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Abstract: The high variability of human leukocyte antigen (HLA) genes results in each
molecule having distinct antigenic peptide binding capacities, potentially influencing the
immune response to SARS-CoV-2. This study aimed to investigate associations between
HLA class I (A, B) and class II (DRB1) polymorphisms and COVID-19 severity in a South
Brazilian population, and to evaluate the binding affinity of alleles to viral peptides. A
cross-sectional study included 503 unvaccinated patients with RT-qPCR-confirmed COVID-
19: 145 non-severe, 129 severe, and 229 critical. HLA typing was performed using PCR-SSO
and Luminex™ technology. The DRB1*11 allelic group was significantly associated with
protection against severe and critical cases, while DRB1*15 was associated with increased
risk; both remained significant after Bonferroni correction. Other allelic groups were
associated with disease outcomes but lost significance after correction: B*49 and B*08
(risk); and B*37, B*50, and A*03 (protection). In silico analysis revealed that the DRB1*15
allele group showed a higher proportion of strong binders, mostly from non-structural
proteins, while DRB1*11:01 binders, though fewer in number, were concentrated in the M
protein. These results suggest functional differences in antigen presentation and reinforce
the relevance of class II HLA, particularly DRB1, in modulating COVID-19 severity.

Keywords: histocompatibility antigen classes; coronavirus; polymorphism; genetic; HLA-
DR beta-chains; in silico model

1. Introduction
The global outbreak of Coronavirus Disease 2019 (COVID-19), caused by Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has represented an unprecedented
public health emergency [1]. The disease exhibits a broad range of clinical outcomes, from
asymptomatic infection to critical illness and death [2]. While factors such as older age
and chronic conditions, including cardiovascular disease and type 2 diabetes, are well-
known predictors of disease severity and mortality, considerable variation exists among
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individuals and across populations [3,4]. These differences highlight the important role of
immunological and genetic factors in the development of severe COVID-19 [5].

The immune system is a key determinant in shaping the host’s response to viral
infections, influencing both the course and severity of disease [6]. Human leukocyte
antigen (HLA) class I and class II molecules are central to initiating antigen-specific immune
responses. These molecules are expressed on the surface of cells and present antigenic
peptides to T lymphocytes. HLA class I molecules interact with cytotoxic CD8+ T cells,
while class II molecules engage helper CD4+ T cells [7]. This mechanism of antigen
presentation is essential for effective immune defense. Class I molecules facilitate the
recognition and elimination of infected cells by CD8+ T cells, whereas class II molecules
activate CD4+ T cells, which promote antibody production and regulate broader aspects of
the immune response [8].

The extensive polymorphism of HLA genes leads to significant variation in the capacity
of HLA molecules to bind antigenic peptides, which can influence the effectiveness of an
individual’s immune response [9]. This variability may contribute to differences in suscep-
tibility to infection and the severity of disease outcomes. In the context of COVID-19, such
variation in peptide-binding affinity, driven by specific HLA alleles, may directly impact
disease progression. Studies across different populations have identified distinct alleles
associated with varying degrees of severity, suggesting a population-specific influence of
HLA variants on clinical outcomes [10–12].

Given the influence of HLA molecules on immune response diversity, analyzing
allele frequencies within specific populations can shed light on differential susceptibility
and outcomes related to COVID-19. This study aimed to explore the relationship between
polymorphisms in HLA class I (A, B) and class II (DRB1) genes and the severity of COVID-19
in a population from Southern Brazil. Additionally, the study assessed the predicted
binding affinities between these alleles and SARS-CoV-2-derived peptides using in silico
tools. By integrating genetic association analyses with functional computational predictions,
this research provides a more integrated understanding of how HLA variability may affect
disease progression. Moreover, it contributes original data from a genetically diverse
population, enhancing the global perspective on COVID-19 immunogenetics.

2. Results
Significant associations were identified between patient characteristics and COVID-19

severity (categorized as non-severe, severe, and critical). Individuals over the age of 50
were more frequently observed in the severe and critical groups compared to the non-severe
group. Male patients were also more commonly represented among the severe and critical
cases. Moreover, conditions such as cardiovascular disease (CVD), type 2 diabetes mellitus,
and tobacco use were more prevalent in patients with severe and critical disease, as shown
in Table 1.

Among critically ill patients, significant differences were observed in age and the
presence of CVD and type 2 diabetes mellitus when comparing survivors to non-survivors.
Non-survivors tended to be older and showed a higher frequency of CVD and diabetes. No
statistically significant differences were found in sex or tobacco-smoking status between
the two groups, as presented in Table 2.
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Table 1. Summary of clinical and epidemiological characteristics across COVID-19 severity groups.

Characteristics Non-Severe
N: 145

Severe
N: 129

Critical
N: 229 p-Value a p-Value b p-Value c

Age
Mean ± SD 46.74 ± 14.41 60.58 ± 16.20 65.02±16.60 <0.01 d <0.01 d 0.01 d

≤50 79 (54%) 40 (31%) 44 (24%)
<0.01 e <0.01 e 0.01 e

>50 66 (46%) 89 (69%) 185 (76%)
Sex

Female 90 (62%) 62 (48%) 81 (35%)
0.02 e <0.01 e 0.02 e

Male 55 (38%) 67 (52%) 148 (65%)
CVD
No 117 (81%) 62 (40%) 95 (41%)

<0.01 e <0.01 e 0.27 e
Yes 28 (19%) 67 (60%) 134 (59%)

Diabetes
No 134 (92%) 99 (77%) 146 (64%)

<0.01 e <0.01 e 0.01 e
Yes 11 (8%) 30 (23%) 83 (36%)

Tobacco smoking
<0.01 e <0.01 e 0.4 eNo 140 (97%) 106 (82%) 180 (79%)

Yes 5 (3%) 23 (18%) 49 (21%)
Abbreviations: SD, standard deviation; CVD, cardiovascular disease; Diabetes: type 2 diabetes mellitus; a non-
severe vs. severe; b non-severe vs. critical; c severe vs. critical; d comparison between groups was conducted
using Student’s t-test; e differences between categorical variables were assessed using a chi-square (χ2) test.

Table 2. Outcome characteristics in patients with critical forms of COVID-19.

Characteristics Survival—N: 115 Death—N: 114 p-Value

Age
Mean ± SD 58.11 ± 15.29 72 ± 14.92 <0.01 a

≤50 32 (28%) 12 (11%)
<0.01 b

>50 83 (72%) 102 (89%)
Sex

Female 39 (34%) 42 (37%)
0.70 b

Male 76 (66%) 72 (63%)
CVD
No 57 (50%) 38 (33%)

0.01 b
Yes 58 (50%) 76 (67%)

Diabetes
No 86 (75%) 60 (53%)

<0.01 b
Yes 29 (25%) 54 (47%)

Tobacco smoking
No 87 (76%) 93 (82%)

0.30Yes 28 (24%) 21 (18%)
Abbreviations: SD, standard deviation; CVD, cardiovascular disease; Diabetes, type 2 diabetes mellitus;
a comparison between groups was conducted using Student’s t-test; b differences between categorical vari-
ables were assessed using a chi-square (χ2) test.

A relationship was observed between specific HLA allelic groups and the severity of
COVID-19 (Table 3). The DRB1*11 allelic group was less common in severe and critical
cases, suggesting a potential protective effect even after Bonferroni correction. The DRB1*15
allelic group was significantly more common in severe cases and severe + critical cases,
suggesting an increased risk, even after Bonferroni correction in the non-severe vs. severe
comparison. In the non-severe vs. critical comparison, the B*49 allelic group showed a
risk association for critical cases, and in the non-severe vs. severe + critical comparison,
the B*37 allelic group showed a protective association for severe + critical cases. When
comparing severe vs. critical patients, the B*08 and B*50 allelic groups were associated
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with risk and protection for critical cases, respectively. In addition, in the survival vs. death
comparison of critical patients, the A*03 allelic group was linked to a lower mortality risk.

Table 3. Human leukocyte antigen allelic groups are associated with the severity of COVID-19
independent of age, sex, cardiovascular diseases, type 2 diabetes mellitus, and tobacco smoking.

Non-Severe (145) vs. Severe (129)

Allele Non-Severe N (%) Severe N (%) OR (CI) p-value Bonferroni
DRB1*11 55 (18.97%) 27 (10.47%) 0.37 (0.20–0.68) <0.01 0.03
DRB1*15 20 (6.90%) 38 (14.73%) 2.80 (1.43–5.59) <0.01 0.04

Non-Severe (145) vs. Critical (229)

Allele Non-Severe N (%) Critical N (%) OR (CI) p-value Bonferroni
B*49 4 (1.38%) 15 (3.28%) 3.79 (1.13–15.33) 0.04 1.00

DRB1*11 55 (18.97%) 54 (11.79%) 0.51 (0.29–0.88) 0.01 0.13

Non-Severe (145) vs. Severe + Critical (358)

Allele Non-Severe N (%) Severe + Critical
N (%) OR (CI) p-value Bonferroni

B*37 5 (1.72%) 4 (0.56%) 0.16 (0.03–0.83) 0.02 1.00
DRB1*11 55 (18.97%) 81 (11.31%) 0.46 (0.28–0.75) <0.01 0.04
DRB1*15 20 (6.90%) 91 (12.71%) 1.88 (1.05–3.45) 0.03 0.39

Severe (129) vs. Critical (229)

Allele Severe N (%) Critical N (%) OR (CI) p-value Bonferroni
B*08 18 (6.98%) 13 (2.84 %) 0.40 (0.18–0.87) 0.02 0.31
B*50 2 (0.78%) 17 (3.71 %) 6.28 (1.67–41.26) 0.01 0.62

Critical-Survival (115) vs. Death (114)

Allele Survival N (%) Death N (%) OR (CI) p-value Bonferroni
A*03 28 (12.17%) 15 (6.58%) 0.37 (0.17–0.77) 0.01 0.19

Abbreviations: N, total number of alleles; (%), proportion of alleles; OR, odds ratio; CI, confidence interval;
p-value, statistical analysis was performed by logistic regression; Bonferroni, p-value multiplied by the number of
alleles at each locus.

The remaining allelic groups for all comparisons are represented in Supplementary
Table S1. All loci were in agreement with Hardy–Weinberg equilibrium (HWE), except for
locus A* in the non-severe group. The HWE comparison values are shown in Supplementary
Table S2. The allelic groups DRB1*11 and DRB1*15, which were associated with COVID-19
severity in the non-severe vs. severe comparison, showed sufficient statistical power for
the sample size, with 83% and 91% power, respectively.

Associations between HLA haplotypes and COVID-19 severity were also found
(Table 4). The HLA-A*02~DRB1*11 haplotype was less frequent in the severe group,
indicating a protective effect to severe cases when compared to non-severe vs. severe.
Conversely, the HLA-A*02~DRB1*15 haplotype was identified as a risk factor for severe
disease, particularly when compared to non-severe cases. Other haplotypes, such as
HLA-A*11~B*35, A*24~DRB1*11, A*24~DRB1*13, A*24~DRB1*14, and A*18~DRB1*11, also
showed significant associations, underscoring genetic contributions to disease severity
when comparing non-severe vs. critical. When comparing non-severe vs. severe + critical,
associations with HLA-A*11~B*35 and A*02~DRB1*15 remained. Even more curiously, the
HLA-A*02~DRB1*11 was associated with risk for critical patients when compared to severe
vs. critical.
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Table 4. Association of human leukocyte antigen haplotypes with clinical severity in COVID-19
patients.

Non-Severe (145) vs. Severe (129)

Haplotype Non-Severe N (%) Severe N (%) OR (CI) p-Value
A*02~DRB1*11 18 (6.20%) 2 (0.77%) 0.12 (0.01–0.50) <0.01
A*02~DRB1*15 2 (0.68%) 15 (5.81%) 8.89 (2.03–80.61) <0.01

Non-Severe (145) vs. Critical (229)

Haplotype Non-Severe N (%) Critical N (%) OR (CI) p-Value
A*11~B*35 10 (3.44%) 3 (0.65%) 0.18 (0.03–0.73) <0.01

A*24~DRB1*11 9 (3.10%) 2 (0.43%) 0.14 (0.01–0.67) <0.01
A*24~DRB1*13 8 (2.75%) 3 (0.65%) 0.23 (0.04–0.98) 0.01
A*24~DRB1*14 1 (0.34%) 11 (2.40%) 7.11 (1.02–306.76) 0.02
B*18~DRB1*11 8 (2.75%) 3 (0.65%) 0.23 (0.04–0.98) 0.01

Non-Severe (145) vs. Severe + Critical (358)

Haplotype Non-Severe N (%) Severe + Critical N (%) OR (CI) p-Value
A*11~B*35 11 (3.79%) 9 (1.25%) 0.32 (0.12–0.87) <0.01

A*02~DRB1*15 3 (1.03%) 29 (4.05%) 4.04 (1.24–20.86) 0.01

Severe (129) vs. Critical (229)

Haplotype Severe N (%) Critical N (%) OR (CI) p-Value
A*02~DRB1*11 3 (1.16%) 21 (4.58%) 4.08 (1.20–21.56) 0.01

Abbreviations: N, total number of haplotypes; (%), proportion of haplotype; OR, odds ratio; CI, confidence
interval; p-value, statistical analysis was performed by Pearson’s χ2-test.

Linkage disequilibrium (LD) was evaluated between the HLA gene pairs in individuals
with different degrees of clinical severity (Supplementary Table S3). In non-severe cases,
significant evidence of LD was observed for the HLA-A~HLA-B and HLA-B~HLA-DRB1
pairs, while the HLA-DRB1~HLA-A pair showed no statistical significance. In severe cases,
strong evidence of LD was found for the HLA-B~HLA-DRB1 pair, while the HLA-A~HLA-B
and HLA-DRB1~HLA-A pairs showed no significance. In critical cases, all analyzed pairs
exhibited pronounced linkage disequilibrium, indicating a marked difference in this more
severe clinical condition.

The results of the in silico analysis showed that peptide sequences derived from SARS-
CoV-2 viral proteins formed a higher proportion of strong and moderate binders with
the DRB1*15 alleles group (6.8%) compared to DRB1*11 (5.5%). However, the binding
proportions differed based on the specific viral protein and allele analyzed. For exam-
ple, the DRB1*15:01 allele exhibited strong binders exclusively in non-structural proteins,
which may influence the nature of the immune response. DRB1*11:01 contained a lower
proportion of moderate binders (4.3%) than DRB1*11:02 (6.1%) and DRB1*11:04, but twice
as many strong binders (0.4%) as the other two alleles combined (0.2%). Importantly, the
strong binders for DRB1*11:01 were found in the M protein, while for the other, DRB1*11,
allele groups were located in non-structural proteins (Figure 1).
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Figure 1. Binding profile of SARS-CoV-2 protein-derived peptides to HLA-DRB1 alleles. Predicted
frequency of strong binder peptides derived from SARS-CoV-2 non-structural (ORF1ab) and structural
proteins (Spike, Membrane, Envelope, and Nucleocapsid) across six DRB1 alleles (DRB1*11:01,
DRB1*11:02, DRB1*11:04, DRB1*15:01, and DRB1*15:02). Red, orange, and yellow colors indicate
the presence of strong binders, representing different proportions of all predicted peptides: yellow
(0–5%), orange (5.1–10%), and red (10.1–15%). Green and blue colors indicate the presence of regular
binders only, meaning no strong binders were detected for those proteins in the respective alleles.
The results highlight allele-specific differences in the ability of MHC class II molecules to present
SARS-CoV-2-derived peptides.

3. Discussion
The Coronavirus Disease 2019 (COVID-19) pandemic has posed a major global health

challenge, particularly among individuals with pre-existing conditions. Several host-related
factors, including advanced age, male sex, and comorbidities such as cardiovascular disease
and diabetes, have been consistently associated with worse outcomes [13]. In our cohort,
these characteristics were significantly more frequent in severe and critical cases compared
to non-severe cases (Table 1), confirming previously described risk profiles. While such
clinical factors are well established, growing evidence points to the influence of genetic
and immunological components in modulating COVID-19 severity. Among these, human
leukocyte antigen (HLA) polymorphisms stand out as critical determinants of the host’s
immune response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),
influencing disease progression and outcomes.

The interaction between SARS-CoV-2 and the host immune system, particularly the
role of HLA molecules, is fundamental in initiating and modulating immune responses,
thereby influencing the clinical progression of SARS-CoV-2 infection [9]. Numerous HLA al-
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leles have been linked to both susceptibility to and severity of COVID-19; however, findings
across studies have been inconsistent and, at times, contradictory. This variability suggests
that the association between the HLA system and COVID-19 outcomes may be influenced
by ethnic background, as HLA allele frequencies differ among populations [10–12]. These
observations underscore the importance of investigating diverse geographic and genetic
contexts, particularly within Brazil’s highly admixed population.

In this study, HLA-DRB1*11 allele was associated with a protective effect against
severe and critical forms of COVID-19, and this association remained significant even
after applying the Bonferroni correction. This allele has also been linked to COVID-19
outcomes in other studies. Consistent with our results, research conducted in Sardinia, Italy,
reported that HLA-DRB1*11 was more frequently observed in non-severe cases compared
to moderate and severe cases. However, in that study, the association lost statistical
significance following Bonferroni correction [14]. Similarly, a study from Spain by Gutiérrez-
Bautista et al. found that DRB1*11:01 was more common among healthy blood donors than
in hospitalized COVID-19 patients, suggesting a potential protective role that also did not
remain significant after correction [15].

A study conducted in Burkina Faso by Ouedraogo et al. reported that individuals
carrying the HLA-DRB1*11 allele had an approximately sixfold increased risk of asymp-
tomatic SARS-CoV-2 infection compared to those who tested negative for COVID-19 [16]. In
contrast, research from Iran found a higher frequency of HLA-DRB1*11 in severe cases com-
pared to mild ones, indicating a potential association with increased disease severity [17].
Another study from Iran, using high-resolution HLA typing, showed that HLA-DRB1*11:01
was significantly more prevalent in severe patients than in moderate cases, whereas HLA-
DRB1*11:05 appeared more frequently in healthy individuals than in patients [18]. Ad-
ditionally, a study from Poland identified DRB1*11:02 as being associated with a higher
risk of symptomatic SARS-CoV-2 infection when compared to a control group of potential
hematopoietic stem cell donors [19].

Our findings also revealed a significant association between the HLA-DRB1*15 allelic
group and an increased risk of developing severe forms of COVID-19, with the association
remaining significant after Bonferroni correction. Similar associations have been reported
in various populations worldwide. In an Italian cohort, the HLA-DRB1*15:01 allele was
significantly associated with severe and critical COVID-19 cases when compared to a control
group of healthy individuals [20]. A study conducted in the United Arab Emirates likewise
identified a positive association between HLA-DRB1*15:01 and disease severity [21]. In
the United Kingdom, Poulton et al. reported an association between HLA-DRB1*15 and
SARS-CoV-2 infection by comparing positive patients to published allele frequencies from
a deceased donor population, although this association did not remain significant after
Bonferroni correction [22].

Additional studies have also highlighted the possible involvement of the HLA-
DRB1*15 allelic group in the severity of COVID-19. In India, Prasad et al. reported an
association between HLA-DRB1*15 and both symptomatic infection and increased disease
severity among renal transplant recipients [23]. Meanwhile, an Iranian study observed
a lower frequency of HLA-DRB1*15 in COVID-19 patients compared to healthy controls;
however, this allele group was more common in patients exhibiting lymphopenia, a con-
dition frequently associated with severe and critical disease forms. These results suggest
that despite some regional differences, HLA-DRB1*15 may act as a genetic marker linked to
susceptibility to more severe COVID-19 outcomes [24].

HLA class II molecules, particularly those encoded by the DRB1 locus, are key players
in the adaptive immune response to COVID-19. Low expression of HLA-DR on mono-
cytes (mHLA-DR) has been consistently associated with immunosuppression and greater
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disease severity, especially in critically ill patients [25]. This reduction reflects impaired
antigen presentation and has been linked to unfavorable outcomes. In our study, the allelic
groups DRB1*11 and DRB1*15 showed significant associations with protection against
and increased risk for severe COVID-19, respectively. These results are further supported
by a recent meta-analysis of 28 studies involving over 13,000 individuals that also identi-
fied these alleles as important markers of disease severity, highlighting the critical role of
HLA-DRB1 in COVID-19 progression [12].

Our in silico results suggest that differences in antigen presentation between HLA-
DRB1 alleles may influence the immune response to SARS-CoV-2. A higher proportion of
strong and moderate binders was observed for the DRB1*15 allele group (6.8%) compared
to DRB1*11 (5.5%). However, this apparent advantage does not seem to confer protection,
as DRB1*15 was associated with increased severity in our cohort. This paradox suggests
that the quality, timing, and immunological context of antigen presentation may be more
important than binding affinity alone. In contrast, although the DRB1*11 allele group
presented fewer total binders, the DRB1*11:01 variant showed strong binders targeting the
M protein.

CD4+ T cell responses targeting structural proteins, such as the highly expressed M
and N protein components of SARS-CoV-2, have been associated with more effective and
durable immunity [26]. This may help explain the protective association observed for
DRB1*11 in our study, as the presentation of epitopes from these proteins could promote a
more coordinated immune response. Altogether, our findings reinforce the idea that not
only the number of presented peptides, but which viral proteins are targeted, and in what
immunological context, plays a critical role in determining disease outcomes. The presen-
tation of non-structural protein epitopes by DRB1*15, for example, might contribute to a
dysregulated or insufficient immune response, as has been proposed in studies exploring
immune pathology in severe COVID-19. Integrating clinical, immunological, and computa-
tional evidence is essential to fully understand the role of HLA in modulating COVID-19
severity and can inform future personalized immunotherapy or vaccine strategies.

In our study, two additional class I alleles group were associated with COVID-19
severity: HLA-B*37 emerged as a potential protective factor against severe and critical cases,
whereas HLA-B*49 was identified as a possible risk factor specifically for critical cases.
However, both associations lost statistical significance following Bonferroni correction. The
relationship between these allele groups and COVID-19 severity remains poorly explored
in the literature, underscoring a gap in targeted investigations of these markers. A study
conducted in Turkey reported an association between HLA-B*49 and increased susceptibility
to SARS-CoV-2 infection among patients receiving renal replacement therapy [27]. Similarly,
research from Russia identified HLA-B*49 as a predisposing factor for infection with the
Delta variant (B.1.617.2) [28]. Conversely, an ecological study in Italy found an inverse
log-linear correlation between HLA-B*49 and COVID-19 incidence during the peak of the
national outbreak in April 2020; however, this correlation lost significance after adjustment
for confounding variables through multiple regression analysis [29]. To date, no studies
have reported any association between HLA-B*37 and either susceptibility to or severity of
COVID-19.

In the comparative analysis between severe and critical COVID-19 patients, two HLA
class I allelic groups initially showed associations: HLA-B*08 appeared to act as a potential
protective factor against progression to critical illness, while HLA-B*50 was associated with
an increased risk. However, both associations lost statistical significance after Bonferroni
correction. Supporting our observations, HLA-B*50 has been previously linked to disease
severity. In a Romanian population, Vică et al. reported an association between B*50 and
greater susceptibility to severe COVID-19 compared to mild cases [30]. Likewise, a study
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conducted in Saudi Arabia found that the allele HLA-B*50:01:01G was associated with an
elevated risk of severe disease when compared to healthy controls [31]. In contrast, the
role of HLA-B*08 remains more controversial. Contrary to our findings, several ecological
studies have reported a positive correlation between B*08 and increased COVID-19-related
mortality, based on comparisons of national mortality rates and allele frequencies from
public databases [32,33]. An Italian ecological study using national-level data also identified
a positive correlation between B*08 frequency and COVID-19 incidence during the peak of
the outbreak [29].

Our analysis of outcomes within the critical patient group suggests that the HLA-A*03
allele may be associated with a reduced risk of mortality. Consistent with this finding, Vică
et al. conducted a study in Romania indicating that individuals carrying HLA-A*03 were
less prone to developing extremely severe manifestations of COVID-19 [30]. Similarly, a
Russian investigation found that an HLA class I-based risk score was notably elevated in
younger adults who died of the disease compared to older individuals, with the presence
of HLA-A*03:01 correlating with a lower risk profile [34]. On the other hand, contrasting
evidence has emerged from other regions. Research in Iran identified HLA-A*03 as a
possible contributor to susceptibility to SARS-CoV-2 infection [35], while a study from
Saudi Arabia observed a higher prevalence of this allele among individuals who died
from COVID-19 compared to survivors [36]. These discrepancies suggest that the role
of HLA-A*03 in COVID-19 outcomes may be influenced by population-specific genetic
backgrounds and environmental contexts.

Our haplotype analysis indicates that DRB1*11, together with A*02, A*24, and
B*18, may contribute to resistance against the progression to severe or critical forms of
COVID-19. Supporting this, a study conducted in Italy identified the haplotype HLA-
A*02:01~B*18:01~C*07:01~DRB1*11:04 as significantly and negatively correlated with both
disease severity and fatal outcomes [37], thus reinforcing the idea that DRB1*11, when
occurring alongside A*02 and B*18, could play a role in limiting disease progression. Inter-
estingly, in our dataset, the haplotype A*02~DRB1*11 appeared more frequently among
critical patients when compared to those with severe disease, suggesting that its protective
effect might be more relevant during earlier stages of infection or viral exposure. Several ad-
ditional HLA combinations also demonstrated notable associations with disease severity in
our cohort. Haplotypes such as A*02~DRB1*15, A*11~B*35, A*24~DRB1*11, A*24~DRB1*13,
and A*24~DRB1*14 showed significance, particularly in comparisons between non-severe
and critical groups, or between non-severe versus combined severe/critical cases. However,
these particular haplotype associations have not yet been documented in the literature,
underscoring a current gap in scientific understanding and emphasizing the exploratory
nature of our findings.

The presence of linkage disequilibrium between HLA loci across different severity
groups may partially explain these associations. In more severe cases, particularly among
critically ill patients, all analyzed gene pairs exhibited significant linkage disequilibrium.
This suggests that the observed effect of a haplotype may be driven by a specific allele
inherited together with another, which may represent the true risk or protective factor. It is
also important to consider the methodological limitations inherent to haplotype analysis in
this study. The haplotypes were computationally inferred rather than directly determined
through genotyping, which may introduce uncertainty. Furthermore, the relatively small
sample sizes within each clinical subgroup could reduce the statistical robustness of the
associations observed and limit the broader applicability of these results.

The genotyping results for the HLA loci generally conformed to Hardy–Weinberg
equilibrium, with the exception of the A* locus in the non-severe patient group. It is worth
emphasizing that our cohort consists exclusively of COVID-19 patients rather than a healthy
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control population, which may influence allele frequency distributions. This particular
sample might reflect specific genetic characteristics shaped by selective pressures exerted
by the virus, possibly explaining the deviation observed at the A* locus. Although this
departure from equilibrium does not undermine the validity of our analysis, it suggests
that genetic factors could be modulating the immune response in distinct ways, potentially
affecting disease severity, especially when comparing non-severe cases to asymptomatic
individuals. A notable limitation of our study is the absence of an asymptomatic group,
which would have provided valuable insight into whether the observed genetic variation
is truly linked to severity or influences immune responses through other mechanisms.
Another limitation involves the lack of data on SARS-CoV-2 genetic variants in our cohort.
Viral strains differ in their mutation profiles, which can alter immune evasion strategies and
clinical outcomes, possibly interacting with host genetics such as HLA types. Nevertheless,
it is important to note that the study period (March 2020 to April 2021) coincided predom-
inantly with the circulation of the Gamma variant (P.1) in the region [38,39], providing
context for interpreting our findings.

Variability in reported connections between HLA alleles and COVID-19 across studies
is influenced not only by population ethnicity but also by differences in research design.
Ecological studies, for instance, have important limitations, including the use of aggregated
population data and the lack of individual-level control for clinical and demographic vari-
ables, which can lead to misleading interpretations. Furthermore, many available studies
compare broad groups, such as infected individuals versus healthy controls, without strati-
fying disease severity, and they often involve small sample sizes, thus limiting the statistical
power and generalizability of their findings. In our study, we sought to overcome these
limitations. Patients were carefully classified based on the World Health Organization crite-
ria for disease severity, ensuring standardized and comparable groupings. Our sample size
was adequate and provided sufficient statistical power to detect relevant associations. In
addition, we employed robust statistical analyses, including logistic regression to adjust for
potential confounders, and applied Bonferroni correction to control for type I error. These
methodological strengths contribute to the consistency and scientific rigor of our findings.

4. Materials and Methods
4.1. Study Population

This cross-sectional study was conducted prior to the introduction of COVID-19 vacci-
nation and included patients diagnosed by Reverse Transcriptase Quantitative Polymerase
Chain Reaction (RT-qPCR). Participants were recruited between May 2020 and April 2021
from the University Hospital of Londrina at the State University of Londrina and from
Hospital Paraná in Maringá, both located in Southern Brazil. The study was approved
by the Ethics Committees of the Unicesumar—The University Center of Maringa (CAAE:
37322420.4.0000.5539), approved on 10 September 2020) and the State University of Lond-
rina (CAAE: 31656420.0.0000.5231, approved on 27 May 2020). All participants, or their
legal representatives in the case of critically ill patients, provided informed consent after
being clearly informed about the objectives and procedures of the study.

A total of 503 unvaccinated patients were included, following the criteria of laboratory-
confirmed COVID-19 diagnosis, classification according to the World Health Organization
(WHO) [40], and no familial relationship among participants. Patients were categorized
into non-severe (n = 145), severe (n = 129), and critical (n = 229) groups. A summary of the
patient selection and classification process is illustrated in Figure 2.
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Figure 2. Patient selection flowchart. Flowchart illustrating the inclusion process and distribution of
unvaccinated patients diagnosed with COVID-19, according to World Health Organization (WHO)
severity classification.

Non-severe COVID-19 was defined by the absence of any severe or critical features.
Severe cases were characterized by oxygen saturation below 90% on room air, accompanied
by clinical signs of pneumonia or respiratory distress. Critical cases included individu-
als with acute respiratory distress syndrome, sepsis, or septic shock, or those requiring
advanced life support, including mechanical ventilation or vasopressor therapy. All partici-
pants were classified as being from a mixed ethnic background, reflecting the demographic
composition of Paraná state, with a predominance of European ancestry (80.6%), followed
by African (12.5%) and Amerindian (7.0%) origins [41].

4.2. Sample Collection and DNA Extraction

Following the patients’ admission, peripheral blood samples were gathered in tubes
containing ethylenediaminetetraacetic acid (EDTA) anticoagulant and dispatched to the
Laboratório de Imunogenética—UEM. Genomic DNA was isolated using the BIOPUR®

extraction kit (Biometrix, Curitiba, Brazil), following the supplier’s protocol. The concen-
tration of the extracted material was evaluated by measuring the optical density using a
Nanodrop 2000® spectrophotometer (Wilmington, DE, USA).

4.3. HLA Genotyping

Human leukocyte antigen (HLA), HLA-A, HLA-B, and HLA-DRB1 were genotyped
using Polymerase Chain Reaction with Sequence-Specific Oligonucleotide Probe (PCR-
SSO) protocols based on Luminex™ technology. The genotyping was performed with
the LABType™ CWD kit (One Lambda Inc., Canoga Park, CA, USA) at low-to-medium
resolution, following the manufacturer’s instructions. In this method, genomic DNA was
initially amplified by PCR using biotinylated sequence-specific primers. The resulting
PCR products were then hybridized with oligonucleotide probes bound to fluorescent
microspheres, which were labeled with R-phycoerythrin-conjugated streptavidin (SAPE).
Fluorescence intensity was measured via flow cytometry using the FLEXMAP 3D™ system,
and the results were analyzed using HLA Fusion software, version 4.6 (One Lambda Inc.,
Canoga Park, CA, USA).
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4.4. In Silico Analysis

The in silico analyses in this study were conducted using a script developed in the R
environment for statistical computing (version 4.2.0, R Foundation for Statistical Comput-
ing, Vienna, Austria) to automate the process of obtaining binding predictions from the
NetMHCpan tool through its API. The input data, in FASTA format, included the amino
acid sequences of SARS-CoV-2 proteins (NCBI Reference Sequence: NC_045512.2). The
NetMHCpan algorithm versions used were 4.0 for MHC class I and 4.1 for MHC class
II [42]. The predicted binding affinity was reported as IC50 values (nM), representing the
concentration needed to inhibit 50% of binding. Peptides of length 9 and 13 amino acids
were used for MHC-I and MHC-II predictions, respectively. Peptides were then categorized
by binding strength: for MHC-I, strong binders (IC50 < 50 nM), intermediate binders
(50–500 nM), weak binders (500–5000 nM), and non-binders (>5000 nM); for MHC-II, strong
binders (IC50 < 50 nM), intermediate binders (50–1000 nM), weak binders (1000–5000 nM),
and non-binders (≥5000 nM). The results were summarized in bar charts, showing the
percentage distribution of peptide binding affinities for each SARS-CoV-2 protein and for
the complete proteome.

4.5. Statistical Analysis

Hardy–Weinberg equilibrium and linkage disequilibrium were assessed using Ar-
lequin (version 3.5.2.2, University of Bern, Bern, Switzerland) [43]. QUANTO (version 1.2.4,
University of Southern California, Los Angeles, CA, USA) software was used to calculate
the statistical power of the associated alleles using the following parameters: unmatched
case control, gene only, population allele frequency, dominant model, population risk
(0.05%), number of patients, and odds ratio values [44]. The remaining statistical analyses
were executed using the R environment for statistical computing (version 4.2.1, R Founda-
tion for Statistical Computing, Vienna, Austria) [45], employing specific packages. Clinical
characteristics of patients, such as age, sex, smoking, and comorbidities, were analyzed
using the “stats” package (R base). Continuous variables were compared using Student’s
t-tests, while categorical variables were analyzed using chi-square tests.

Association analyses between HLA allelic groups and COVID-19 severity were car-
ried out using a generalized linear model with logistic regression implemented in The
“midasHLA” package [46]. Adjustments for potential confounders, including age, sex,
and comorbidities, were included in the regression models. Bonferroni adjustment was
applied manually to p-values to correct for multiple hypothesis testing. Haplotype analyses
were further supported by “BIGDAWN” package [47], using expectation–maximization,
facilitating the visualization and comprehensive analysis of multilocus genetic associations.
A significance level of 0.05 was adopted, and p-values below this threshold were interpreted
as statistically significant. The results were interpreted considering the biological relevance
of the findings and the robustness of statistical models applied.

5. Conclusions
A significant link was identified between HLA class II (DRB1) allele groups and

COVID-19 severity in a South Brazilian population. After Bonferroni correction, the
DRB1*11 allelic group remained associated with protection against severe and critical
cases, while DRB1*15 was linked to an increased risk of severity, independent of age, sex,
smoking, cardiovascular diseases, and type 2 diabetes mellitus. In silico analysis revealed
that the DRB1*15 allele group showed a higher proportion of strong binders, mostly from
non-structural proteins, while DRB1*11:01 binders, though fewer, were concentrated in the
M protein.
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