameter
have a small or no effect on the output. The higher the index value is, the more
influence the associated parameter has on the resulting uncertainty. For the total
Sobol indices, their sum is equal to or greater than one, and it is only equal to
one if there is no interaction between the parameters [10].
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3 Sampling Approaches

Sampling is the usual computational method used to estimate uncertainty mea-
sures, statistical moments and sensitivity as they have been described in the
previous section. We can choose between several widely used sampling meth-
ods for a non-intrusive (or black box) approach: Quasi-Monte Carlo (QMC) [11]
or Polynomial Chaos Expansion (PCE) [12]. This choice can be motivated by
the numerical cost of such estimation, which is proportional to the number of
samples and mainly depends on the number of uncertain input parameters.

3.1 Quasi-Monte Carlo

Monte Carlo is one of the most widespread method due to its simplicity and ease
of implementation. The basic idea of the method is a purely random selection
of sample evaluations without assumptions about the model. The number of
samples is independent of the number of uncertain parameters, but a very high
number is required in order to obtain reliable statistics, thus UQ estimations
can rapidly become computationally expensive.

QMC methods are different approaches that aim at improving Monte Carlo
method. They are based on variance-reduction techniques to reduce the num-
ber of model evaluations needed [11,13]. In this work, instead of random selec-
tion of samples from fQ, we use Sobol sequences which have a low-discrepancy
sequence [8]. Using Ns samples to evaluate the model M, which gives the output
results Y = [Y1, Y2, ..., YNs

], the mean and the variance can approximated by:

E[Y ] ≈ 1
Ns

Ns∑

i=1

Yi, (8)

V[Y ] ≈ 1
Ns − 1

Ns∑

i=1

(Yi − E[Y ])2. (9)

For the SA, we use Saltelli’s procedure [9,14]. It is also based on Sobol sequences
and to obtain a full set of main and total sensitivity indices, it is sufficient to
take:

Ns =
(d + 2)N

2
, (10)

where N is the number of samples required to get a given accuracy.

3.2 Polynomial Chaos Expansion

The PCE method is one of most competitive alternatives to (Quasi-)Random
methods. The output Y is expanded into a series of orthogonal polynomials
(Pj)j of degree p, which are functions of the input parameters Q and are chosen
such that they are orthogonal to the input distributions [7,15–17]:

Y ≈ Ŷ (Q) =
Np∑

j=1

cjPj(Q). (11)
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Here, Np is the number of expansion factors, which depends on both the degree
p and the number of the uncertain parameters d, and is given by the binomial
coefficient:

Np =
(

d + p

d

)
; (12)

And (cj)j are the expansion coefficients, which can be estimated using tensor
product quadrature or linear regression. These two methods that will be detailed
later in this section.

By exploiting the properties of the orthogonal polynomials, the expectation
value and the variance for the output model are:

E[Y ] ≈ c1, (13)

V[Y ] ≈
Np∑

j=2

γjcj (14)

Here, γj is a normalization factor and it is defined as: γj = E[P 2
j (Q)].

For the sensitivity analysis, the first and total-order Sobol indices can also be
computed using Sobol’s variance decomposition and by exploiting the polynomial
chaos expansion properties [16,18].

The estimation of the expansion coefficients is the most important step in the
PCE construction. As mentioned before, we use two of the most common methods:
spectral projection with tensor product quadrature and linear regression.

Spectral Projection. In this PCE variant, each expansion coefficient cj is esti-
mated by projecting the solution onto the output space ΩY . This is analogous to
the calculation of Fourier coefficients in the approximation of periodic function.
By exploiting the orthogonality of the polynomial, Eq. 11 yields:

cj =
1

Hj

∫

ΩY

Y (q)Pj(q)fQ(q)dq, (15)

where Hj is a normalization factor associated with the polynomial Pj .
To compute the integral from Eq. 15, we use quadrature generators with

weights (ωk)k and nodes (qk)k, and then we evaluate the outputs at those nodes.
As the integrands are smooth polynomials, cj can be approximated with a good
accuracy by the expression:

cj ≈ 1
Hj

Ns∑

k=1

Y (qk)Pj(qk)ωk. (16)

The number of samples Ns in this case is determined by the quadrature rule.
For our applications, we use tensored quadrature with Gaussian schemes and in
this case Ns is:

Ns = (p + 2)d. (17)
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As the required number of samples increases exponentially with the number of
uncertain parameters, this method is beneficial only for a relatively small number
of parameters.

Regression. This variant, also known as point collocation, uses a single linear
least square approximation of the form:

⎡

⎢⎢⎢⎣

P1(q1) P2(q1) . . . PNp
(q1)

P1(q2) P2(q2) . . . PNp
(q2)

...
...

. . .
...

P1(qNs
) P2(qNs

) . . . PNp
(qNs

)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

c1
c2
...

cNp

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

Y (q1)
Y (q2)

...
Y (qNs

)

⎤

⎥⎥⎥⎦ (18)

The set of linear equations above results from the expansion of Eq. 11 at a set
of collocation nodes (qk)Ns

k=1. To get stable nodes, we use pseudo-random sam-
ples generated from the input distribution fQ with specific rules as indicated in
Chaospy [19]. To avoid an under-determined system, we should choose a number
of samples such that Ns ≥ Np. According to [20], it is recommended that we use
at least 2Np samples. Therefore, we set:

Ns = 2
(p + d)!

p!d!
. (19)

In this case, we obtain a good least square approximation which becomes sig-
nificantly more affordable than the full tensor product quadrature used in the
spectral projection.

3.3 Implementation and Choice

All these sampling methods and variants are available, among others, in the
EasyVVUQ2 library; it provides a simple decomposition of UQ and SA as generic
steps (sampling, encoder, decoder, collation, analysis) in a modular workflow
approach. Sampling and analysis methods are mainly based on existing Python
packages such as Chaospy [19], which provides probability distributions, statis-
tics, quadrature generators and SA for PCE, and SALib [21] for SA with the
QMC method. This decomposition allows users to exchange sampling methods
easily without impacting the overall structure of the application.

In terms of sample sizes, we can use PCE with spectral projection as long
as the number of uncertain parameters is low, typically smaller than 6. For a
moderate number of parameters, PCE with regression becomes advantageous,
and for a high number of parameters, quasi-Monte Carlo is the only method
that is applicable on current computing platforms. In terms of accuracy, for
smooth problems, PCE with spectral projection is expected to be more efficient
compared with the regression variant or QMC. A more in-depth analysis and
comparison between these methods and others can be found in [16,19,20].

2 github.com/UCL-CCS/EasyVVUQ.

https://github.com/UCL-CCS/EasyVVUQ
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4 Numerical Applications and Results

To perform UQ and SA on any multiscale application that couples single-scale
models as a workflow, various level of intrusiveness can be considered. In a non-
intrusive approach, either the entire workflow is treated as a black box, or only
one single-scale model is being studied and treated as a black box. In a semi-
intrusive approach, each single scale code is placed inside a black box, and UQ
and SA are performed on the entire workflow.

In this section, we will present the two use cases for non-intrusive approach
with the fusion multiscale application, and discuss their results as well as some
performance considerations.

4.1 Multiscale Fusion Workflow as a Black Box

The multiscale fusion workflow3 was created to study the effects of turbulence
happening at the micro time and space scales on the evolution of temperature
profiles at the macro level of the fusion device. Currently, the workflow combines
three main models as shown in Fig. 1: an equilibrium code that describes the
plasma geometry, a turbulence code that approximates transport coefficient,
and a transport solver that evolves temperature profiles at the macro time scale.

When considering the entire workflow as a black box, we use a simpler ana-
lytical model for the turbulence to reduce drastically the computational cost of
the simulation. The extrinsic uncertainties we consider are:

– Boundary conditions defining the electron temperature at the plasma edge.
– Simplified heating sources, for which electron heating power Gaussian distri-

butions are characterized by their amplitude, width, and position.

Fig. 1. Sketch of the targeted fusion workflow diagram

We select the PCE method, described in Sect. 3, and assume that each of the
uncertain parameters has a normal distribution in the range of ±20% around its
original value. The workflow runs within a black-box for multiple time iterations

3 github.com/vecma-ipp/MFW.

https://github.com/vecma-ipp/MFW
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Fig. 2. Descriptive statistics and sensitivity analysis for electron and ion temperatures:
on the left hand-side, the expected value and standard deviation are shown with respect
to the normalized toroidal flux coordinate ρtor, and on the right hand-side the first-
order Sobol indices are plotted for each of the uncertain parameters.

until the plasma reaches steady state [2,22]. The quantities of interest are the
outputs Te and Ti, the electron and ion temperatures respectively, coming from
the macroscopic transport model. The outcome from the EasyVVUQ analysis is
plotted in Fig. 2.

The standard deviation indicates that the ion temperature varies weakly since
the uncertainties are carried by the electrons sources. The sensitivity analysis
reveals that the variance in the electron and ion temperatures is mainly due to
the uncertainty from three parameters: the position and amplitude parameters of
the sources at core region of the plasma (ρtor = 0) and, as expected, boundary
condition parameter at the edge region (ρtor = 1). The parameter width has
no direct effect on the variance of the two quantities, so according to [23], this
parameter can be neglected and then the number of samples can be reduced
while keeping the same variance behavior.

We did the same simulation using uncertain parameters from heating sources
and temperature boundary conditions for ions, and both electrons and ions. In
all cases the UQ and SA results are qualitatively the same.
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This use case was performed using both PCE variants: spectral projection
and regression. They required 1296 and 140 samples, respectively, because we
have 4 uncertain parameters and use quadratic polynomials. The results are
qualitatively the same, and the differences between output means and variances
of each method are at the order of O(10−6).

4.2 3D Gyrofluid Turbulence as a Black Box

In the workflow, given a plasma state and the geometry, the turbulence code
provides the transport coefficients by computing the turbulent fluxes of particles
and energy. Due to the chaotic nature of the turbulence model, these outputs are
inherently noisy. And running such stochastic model is computationally expen-
sive. Therefore, we begin the UQ study by isolating a 3D gyrofluid turbulence
model that computes heat and particle fluxes [24] and consider one flux tube.
We vary the electron and ion temperatures, Te and Ti, and their respective
gradients, ∇Te and ∇Ti, at the position of the flux tube.

We introduce four uncertain input parameters into the black box. Similar to
the previous study, we assume that each parameter has a normal distribution in
the range of ±20% around its original value. Finally, we perform the sensitivity
analysis to explore how these parameters affect the resulting heat fluxes that
determine the transport coefficients. It will also allow us to reduce the number
of uncertain inputs that have negligible effect on the output variance [16,25].

Fig. 3. First-order Sobol indices electron and ion heat fluxes.

As indicated in Fig. 3, the variance in the electrons and ion heat fluxes are
mainly due to the uncertainty in temperature gradients. However, we should be
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cautious about the impact coming from temperature uncertainties, especially Ti
on ion heat flux.

In this case, we also use PCE method with spectral projection and with
regression. As in the previous case, we also set the polynomial order to 4 and
have 4 uncertain parameters, hence, the number of samples required are 1296 and
140, respectively. The parallel execution of the samples, whether the black box
contains serial or parallel codes, is done via QCG PilotJob [5]. This middleware
considers each sample as an independent job, but schedule them dynamically
through a single batch allocation. For example, using 32 cores for each sample,
we notice that the time to run UQ simulation with regression is 10 times less
than the spectral projection.

5 Conclusion

In this paper, we presented results from the introduction of uncertainty quantifi-
cation and sensitivity analysis methods in our multiscale fusion workflow appli-
cation. We focused so far on two black box use cases: the entire coupled work-
flow with simple analytical model for turbulence, and singled-out 3D gyrofluid
turbulence model. Integration of the non-intrusive methods was done with the
EasyVVUQ library and the parallel execution of samples was performed in a
single batch allocation with QCG-PilotJob. Both tools, available as part of the
VECMA toolkit and in conjunction with the coupled workflow nature of our
application, have proven to be simple to use and to allow a large variety of
experiments with different methods and models.

A next step will be to use quantified uncertainties in order to improve the
validation of our simulation results against experimental measurements. We also
want to explore semi-intrusive methods, by coupling black boxes with propa-
gation of uncertainties or by replacing the expensive 3D model with a cheap
surrogate, in order to reduce the computational cost for quantifying the uncer-
tainties such as it can be performed routinely in our simulation. Other optimiza-
tions (e.g. parallelization of the sampling step with a closer EasyVVUQ–QCG-
PilotJob integration) and scalability tests are being performed and will be the
subject of a more in-depth performance study.
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