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Sequencing of the Plasmodium falciparum genome in 2002 sparked hopes that metabolic path-

way annotation could identify new parasite-specific targets for therapeutic intervention [1].

Cashing in on this potential has proved challenging because many pathways have unexpected

properties and/or are only required in certain host environments. Heme biosynthesis has been

considered as a possible antimalarial target. Our understanding of heme acquisition mecha-

nisms and the role of heme biosynthesis in different stages of Plasmodium parasite develop-

ment has evolved considerably in recent years. In this Pearl, we summarize recent major

findings and highlight remaining questions.

Plasmodium parasites require heme as a metabolic cofactor

Eukaryotic malaria parasites have retained a mitochondrion and the heme-dependent cyto-

chrome components of the electron transport chain (Fig 1), including cytochromes b and c1 of

Complex III, soluble cytochrome c, and the CoxI subunit of Complex IV [2]. The antimalarial

drug atovaquone kills parasites in blood, mosquito, and liver stages by binding to cytochrome

b, where it inhibits ubiquinone association and blocks electron transport to Complex III,

underscoring the critical role of heme-dependent electron transport throughout the parasite

life cycle [3, 4]. Prior work has suggested that blood-stage Plasmodium parasites may only

require the electron transport chain for oxidative recycling of ubiquinone to support the essen-

tial mitochondrial enzyme dihydroorotate dehydrogenase (DHOD) because episomal expres-

sion of ubiquinone-independent yeast DHOD rescues atovaquone lethality [5]. Mounting

evidence strongly suggests that parasites also require heme-dependent electron transport for

ATP synthesis via mitochondrial oxidative phosphorylation during mosquito-stage growth [6,

7]. It remains a future challenge to assess whether parasites require heme to support essential

cellular processes other than cytochrome-mediated electron transport.

Parasites do not require heme biosynthesis for blood-stage growth

How do parasites obtain heme to support mitochondrial cytochrome function? During blood-

stage growth, Plasmodium parasites develop within the most heme-rich cell in the human

body and liberate vast amounts of host-derived heme during hemoglobin digestion within the

acidic food vacuole [8]. Despite access to this abundant heme source, intraerythrocytic para-

sites encode and express all enzymes for a complete heme biosynthesis pathway (Fig 1) [9].

This pathway was originally proposed to be essential and therefore a possible therapeutic target

based on observations that succinylacetone inhibits heme biosynthesis and kills parasites at

millimolar concentrations [10, 11]. However, subsequent studies of Plasmodium berghei and P.

falciparum reported the successful gene deletion of ferrochelatase (FC), the last enzyme in the
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parasite pathway. These ΔFC parasites (where Δ indicates a disrupted gene) grew indistin-

guishably from wild-type (WT) parasites [11, 12] and developed sexually to stage V gameto-

cytes, despite a failure to synthesize heme from the 13C-labeled precursor 5-aminolevulinic

acid (ALA) (Fig 2) [12]. Furthermore, much lower concentrations of succinylacetone blocked

de novo heme synthesis but had no effect on parasite growth (Fig 2) [11–13], strongly suggest-

ing that parasite death from succinylacetone at high concentrations was due to off-target toxic-

ity. Additional studies have reported the disruption of 4 other heme biosynthesis genes (ALA

synthase [ALAS], porphobilinogen deaminase, uroporphyrinogen decarboxylase, and copro-

porphyrinogen oxidase), all without a detectable effect on blood-stage parasite growth [11–14].

These studies strongly support the conclusion that parasites do not depend on heme biosyn-

thesis during blood-stage infection. Parasites must therefore have mechanisms to scavenge

host-derived heme to satisfy cofactor requirements for mitochondrial cytochromes, and it

remains an exciting future challenge to identify and understand these mechanisms. Labile

heme levels in the parasite cytoplasm have been estimated to be about 1 μM [15]. This concen-

tration increases with chloroquine treatment [15, 16], which blocks heme sequestration in the

food vacuole [8], suggesting that this compartment may be the dominant source of cyto-

plasmic heme. Preliminary studies suggest that host heme is imported into the parasite mito-

chondrion [11], but much more work is needed to dissect and understand heme trafficking

pathways in parasites.

Recent studies reported that P. falciparum parasites showed reduced growth in blood from

patients with congenital deficiencies in human ferrochelatase (FECH) or in blood from normal

Fig 1. Plasmodium parasites require heme as a metabolic cofactor throughout their life cycle. Plasmodium

enzyme abbreviations are consistent with those used at the Plasmodium Genomics Resource (PlasmoDB.org).

Abbreviations: ALAD, aminolevulinic acid dehydratase; ALAS, aminolevulinic acid synthase; CPO, coproporphy-

rinogen oxidase; FC, ferrochelatase; PBGD, porphobilinogen deaminase; PPO, protoporphyrinogen oxidase;

UROD, uroporphyrinogen decarboxylase; UROS, uroporphyrinogen synthase.

https://doi.org/10.1371/journal.ppat.1006511.g001
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donors treated with the FECH inhibitor N-methylprotoporphyrin (NMPP) [17, 18]. From

these observations, the authors proposed that blood-stage parasites do require heme biosyn-

thesis by a pathway involving human FECH imported from the host erythrocyte into parasites.

This proposal is difficult to reconcile with the prior observations that all heme biosynthesis can

be ablated in parasite-infected red blood cells without a corresponding reduction in parasite

growth (Fig 2) [11, 12]. In addition, P. falciparum parasites predominantly invade mature

erythrocytes, which lose mitochondria during the terminal differentiation of precursor reticu-

locytes and thus lack the enzymes targeted to this organelle, including human FECH [19–21].

Slowed parasite growth in blood from congenitally FECH-deficient patients may reflect the

effects of developmental defects in these cells, incurred during earlier stages of erythropoiesis.

The deleterious growth effects of exogenous NMPP may therefore arise from off-target drug

toxicity (with rescue by protoporphyrin IX [PPIX], explained by competition for the same off-

target or uptake receptor) [17].

Parasite heme biosynthesis is essential for mosquito and liver

stage infections

In contrast to their indistinguishable blood-stage growth relative to WT parasites, the ΔALAS

and ΔFC P. berghei and P. falciparum parasites displayed a complete developmental arrest dur-

ing mosquito-stage growth. Although different studies have observed contrasting developmen-

tal failures before [11, 12] or after [14, 22] oocyst formation, in all cases, the knockout parasites

failed to form mature salivary gland sporozoites such that bite-back experiments of naïve mice

by mutant-infected mosquitoes failed to produce blood-stage patency in these animals [11, 14,

22]. The mosquito-stage growth defect of ΔALAS P. berghei parasites could be chemically res-

cued by including 5-ALA, the product of ALAS catalysis, in the mosquito feeding solution in

order to enable maturation to salivary gland sporozoites [11, 14]. These studies uniformly sup-

port the conclusion that Plasmodium parasites require heme biosynthesis during growth

within mosquitoes. This differing dependence relative to blood stages may reflect both the

Fig 2. Ablating heme biosynthesis has no effect on blood-stage P. falciparum growth. (A) Mass spectra

(from [12]) for detection of [13C]heme biosynthesized from 13C4-ALA in WT P. falciparum D10 parasites,ΔFC

parasites, or WT parasites grown in 200 μM SA. Spectra were normalized to the intensity of the heme peak in

the WT parasite sample and offset to avoid baseline overlap. (B) Growth of asynchronous WT or ΔFC D10

parasites in the absence or presence of 200 μM SA (from [13]). Measured parasitemia values for each parasite

line were normalized to the respective parasitemia on day 4 and fit with an exponential growth equation.

Abbreviations: ΔPfFC, genetic knockout of P. falciparum ferrochelatase; SA, succinylacetone; WT, wild-type.

https://doi.org/10.1371/journal.ppat.1006511.g002
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lower availability of host heme within mosquitoes and/or an enhanced parasite reliance on

heme-dependent mitochondrial electron transport for ATP synthesis [6, 7].

To test parasite reliance on heme biosynthesis during liver-stage growth, 2 studies with P.

berghei allowed mosquitoes infected with ALA-rescued ΔALAS parasites to feed on naïve mice

and then evaluated whether parasites could complete liver-stage development and establish

subsequent blood-stage infection. One study failed to detect blood-stage patency [11], suggest-

ing an essential role for heme biosynthesis during parasite infection of liver hepatocytes. How-

ever, the other group reported a reduction in liver-stage ΔALAS parasite load but an otherwise

normal ability of the knockout parasites to complete liver-stage development and establish

blood-stage infection [14]. These conflicting observations, for which both groups propose

explanations [14, 23], have prevented a strong conclusion. Host hepatocytes actively synthesize

heme via their own pathway, which includes 4 cytoplasmic enzymes. The heme intermediates

produced by these cytosolic host enzymes could, in principle, be scavenged by invading para-

sites to bypass the ΔALAS mutation and thus complicate the interpretation of this mutant. A

recent study of ΔFC P. berghei parasites [22] has definitively answered this question because

this mutation cannot be bypassed by scavenging upstream intermediates. Fluorescently tagged

ΔFC parasites were bridged past their mosquito-stage defect by crossing them to WT parasites

in order to produce heterozygous polyploid oocysts with both disrupted and WT FC alleles.

Haploid ΔFC sporozoites resulting from the polyploid oocysts infected liver hepatocytes in

vitro and in mouse bite-back experiments but failed to form liver merosomes or establish

blood-stage patency [22]. These observations strongly support the conclusion that heme bio-

synthesis is critical for liver-stage parasite development.

Is heme biosynthesis an antimalarial drug target?

Because blood-stage parasites do not depend on de novo heme synthesis for growth and viabil-

ity, drugs that inhibit heme biosynthesis enzymes are unlikely to provide effective antimalarial

therapies. However, if such inhibitors were taken up with gametocytes by blood-feeding mos-

quitoes and persisted at high concentrations within the insect, then the stable inhibition of par-

asite enzymes could, in principle, prevent further development into sporozoites and thus block

transmission to new human hosts. Because heme biosynthesis is essential for liver-stage devel-

opment, the inhibition of parasite enzymes could provide effective prophylaxis against subse-

quent blood-stage malaria. However, such drugs would need to specifically target parasite

enzymes and not inhibit the essential human enzymes.

As an alternative to therapeutic inhibition, the stimulation of porphyrin biosynthesis by

exogenous ALA has recently been shown to effectively kill blood-stage parasites via photody-

namic interaction with light [13, 24] or synergy with ferrous iron [25]. Exogenous ALA causes

intraerythrocytic accumulation of the photoactive heme intermediate PPIX, largely by stimu-

lating the activity of vestigial host enzymes remaining in the erythrocyte cytoplasm [13]. Light,

which can be supplied externally or generated in situ within cells via nontoxic chemilumines-

cent reagents, excites PPIX to produce cytotoxic reactive oxygen species that kill parasites.

Methods involving ALA stimulation of PPIX production thus depend predominantly on host

cell enzymes outside of the genetic control of parasites, which may limit resistance develop-

ment. Future work will delineate whether these approaches can provide effective antiparasitic

therapy in vivo.

Frontier questions

Heme is an ancient biological cofactor required by nearly all organisms for cellular viability.

By virtue of their intraerythrocytic lifestyle, Plasmodium parasites interact with heme as both a
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toxic by-product of large-scale hemoglobin catabolism and as an essential cofactor for their

own metabolism. Understanding how parasites acquire and utilize heme will uncover funda-

mental adaptations evolved by parasites to survive within different host environments, and

this understanding can be harnessed to develop new strategies to target this virulent pathogen.

Below, we lay out key unresolved questions at the frontier of our understanding of heme acqui-

sition and utilization by parasites.

1. How active is the parasite heme biosynthesis pathway during intraerythrocytic growth, and

do endogenous Gly + succinyl CoA or exogenous serum ALA serve as the dominant pre-

cursor? What portion of mitochondrial heme is derived from synthesis versus scavenging?

2. If the parasite heme biosynthesis pathway is not required for blood-stage growth, why are

pathway enzymes expressed in this stage?

3. What are the mechanisms involved in heme scavenging and trafficking in parasites?

4. What is the full extent of heme utilization by parasites? Is heme utilization unusually nar-

row and limited to mitochondrial cytochromes, or is there a broader landscape of nonca-

nonical heme proteins lurking in the unannotated “dark matter” of the genome?
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