
 

 
C

ur
re

nt
 P

ed
ia

tr
ic

 R
ev

ie
w

s
���"��:=><4<?@<
����"��:A>=4@<<@

�������
����	
�

Send Orders for Reprints to reprints@benthamscience.ae 212

 Current Pediatric Reviews, 2018, 14, 212-218

REVIEW ARTICLE 

Neonatal and Long-Term Consequences of Fetal Growth Restriction 

 

Marina Colella*, Alice Frérot, Aline Rideau Batista Novais and Olivier Baud 

University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-
Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France 

 

A R T I C L E  H I S T O R Y 

 
 
Received: January 29, 2018 
Revised: May 22, 2018 
Accepted: May 29, 2018 
 
 
DOI: 
10.2174/1573396314666180712114531 
 

Abstract: Background: Fetal Growth Restriction (FGR) is one of the most common noxious ante-
natal conditions in humans, inducing a substantial proportion of preterm delivery and leading to a 
significant increase in perinatal mortality, neurological handicaps and chronic diseases in adult-
hood. This review summarizes the current knowledge about the postnatal consequences of FGR, 
with a particular emphasis on the long-term consequences on respiratory, cardiovascular and neuro-
logical structures and functions. 

Result and Conclusion: FGR represents a global health challenge, and efforts are urgently needed 
to improve our understanding of the critical factors leading to FGR and subsequent insults to the 
developing organs. 
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1. INTRODUCTION: FETAL GROWTH RESTRIC-
TION (FGR) IS A MAJOR GLOBAL HEALTH CON-

CERN 

 Fetal Growth Restriction (FGR) refers to a condition in 
which the fetus is unable to achieve its genetically deter-
mined potential size, responsible of increased rates of still-
birth, neonatal mortality and morbidity [1]. Multiple terms 
have been used to define it, as intrauterine growth restric-
tion/retardation or small for gestational age (SGA, defined as 
a birth weight less then the 10th centile in the population of 
reference but not necesseraly associated with abnormal 
growth kinetic), generating confusion in terms of incidence 
and diagnosis. Recently, to distinguish between constitution-
ally small babies (SGA) and those with growth restriction, 
FGR has been proposed as a standard definition in scientific 
literature [2].  

 Globally, FGR affects nearly 10% of all pregnancies [2-
5]. In Europe, the incidence of low birth weight infants is 
between 3.0 % (Island) and 8.8 % (Cyprus) [6]. In France, 
perinatal mortality and complications and long-term handi-
cap due to FGR are responsible for costs estimated to reach 
about 235M� for just the first year of care [7]. This is a pub-
lic health challenge in both industrialized and developing 
countries [4]. Indeed, of the 135 million children born in 
low/middle income countries in 2010, an estimated 29.7 mil-
lion were born at term following FGR and 2.8 million were 
born preterm and growth restricted [7].  
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 Currently the FGR rate is the highest, in over 20 years 
and is likely to rise further due to the increasing number of 
infertility treatments, multiple pregnancies, professional 
workload, older motherhood and exposure to FGR-inducing 
agents such as stress, nicotine, malnutrition [8, 9]. Maternal 
malnutrition during pregnancy is a major determinant mim-
icking placental insufficiency and negatively affecting feto-
placental growth. Given the fact that the incidence of mater-
nal malnutrition is higher than 10% in developing countries 
and accounts for a significant proportion of FGR in industri-
alized countries as well, it is crucial to better delineate its 
effect on genomic regulation, brain maturation and function.  

 The consequences of FGR are influenced by its severity, 
the gestational age at the onset (defined as early, i.e. <32 
weeks gestation or late, i.e. � 32 weeks gestation) [2], and 
the etiologies implicated (genetic, placental, maternal and 
fetal factors). Moreover, FGR is related to preterm delivery, 
leading to an increased risk of disability in surviving infants 
[1]. Thus, early diagnosis of FGR is very important to estab-
lish an adequate surveillance of the fetal status, minimizing 
risks of premature birth and intrauterine hypoxia. 

 This review examines the impact of FGR on the long-
term function of developing organs, both in animal models 
and human cohorts. 

2. FGR AND THE DEVELOPING LUNG 

 Impaired fetal nutrition and oxygen deprivation, both 
usually related to FGR, can modify the normal lung devel-
opment at any stage (from embryonic, pseudoglandular, ca-
nalicular, saccular to alveolar), making the lung more vul-
nerable to postnatal insults [10]. 

 1875-6336/18 $58.00+.00  © 2018 Bentham Science Publishers 
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 In the past, infants born following FGR were considered 
to have more mature lungs, as a result of intrauterine exposi-
tion to higher levels of glucocorticoids. Conversely, cinical 
studies have shown that premature SGA infants are at higher 
risk for developing both neonatal respiratory distress and 
Bronchopulmonary Dysplasia (BPD) when compared with 
premature infants with a birth weight Appropriate for Gesta-
tional Age (AGA) [11, 12]. Nowadays, FGR is recognized as 
a risk factor for BPD and its long-term consequences, as 
asthma and bronchiolitis [13-15]. Recent studies have identi-
fied an association between FGR and the development of 
wheezing at the age of 3 years [16], independently to gesta-
tional age at birth. Moreover, infants born with a FGR or a 
low birth weight may develop a lower lung function in the 
spirometry analysis performed at school age [17-19]. 

 Different animal models have been developed to identify 
the mechanisms implicated in the origin and evolution of 
respiratory pathology in FGR. Poor fetal nutrition and oxy-
genation can alterate surfactant quantity and activity [20], 
alveolar cell proliferation and alveolar walls and air-blood 
barriers [21]. In preclinical studies, sheep and rats born fol-
lowing FGR show smaller lungs, with no evidence of postna-
tal catch-up [22]. Adult animals exposed to FGR have fewer 
[23] and larger alveoli, developing emphysema [22]. Maritz 
and collaborators reported an accumulation of extracellular 
matrix leading to an increased thickness of both septa and 
air-blood barrier in the sheep at 8 weeks and 2 years of age 
[24]. FGR is also associated with atypical elastin production, 
and consequent derangement of the normal architecture of 
the lung [25, 26]. A dysregulation of gene’s expression in-
volving cell growth and differentiation, as IGF-1, PPAR-� 
[25], and p53 [27], is responsible for increased thickness and 
cellularity of the pulmonary parenchyma. Furthermore, hy-
poxia FGR-related, affecting alveolar endothelium and 
VEGF pathway, could play a role in the pulmonary dysfunc-
tions, as observed in FGR animal models [28, 29]  

 From these preclinical studies, promising therapeutic 
strategies have recently emerged. Maternal dietary supple-
mentation in Docosahexaenoic Acid (DHA) can restore nor-
mal quantity of the enzyme SETD-8, which regulates cell 
proliferation and gene function, modifying lung development 
in rats [30].  

3. FGR, SYSTEMIC INFLAMMATION AND IMMU-
NITY 

 Recent studies have highlighted the effect of FGR on 
development and function of the immune system in neonates 
[31, 32]. Infants born following FGR demonstrate an in-
creased vulnerability to infections [33], especially to late-
onset sepsis [34, 35].  

 In addition to the effects on platelet count (thrombocy-
topenia) and red blood cells (increased number of nucleated 
red blood cells and polycythemia), FGR is associated with 
significant changes in white blood cells counts and immune 
response. Numbers of B and T-cells, neutrophils and levels 
of IgG are lower in the cord blood or thymus of FGR infants 
[36-38] Infants with FGR have lower numbers of T-regs 
(CD3+, CD4+, CD25high, and FoxP3high) and fewer func-
tional T-regs compared to AGA infants [39] and they present 
as well some changes in thymus size and histopathology [31, 

40]. The importance of T-regs as effectors of self-tolerance 
and regulators of immune activation is well characterized for 
primary diseases associated with autoimmunity and allergy. 
This may have implications for specific postnatal complica-
tions, including necrotizing enterocolitis, which dispropor-
tionately affect premature and FGR infants [41]. 

 Some studies have focused attention on the dysregulation 
of immune cells response in FGR neonates. In whole blood 
cell cultures from FGR infants, after stimulation using 
lipopolysaccharide, the concentrations of IL-6 and IL-10 are 
significantly lower [36]. Furthermore, altered cytokine pro-
files have been reported in newborn serum [42] and antena-
tally in placenta and fetus [43].  

 Similar findings have been reported in preclinical studies. 
FGR piglets present decreased T and B lymphocytes counts 
and proliferation in peripheral blood [44] and lower cytokine 
concentrations (IFN-�, IL-4, IL-10, IL-1�, and IL-8) [45].  

 Yet conflicting data but increasing evidence support the 
hypothesis that FGR is a pro-inflammatory status, similar to 
preeclampsia [46, 47], that may induce several impairments 
of the developing organs. Indeed, while there is no evidence 
of increased cytokines levels soon after birth, severely 
growth restricted preterm neonates demonstrate a significant 
rise in the concentrations of pro-inflammatory circulating 
cytokines during the second postnatal week [48]. In umbili-
cal cord serum from FGR neonates at birth, IFN-� concentra-
tion is increased and it has been proposed as a neonatal 
marker of FGR [49].  

 A recent randomised trial has tested GM-CSF administra-
tion to infants born following FGR; although an increase of 
neutrophil counts, the authors report no effect on other short 
and long-term outcomes, in particular, no benefit on the in-
cidence of secondary sepsis [50].  

 Further research is required to elucidate the physiopa-
thological alterations implicated in the immunity and in-
flammation response in FGR infants. Whether the quantita-
tive deficiency in innate immunity plays a role in adverse 
outcomes needs to be investigated in future trials.  

4. FGR AND CARDIOVASCULAR AND METABOLIC 
FUNCTIONS  

 The oxygen and nutrients deprivation induced by placen-
tal insufficiency may result in several metabolic alterations 
in the neonatal period, like hypo- or hyperglycaemia, 
hypocalcaemia, jaundice. Large epidemiological studies have 
highlighted the association between FGR and risk of type 2 
diabetes mellitus, obesity, hypertension, dyslipidaemia, and 
insulin resistance (the metabolic syndrome), that ultimately 
lead to the premature development of cardiovascular diseases 
[51, 52]. 

 FGR is responsible for changes in the structure and the 
physiology of developing organs, with adverse long-term 
consequences. This concept of fetal programming [51, 53, 
54] is recognized to be the link between in utero environ-
ment and chronic diseases in adulthood. The theory of the 
developmental origin of health and disease (DoHaD) is hy-
pothesized to relate the permanent epigenetic modifications 
induced by FGR (methylation, acetylation of DNA, histones 
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modification) to the effects on gene expression in adulthood 
[55-58]. The potential adverse outcomes associated with this 
concept include circulatory and metabolic adaptations to 
spare the developing brain, short stature in children and 
adults, premature adrenarche, and the development of 
polycystic ovarian syndrome.  

 The reduction of �-cell mass, present in a rodent model 
of FGR, is correlated to an increased risk of diabetes mellitus 
[59]. These FGR models show a down-regulation of PDX-1 
expression (a transcription factor involved in pancreatic islet 
development), as a result of specific alterations in DNA 
methylation and histone acetylation [60]. Also in humans, 
changes in target specific genes implicated in growth or 
metabolic phenotypes and genome-wide approach both dem-
onstrated the deep impact of FGR on epigenetics [61, 62]. 

 The risk of cardiovascular diseases observed following 
FGR has been related not only to the higher incidence of 
metabolic syndrome, but also to specific cardiovascular 
complications and dysfunction. Indeed, FGR has been asso-
ciated to increased blood pression and heart rate [63, 64] and 
early atherosclerosis [65, 66]. The abnormal aortic and ca-
rotid wall thickness detected in FGR fetuses and infants 
could be the result of vascular remodelling beginning before 
birth, which may contribute to the occurrence of cardiac dys-
function during adulthood [67, 68]. The pathogenesis is still 
unclear, but animal models of FGR have demonstrated mor-
phological changes in myocardium and vascular wall, with 
consequent myocardial dysfunction, vascular remodeling and 
fibrosis [69, 70].  

 Furthermore, the renal anatomy and function are usually 
impaired by FGR, as shown both in animal models, which 
present a reduced number of nephrons [71] and in clinical 
studies [72], with a greater risk of hypertension and progres-
sive renal failure [73]. 

5. FGR AND THE DEVELOPING BRAIN 

 FGR severely affects the fetal brain development and 
brain functions and recent advances have highlighted this 
effect [74, 75]. The fetal brain is particularly vulnerable to 
the effects of abnormal fetal growth, that is associated to 
neurological disorders including cerebral palsy, epilepsy, 
learning and attention difficulties, neurobehavioral disabili-
ties, and other cognitive impairments [76-78]. 

5.1. FGR and Neurodevelopmental Impairments 

 Babies born at 32-42 Gestational Weeks (GW) with a 
birth weight for gestational age below the 10th percentile are 
4-6 times more likely to have cerebral palsy than children 
with a birth weight in a reference band between the 25th and 
75th percentile [1]. A similar pattern is observed in those 
with unilateral or bilateral spasticity, as well as those with a 
dyskinetic or ataxic disability. In babies born at less than 32 
GW, the relationship between birth weight and risk of cere-
bral palsy is less clear. Cerebral palsy is reported up to a 30-
fold increased when FGR is associated with major birth de-
fect [79, 80]. This is consistent with magnetic resonance 
imaging (MRI) studies suggesting that approximately 75% 
of brain lesions associated with cerebral palsy occur in the 
early or middle part of the third trimester, time period usu-

ally affected in case of FGR and adverse intrauterine envi-
ronment [81]. Moreover, several follow-up studies at school-
aged reveal a significant association between FGR and neu-
rodevelopmental impairments, from minor cognitive defi-
ciencies to neuropsychological dysfunctions [76, 80, 82]. 
Comparison within monozygotic twin pairs at school age 
showed that the FGR twin is at increased risk for cognitive 
deficiencies, with reduced verbal IQ when compared to the 
other twin [83].  

 The neurodevelopmental consequences of FGR are re-
lated to the severity of FGR, when it began during prenatal 
period and the gestational age at delivery [84].  

 Constitent with findings reported in humans, rats with 
severe FGR exhibit white matter damage that persist to 
adulthood [85] while moderate FGR is associated with only 
transient hypomyelination, mild microglial activation and 
astrogliosis [86], with behavioural deficits noted at 8-weeks 
of age [87].  

 Preterm birth is likely to exacerbate the neurodevelop-
mental impairment associated with FGR [76, 88]. This is 
supported by the French cohort study EPIPAGE, showing 
that neurocognitive deficits and behavioural disorders in 
children born between 29 and 32 GW are significantly 
higher in infants with FGR, even mild, compared to infants 
born with normal birth weight [80]. Therefore, low birth 
weight has been recently proposed as a factor able to better 
predict the occurrence of cerebral palsy in moderate to late 
premature infants [89].  

5.2. FGR and Cerebral Blood Flow 

 During prenatal chronic hypoxia, fetal blood flow is se-
lectively redirected to the brain and to maximize oxygen and 
nutrient supply [90, 91]. Even if brain sparing mechanism 
has been initially considered protective, several studies dem-
onstrate that fetuses with brain sparing, diagnosed by prena-
tal ultrasound, have worse neurodevelopmental outcomes 
compared to FGR infants without brain sparing [78, 92-94]. 
In case of blood flow redistribution, improved brain perfu-
sion is not uniform, preferentially directed in favour of basal 
ganglia. Other brain areas, including frontal lobe, can there-
fore be severely altered, leading to neurobehavioral disability 
[95] .  

5.3. Brain Injury Induced by FGR 

 Brain injury following FGR is consequent to a combina-
tion of grey and white matter damage as revealed by several 
clinical imaging studies [96, 97]. 

 Cortical grey matter volume in FGR infants is found re-
duced by 28% compared to equivalent healthy term-born 
infants [88]. A delayed cortical development and altered 
cortical gyrification is described in FGR infants soon after 
birth [98], and found at least up to 1 year of age with signifi-
cant developmental disabilities [97]. Post-mortem analysis 
has detected a decreasing neuronal cells density in the devel-
oping cortex [99]. These findings are consistent with several 
preclinical studies [85-87, 100-105]. Disturbance in cell pro-
liferation and migration of neurons and final neuronal loss 
are found also in the hippocampus [105, 106]. Interestingly, 
these morphological changes observed in the hippocampus 
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and in the septo-hippocampal circuit may be responsible for 
impairment in hippocampal-related behaviours, such as 
learning and memory [107].  

 Furthermore, impaired myelination and abnormal con-
nectivity are recognized as common features following FGR 
in (i) different animal models of placental vascular disease 
[105, 108], (ii) in a rat model of maternal undernutrition 
[109], and (iii) in human preterm infants with FGR [110, 
111]. 

5.4. Mechanisms Underlining FGR-associated Brain In-
jury 

 Mechanisms involved in FGR-related brain damages 
have been explored in preclinical studies focused on excito-
toxicity, oxidative stress, necrotic and apoptotic degeneration 
and neuroinflammation [75, 90]. Hypoxia and undernutrition 
activate a cascade of cellular and biochemical events that 
lead to immediate or delayed cell death, with potential ef-
fects on immature neurons and neuroglia [90, 91]. Rodent 
models of FGR have revealed glial reactions including in-
creased microglial activation and increased density of reac-
tive astrocytes [103, 112]. Neuroinflammation is a key factor 
in the disruption of oligodendroglial maturation [113] and 
was reported in several animal models of FGR [86, 112]. 
Recently, in a FGR model induced by prenatal malnutrition, 
transcriptomic analysis performed at birth reveals a deregula-
tion of genes controlling neuroinflammation in both oli-
godendrocytes and microglia [109]. These findings support 
the concept of the double hit insult both in rodents and hu-
mans: the initial hit associated with the occurrence of FGR 
can sensitize the deleterious effects of second postnatal hits, 
i.e. systemic inflammation and epigenetic changes [114-
116]. 

 In order to be able to provide therapeutic intervention for 
the fetus or infant at risk of brain damage, it is important that 
FGR infants are identified timely. This can be challenging, 
as fetal brain injury may be initially undetectable during ges-
tation. Advanced neuroimaging is now providing the oppor-
tunity to identify and then monitor the evolution of brain 
injury in compromised foetuses and neonates. Another ap-
proach would target reliable circulating markers of brain 
damage in pregnant women and newborns [117, 118]. 

CONCLUSION 

 FGR is a leading cause of neonatal morbidities and neu-
rocognitive disabilities in children. In France, the estimated 
excess medical costs attributed to FGR reach 235M� for just 
the first year of care [9]. This underscores the need for the 
development of research programs to improve our knowl-
edge of the developmental trajectories altered by FGR, a top 
priority that is currently under-recognized in global health. 
Strategies able to prevent FGR-related damage to the devel-
oping organs and system during the perinatal period would 
have immediate and significant clinical, educational and fi-
nancial benefits for patients, their families and society. 

LIST OF ABBREVIATIONS 

GM-CSF = Granulocyte-Macrophage Colony-
Stimulating Factor 

IFN-� = Interferon � 

IGF-1 = Insulin-Like Growth Factor 1 

IgG = Immunoglobulin G 

IL = Interleukin 

IQ = Intelligence Quotient 

PPAR-� = Peroxisome Proliferator-activated Receptor � 

VEGF = Vascular Endothelial Growth Factor 
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