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Abstract: ATP-binding cassette (ABC) transporters, a large class of transmembrane proteins, are
widely found in organisms and play an important role in the transport of xenobiotics. Insect ABC
transporters are involved in insecticide detoxification and Bacillus thuringiensis (Bt) toxin perforation.
The complete ABC transporter is composed of two hydrophobic transmembrane domains (TMDs)
and two nucleotide binding domains (NBDs). Conformational changes that are needed for their
action are mediated by ATP hydrolysis. According to the similarity among their sequences and
organization of conserved ATP-binding cassette domains, insect ABC transporters have been divided
into eight subfamilies (ABCA–ABCH). This review describes the functions and mechanisms of ABC
transporters in insecticide detoxification, plant toxic secondary metabolites transport and insecticidal
activity of Bt toxin. With improved understanding of the role and mechanisms of ABC transporter
in resistance to insecticides and Bt toxins, we can identify valuable target sites for developing new
strategies to control pests and manage resistance and achieve green pest control.
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1. Introduction

ATP-binding cassette (ABC) proteins comprise an extensive and variable transporter superfamily
within P-loop motif and are found in all living organisms [1–3]. Studies on ABC transporters began
in the early 1970s with the biochemical characterization of substrate-binding protein-dependent
transport in Escherichia coli that was directly energized by hydrolysis of ATP [4,5]. In 1982, cytoplasmic
membrane-associated transporter genes in the histidine transport system of Salmonella typhimurium
(coded by the hisP gene) and maltose-maltodextrin transport system of E. coli (coded by the malK gene)
were cloned [6,7]. Concurrently, in mammalian cells, the gene encoding permeability, glycoprotein
(P-gp, a large glycosylated membrane protein related to multi-drug resistance) was identified and
cloned in 1985 [8,9]. Eventually, substrate-binding transport proteins with ATP-binding subunits were
found to constitute a large superfamily of transport proteins and termed ABC transporters in 1990 [10].
On the basis of differences in the ATP-binding sites among insect ABC transporters, the superfamily
can be divided into eight subfamilies (ABCA to ABCH) [11].

The primary function of most ABC proteins is ATP-dependent active transport of a broad
spectrum of substrates including amino acids, sugars, heavy metal ions and conjugates, peptides, lipids,
polysaccharides, xenobiotics and chemotherapeutic drugs across cellular membranes [1,12–14], but
they are also involved in many other biochemical and physiological processes. In humans, they have

Int. J. Mol. Sci. 2019, 20, 2829; doi:10.3390/ijms20112829 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-7096-5690
https://orcid.org/0000-0002-5179-2330
https://orcid.org/0000-0003-4449-4295
https://orcid.org/0000-0003-3203-9375
http://www.mdpi.com/1422-0067/20/11/2829?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20112829
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 2829 2 of 18

also been shown to function as ion channels and receptors [1,12,15]. Because of their ability to transport
chemotherapeutic drugs and other hydrophobic substrates such as lipids and hormones, many human
ABC superfamily members have been identified as the agent responsible for multidrug-resistance in
cancer cells. In fact, the P-glycoprotein ABCB1 (also known as MDR1, multidrug-resistance protein 1),
that is overexpressed in multidrug resistant tumor cell lines, was the first ABC protein identified as
such [9,16].

Although the ABC transporters have been recognized to be associated with multidrug resistance
in humans, bacteria and nematodes, their functional role in arthropods has not been fully studied [17].
Although studies on insect ABC transporters were triggered because they are associated with the
evolving field resistance to different Bt toxins and insecticides, the scope of studies on insect ABC
transporters has greatly expanded with the advancement of sequencing technology and the annotation
of more insect genomes. The availability of insect genome databases provide genomic insights for
analyzing the comparative positions and phylogenetic relationships of ABC transporter genes among
genetically distant species. The white gene in Drosophila melanogaster was the first identified insect
ABC transporter gene and is involved in the transport of eye pigment precursors [18]. The role of a
gene orthologous to white has also been confirmed in Bombyx mori and Tribolium castaneum [19,20].
The upregulation of some ABC transporter genes is associated with resistance to highly effective
insecticides such as pyrethroids in some insects [21–23]. It is also reported that alterations in the
ABCC genes are associated with the resistance to Cry toxins from Bacillus thuringiensis (Bt) by reducing
the binding affinity of Cry toxins to the brush border membrane vesicles in different lepidopteran
species [24–26]. On the basis of above mentioned evidences, it is noteworthy that ABC transporters
have important role in xenobiotic detoxification and Bt-resistance.

Excellent reviews on the role of insect ABC transporters in the transport and resistance to Bt toxin
and insecticide have been published previously [14,27,28], so the present review provides an update of
our understanding of the evolution, function and role of the ABC transporter superfamily of insects in
xenobiotic transport and detoxification.

2. Structure and Mechanism of ABC Transporters

Structural models of ABC transporters are based on the crystal structure of different bacterial
proteins that act as importers such as vitamin B12 transporter BtuCDF from E. coli and exporters
such as the multidrug exporter Sav1866 from Staphylococcus aureus or related flippases such as MsbA
lipid flippase from E. coli [29–31]. On the basis of their architecture and biochemical activity, the ABC
importers have been divided into type I and type II [12,32,33]. The energy coupling factor (ECF)
transporters, which differ structurally and functionally from other ABC importers, are sometimes
considered as type III ABC importers [34–37]. However, ABC importers have only been confirmed in
prokaryotes, not in eukaryotes [11,15]; therefore, in this review, we focus only on ABC exporters.

The structure of ABC transporters is highly conserved among most eukaryotic organisms,
including insects. A functional ABC transporter is characterized by the presence of a P-type traffic
ATPase, which comprises two cytosolic nucleotide-binding domains (NBDs) and two transmembrane
domains (TMDs) [1,12,38] (Figure 1A). The four domains of a functional transporter (2TMDs-2NBDs)
are combined in a single polypeptide, forming a full transporter (FT), whereas a half transporter (HT)
contains one TMD and one NBD, which are sometimes encoded as separate polypeptides and then
fused into multidomain proteins. For ATP binding and hydrolysis, the HT must become a functional
transporter by forming homo- or heterodimeric complexes. The NBD contains several highly conserved
nucleotide-binding sequences such as the Walker A and B motifs, common in nucleotide-binding
proteins (the Walker B motif also provides the catalytic base); d-loop, which contains an aspartate
residue and is responsible for forming a salt bridge; Q-loop, which contains a glutamate residue and
acts as the attacking nucleophile in ATP hydrolysis; H motif, which has an invariant histidine active site
that may be involved in maintaining the stability of the pre-hydrolytic state; and an α-helical region
that has the ABC signature sequence (LSGGQ motif) [12,13,39]. The ABC exporter fold, a prominent
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quaternary structure in TMDs in all ABC exporters, is characterized by 12 transmembrane helices and
acts as a switch between different conformational changes and initiates substrate translocation [12].

ABC transporters have a common mechanism for exporting substrates across the membrane by
hydrolyzing ATP as a pump, but other models have been proposed for the ABC transporter mechanism
based on structural and biochemical evidence, including the ATP-switch [39], alternating site [40],
constant contact [41,42], and thermodynamic models [43]. Among these models, the ATP-switch
model provides a reasonable framework for the transport mechanism [39,44,45] in which repeated
communication between NBDs and TMDs occurs in both directions and involves only non-covalent
conformational changes. The transport process is initiated by the binding of the substrate to the TMDs,
and subsequent structural changes are transmitted to the NBDs, which include ATP-binding and closed
dimer formation of the NBDs. Then the closed NBD dimer induces a substantial conformational change
in the TMDs. This conformational change initiates translocation of the substrate through a rotation of
the TMDs and opening toward the extracellular milieu. Finally, the ATP is hydrolyzed, releasing ADP
and Pi and destabilizing the closed dimer conformation to restore its open dimer configuration for
another new cycle [39,44,45] (Figure 1B).
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Figure 1. General structure of an ATP-binding cassette (ABC) full transporter (ABC exporter) and
the ATP-switch model for the transport mechanism of ABC transporters. (A) Typical ABC full
transporter with two transmembrane domains (TMDs), TMD1 (green) and TMD2 (sky blue), and two
nucleotide-binding domains (NBDs), NBD1 (red) and NBD2 (yellow). Each transmembrane domain
(TMD) contains six transmembrane helices. The “long” multidrug-resistance associated proteins (MRPs)
of the ABCC subfamily contains an additional TMD (TMD0) at the N terminus [46]. (B) The ATP-switch
model [14] includes (I) binding of the substrates (12-point blue circle) to the TMDs; (II) subsequent
structural changes to the NBDs (red and yellow), hydrolysis of ATP (brown circles), followed by
closed dimer formation of the NBDs and major conformational change in the TMDs, which initiates
substrate translocation; (III) the ATP is hydrolyzed (gray circles), releasing ADP and Pi, and (IV)
finally destabilization of the closed dimer restores its initial open dimer configuration for another new
cycle. This figure is drawn by following the previous report of ABC transporter by Dermauw & Van
Leeuwen [14].
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3. ABC Transporter Subfamilies in Insects

In recent years, with the large-scale development of genome sequencing technology, the sequencing
results have shown that ABC transporter genes are highly conserved in many insects (Figure 2). Aside
from some important discoveries on the function of some ABC transporters in insects, however,
knowledge on the role and function of these proteins is still limited. ABC transporters of numerous
important agricultural pests and model insects, such as D. melanogaster, B. mori, Helicoverpa armigera
and Plutella xylostella, have been reported (Table 1).
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Figure 2. Phylogenetic tree based on amino acid sequences of 262 ABC transporters (Supplementary
Material 1) from several insects and humans. The sequences were aligned using MUSCLE.
The evolutionary history was inferred using the neighbor-joining method and MEGA-X with 1000
bootstrap replicates. All positions with less than 95% site coverage were eliminated. Species
codes: Ha, Helicoverpa armigera; Bm, Bombyx mori; Px, Plutella xylostella; Hs, Homo sapiens; Dm,
Drosophila melanogaster.
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Table 1. Distribution of genes among ABC transporter subfamilies for different arthropods and
Homo sapiens.

Organisms A B C D E F G H Total References

Homo sapiens 12 11 12 4 1 3 5 0 48 [1]
Drosophila melanogaster 10 8 14 2 1 3 15 3 56 [1]

Anopheles gambiae 9 5 13 2 1 3 16 3 52 [47]
Daphnia pulex 4 7 7 3 1 4 24 15 65 [48]

Pediculus humanus humanus 2 6 5 2 1 3 13 6 40 a [49]
Apis melifera 3 5 9 2 1 3 15 3 41 [50]
Bombyx mori 7 9 11 2 1 3 16 2 51 b [50–52]

Tribolium castaneum 10 6 35 2 1 3 13 3 73 [20]
Tetranychus urticae 9 4 39 2 1 3 23 22 103 [53]
Chrysomela populi 5 8 29 2 1 3 14 3 65 [54]

Lygus hesperus 11 6 12 2 1 3 19 11 65 [55]
Lepeophtheirus salmonis 3 4 11 3 1 4 2 5 33 [56]
Laodelphax striatellux 2 6 5 2 1 2 14 8 40 [57]

Bemisia tabaci 8 3 6 2 1 3 23 9 55 [58]
Plutella xylostella 15 14 21 3 1 3 19 6 82 [59,60]

Manduca sexta 7 9 11 2 1 3 13 3 52 [60]
Danaus plexippus 8 16 12 3 1 3 16 3 62 [60]

Heliconius melpomene 10 11 15 2 1 3 17 3 62 [60]
Helicoverpa armigera 7 11 11 2 1 3 17 2 54 [52,61,62]

Helicoverpa zea 7 11 11 2 1 3 17 2 54 [52]
Acyrthosiphon pisum 11 9 16 2 1 4 19 9 71 [63,64]

a Includes two uncharacterized ABC transporters. b The number of B. mori ABC transporter genes in the different
subfamilies is mainly based on the latest report [52], but were reported previously [50].

3.1. The ABCA Subfamily

According to the distinctive conserved traits, ABCA subfamily proteins can be divided into
full transporters (FTs) and half transporters (HTs); the number of insect ABCA genes differs among
different species (3–15). ABCA genes that encode only FTs are present in T. castaneum, Anopheles
gambiae, D. melanogaster, Apis mellifera, Daphnia pulex, Tetranychus urticae and Bemisia tabaci [11,58].
Two FTs and five HTs have been found in one analysis of the B. mori genome [51], whereas another
showed two FTs, one HT and three incomplete ABC sequences (These sequences were derived from
a sequenced and assembled genome, but the genomic scaffold is incomplete.) [50]. In mammals,
ABCA transporters function in controlling cellular lipid transport [65], but little is known about their
specific function in insects. Silencing of TcABCA-9A or TcABCA-9B in T. castaneum by injection of
dsRNA leads to developmental defects in the wings and elytra and to about 30% mortality at the adult
eclosion stage [20]. This silencing study provides a direction for the functional analysis of insect ABCA
subfamily genes. The flight capability of insects is related to lipid metabolism, the biosynthesis of
various lipid classes, and the total lipids and triglycerides provide energy for flight [66,67]. As in
mammals, ABCA proteins may function in lipid transport in insects, so the developmental defects in
wings and elytra are likely due to loss of lipid transport. In addition, ABCA2 is also associated with
insect resistance to Bt toxin [68].

3.2. The ABCB Subfamily

ABCB subfamily transporters also contain FTs and HTs. In the genome of T. castaneum, An. gambiae,
D. melanogaster, B. mori and A. mellifera, the number of FTs are 2, 2, 4, 5 and 1, and the number of
HTs are 4, 3, 4, 4 and 4, respectively. A. mellifera also contains two incomplete ABCB sequences.
Similarly, two genes encoding FTs, and five and two genes encoding HTs were found in the D. pulex
and T. urticae genomes, respectively. The function of the ortholog of the human half transporter
HsABCB7 in D. melanogaster was studied by RNA interference and found to play a key role in cellular
iron homeostasis [69]. CG4225, homologous to human ABCB6 in D. melanogaster, is also known as
DmHMT-1, which is responsible for resistance against cadmium [70]. Another ABCB transporter gene,
CG7955 in D. melanogaster, is correlated with chill coma stress resistance [71]. The perineurium in
lepidopterans serves as a diffusion barrier for polar cardenolides and provides an active barrier for
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non-polar cardenolides, and the P-glycoprotein-like transporter mediates the efflux of cardenolides
in the nerve cord, thereby preventing interaction of these toxins with the susceptible target site in
Na+/K+-ATPase [72].

3.3. The ABCC Subfamily

The functions of ABCC subfamily in mammals mainly include ion transport, signal transduction,
and toxin secretion [1]. The ABCC transporters in insect may have similar functions. Usually, insect
genomes contain 9–16 ABCC genes, with the most found to date in T. urticae, followed by T. castaneum
and Chrysomela populi. There are 35 genes encoding ABCC transporters in T. castaneum, and expansion
of TcABCC gene mainly occurs on chromosome 5 and affects genes of the “short” MRP group [20].
The ABCC subfamily of B. mori can be divided into two groups, one of which has very high similarity
with the ABCB subfamily [50]. The B. mori ABCC subfamily consists of five FTs, seven HTs and three
incomplete ABC sequences. The ABCC transporters of most insects with known genomes are also
composed of FTs and HTs, except for D. melanogaster; its 14 ABCC transporters are FTs. Some ABCC
transporters also contain an additional N-terminal TMD (TMD0) [46] and have been found in the
genome of D. pulex, An. gambiae, D. melanogaster and T. castaneum [20,47,48].

3.4. The ABCD, ABCE and ABCF Subfamilies

The ABCD subfamily is composed of highly conserved HTs, located on the peroxisome membrane,
that form heterodimers and mediate the transport of acyl coenzyme A esters in organisms [73,74]. Most
insects with sequenced genomes have two ABCD genes, but a few insects, such as Danaus plexippus
and P. xylostella, contain three [59,60]. Because of the high sequence similarity between insects and
other eukaryotes, including humans, they may be involved in similar peroxisomal pathways [11].

Compared with other ABC transporters, both ABCE and ABCF proteins have no TMDs, and each
member contains a pair of adjacent NBDs [75]. Due to their lack of transmembrane structure, proteins
in these two subfamilies do not have a translocation function [76]. Almost all insects, and even most
eukaryotes, contain only one ABCE gene, which is highly conserved [50]. The ABCF subfamily is also
highly conserved. Similar to human ABCF proteins, most of the known insect genomes have three
ABCF proteins. They are divided into three distinct groups by phylogenetic analysis, and the genes
in each group is highly similar [50]. ABCE and ABCF proteins are universally found in eukaryotes
and are important in ribosome biogenesis, translation control and mRNA output [76–78]. ABCE
is annotated as RNase L (Rli1) inhibitor in eukaryotes and may have a general function in innate
immunity [79]. Injection of T. castaneum with either TcABCE-3A- or TcABCF-2A-specific dsRNA leads
to a lethal phenotype [20].

3.5. The ABCG Subfamily

ABCG transporters are typical HTs, which must form homo- or heterodimers to fulfill their
transport function. Compared with other half-transporter proteins, ABCG transporters have a reverse
domain structure; its TMD is connected to the C-terminal region of NBD [14]. Some ABCG proteins can
form dimers with different partners, thus increasing the repertoire of substrates they can transport [11].
The number of ABCG genes in an insect species ranges from 2 to 24. The white proteins of D. melanogaster
can form dimers with one of the other two HTs named Brown and Scarlet and play a crucial role in the
cellular uptake of pigment precursors in the eye [80]. An ortholog of the white gene of D. melanogaster
is present in all known insect genomes, but the brown and scarlet genes are only present in some
insects [11]. A study of the white ortholog of T. castaneum found that the transport precursor of a
pigment across the membrane of Malpighian tubule cells is ABCG-dependent [20]. White is also
necessary for the transport of uric acid in the larval epidermis of B. mori. The ABCG HTs homologous
to brown in aphids, lepidopteran and hymenopteran species can form dimers with white to participate
in the transport of urate [81]. In the B. mori genome, white and scarlet are juxtaposed in a head-to-tail
orientation, which indicates that the origin of white and scarlet resulted from the tandem duplication of
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an ancestral gene. The same arrangement was also found in other insect species that lack a functional
ortholog of the brown gene [19].

3.6. The ABCH Subfamily

ABCH transporters were first found in D. melanogaster, then in other insects; they have not been
found in mammals, plants, fungi and C. elegans [1,82,83]. However, this type of ABCH protein was
reported in zebrafish [84], but reports of the gene in other teleost fishes have not been consistent [85,86].
Four ABCH genes were identified in the Ptychadena nana genome [87]. Similar to the ABCG transporter,
ABCH proteins are also HTs and have the reverse domain organization with the NBD connecting to
the N-terminal side of the TMD [14]. Three ABCH proteins exist in most of the known insect genomes.
Although this protein is very similar to the ABCG transporter, little is known about its function at
present. Silencing of the ABCH1 gene of P. xylostella with a high dose of dsRNA results in lethal larval
and pupal phenotypes [59]; thus ABCH1 may be an excellent target for pest control. Injection of dsRNA
of TcABCH-9C causes dehydration and death of T. castaneum larvae [20]. ABCH-9C may be involved
in the formation of the protective lipid barrier on the cuticle surface of Locusta migratoria [88,89] and
D. melanogaster [89].

4. ABC Transporters in Xenobiotic Detoxification by Insects

4.1. Insecticide Transport and Detoxification

Generally, insect resistance to xenobiotics is due to point mutations at target sites, or the effective
metabolism or sequestration of toxic substances [90,91]. The emergence of insecticide resistance in
insects is mainly related to the decreased sensitivity of target sites to insecticides and changes in
the expression or properties of metabolic detoxification genes [92,93]. Several members of the insect
ABC transporter superfamily play a very important role in pesticide resistance by inhibiting the
accumulation of intracellular pesticides and their metabolites [94].

Xenobiotic transcription factors (XTFs) are also important in regulating the expression of genes
that encode proteins involved in detoxification. Cap’n’collar (Cnc) transcription factors are members
of the XTF superfamily [95,96]. In the red flour beetle (T. castaneum), the Cap’n’collar C isoform (CncC)
is involved in all three phases of insecticide detoxification and regulates the expression of ABCA-UB,
ABCA-1A and ABCA-1AL. RNAi and an insecticide bioassay showed that these ABCA genes contributed
to the susceptibility of T. castaneum to pyrethroid [97]. This study provided a clearer understanding of
the role of ABC transporter and its upstream regulatory pathway in insecticide detoxification.

Among ABC transporters family, the ABCB subfamily mostly represents the P-gps and multiple
drug resistance (Mdr) proteins. P-gps are ATP-dependent efflux pumps, which are closely related to
the transmembrane transport of substances. Some of these proteins are associated with multidrug
resistance [98]. When RNAi-mediated gene silencing was used to analyze the potential function
of P-gp in insecticide efflux in Aedes aegypti, temephos toxicity significantly increased (57%) in the
P-gp-silenced mutant [99]. Jin et al. reported that inhibition of P-gp increased the susceptibility of
H. armigera to abamectin and indoxacarb [62]. Previous studies by Aurade et al. have also shown that
P-gp is associated with resistance of H. armigera to insecticides [100]. An increase in P-gp expression in
D. melanogaster is directly related to abamectin resistance, and the level of P-gp in blood-brain barrier
of resistant D. melanogaster is significantly higher than in the susceptible control [101,102]. In-depth
analysis showed that P-gp content is regulated by epidermal growth factor receptor (EGFR) and
protein kinase B (Akt, PKB) pathways in D. melanogaster [101]. Over-expression of ABCB4 through gene
amplification has been detected in pyrethroid-resistant Ae. aegypti [21]. ABCB transporter subfamily
members Mdr49, Mdr50 and Mdr65 are associated with DDT resistance in 91-R strain of D. melanogaster.
Among them, the resistance conferred by Mdr49 was related to its splice-form variant and amino
acid residue changes [103,104]. D. melanogaster with a Mdr65-gene knockout via CRISPR/cas9 had
increased susceptibility to all neuroactive insecticides tested. Deficiency crosses, synergism with
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the ABC inhibitor verapamil and accumulation of pesticides in the Mdr65-knockout individuals
further confirmed that Mdr65 plays an important role in pesticide transport [105]. Tissue-specific
RNAi of Mdr65 also confirmed the role of the gene in reduced toxicity of multiple insecticides in
D. melanogaster [106].

Many ABCC transporters can specifically transport a variety of drugs, so they are also called
multidrug resistance proteins (MRPs). TrnMRP1 and TrnMRP4 are highly expressed in the Malpighian
tubules in the lepidopteran Trichoplusia ni and may be involved in excreting metabolic wastes or
ingested xenobiotics [107]. Microarray studies of adult B. tabaci showed that an ABC transporter of
subfamily G is upregulated when exposed to thiamethoxam [108,109]. Compared with expression
in susceptible strains, the expression of A, C, G, H and F subfamily members of ABC transporters
was higher in chlorpyrifos- and fluronitrile-resistant strains of P. xylostella (diamondback moth),
suggesting that these ABC transporters may be related to the transport or detoxification of different
pesticides [110,111]. The expression of ABC genes HaOG200303 from subfamily C, HaOG200310,
HaOG200353 and HaOG200354 from subfamily G and HaOG200341 from subfamily H were significantly
upregulated in H. armigera when treated with both lambda-cyhalothrin and indoxacarb [62]. However,
whether the high expression of ABC transporter after insecticide induction is related to the detoxification
metabolism of insects needs to be confirmed by further studies. PhABCC4 of Pediculus humanus humanus
expressed in Xenopus oocytes functioned in ivermectin efflux, suggesting that PhABCC4 might be
involved in ivermectin transport [112].

4.2. Detoxification of Plant Secondary Metabolites

Plants can release a variety of toxic secondary metabolites to deter the feeding of herbivorous
insects, and insects have evolved corresponding countermeasures via natural selection, specialization,
sequestration during the long-term interactions between plants and insects [113]. As part of these
countermeasures, members of ABC transporter family play a crucial role in overcoming multiple
chemical plant defenses. A gene knockout and bioassay in D. melanogaster indicates that Mdr is involved
in the detoxification of plant secondary metabolite cardenolides [114]. A study of the ABC transporter
CpMRP (ABC subfamily C) of C. populi revealed that CpMRP acts as a pacemaker, transporting specific
metabolites from the hemolymph to defensive secretions, and eventually excreting them from the body.
Silencing of CpMRP makes larvae defenseless, indicating CpMRP plays a key role in secretion [115].
Homologous sequences of CpMRP were also identified in the defensive glands of two related leaf
beetle species, suggesting that this ABC transporter is the key component of insect resistance to
noxious phytochemicals.

The expression level of ABC genes was studied in tissues of 5th instar larvae of H. armigera after
they were fed an artificial diet supplemented with various plant secondary metabolites. Taxol induced
the expression of ABCE1 in Malpighian tubules, upregulated the expression of ABCB1 in the gut and
expression of ABCB1, ABCC2 and ABCC6 in the rest of the body [61]. ABCB1 has also been shown
to be associated with paclitaxel resistance of human cancer cells [116]. The expression of HaABCG11
was upregulated after larvae were fed a diet supplemented with nicotine compared to the control
samples, and HaABCB3 expression was very high in the gut of H. armigera larvae after they fed on a diet
containing nicotine or tomatine [61]. Similarly, ABCB3 was upregulated in Manduca sexta larvae that
fed on Datura and Solanum. This plant-specific expression pattern may be related to the adaptability of
insect to these plants [117]. The function of ABCB3 in insects is not completely understood, but it most
likely is important in a defense response of insects to plant secondary metabolites.

5. ABC Transporter Roles in Bt Insecticidal Activity

The ABC transporters that act as Bt-toxin receptor belong to subfamilies A, B, C and D (Table 2).
With the long-term cultivation of Bt cotton, field resistance to Cry2Ab toxin evolved in H. armigera.
The resistance of two H. armigera strains to Cry2Ab was an independent evolutionary event involving
different deletion mutations, which were located in different exons of the same ABCA2 gene [68].
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A homologous deletion in HaABCA2 was also detected in resistant lines of H. punctigera Cry2Ab.
A similar situation was also found in resistant lines of Pectinophora gossypiella; a loss of PgABCA2 exon
6 was caused by alternative splicing in resistant larvae of laboratory-selected strains in Arizona and
field-selected strains in India [118]. In addition, insect ABCA2 was expressed in the midgut where
the Cry2Ab toxin binds [68,119]. A bioassay of two strains of H. armigera with CRISPR/cas9 knockout
of HaABCA2 showed that HaABCA2 plays an important role in mediating resistance to Cry2Aa and
Cry2Ab [120].

Table 2. Bt toxins and their possible corresponding ABC transporters as receptors in insects.

Bt toxin Receptor Target pest Reference

Cry1Aa ABCC2 Bombyx mori [121]
Cry1Ab ABCC2 Bombyx mori [122]

ABCG1 Ostrinia furnacalis [123]
Cry1Ac ABCC2 Helicoverpa armigera [25]

ABCC2 Heliothis virescens [124]
ABCG1 Ostrinia furnacalis [123]
ABCG1 Plutella xylostella [125]
ABCC2 Plutella xylostella [126]
ABCC2 Spodoptera exigua [127]
ABCC3 Spodoptera frugiperda [128]

Cry1Ca ABCC2 Spodoptera exigua [127]
Cry1Fa ABCC2 Ostrinia nubilalis [129]
Cry2Aa ABCA2 Helicoverpa armigera [120]
Cry2Ab ABCA2 Helicoverpa armigera [68]

ABCA2 Helicoverpa punctigera [68]
ABCA2 Pectinophora gossypiella [118]

Cry3Aa ABCB1 Chrysomela tremuela [130]
Cry3Bb1 ABCB1 Diabrotica virgifera virgifera [131]

A Chrysomela tremuela strain survived and reproduced on transgenic poplar trees that expressed a
high level of Cry3Aa Bt toxin, and its Cry3Aa resistance was an autosomal recessive trait. Candidate
resistance genes were analyzed using midgut transcriptome of larvae, demonstrating that a mutation
of the ABCB homolog of P-gp was closely linked to the resistance of Cry3Aa, and named CtABCB1.
A 4-bp deletion in CtABCB1 introduced a frame shift with a premature stop codon, resulting in the loss
of transporter signature motifs 1 (TpM1) and transmembrane domain 2 (TMD2) [130]. A CtABCB1
homologous gene in western corn rootworm (Diabrotica virgifera virgifera) was also shown to be
genetically linked to Cry3Bb1 resistance [131]. Perhaps the insect ABCB1 transporter is a receptor
specific for Cry3 toxin, and structural changes in this transporter may be associated with Cry3 toxin
resistance of the insect.

Some ABCC transporters are a functional receptor for more than one Cry1A toxin. The binding
of Cry1Ac toxin to ABCC2 on membrane vesicles can lead to membrane perforation. Bretschneider
et al. studied the relationship between the ABCC2 of Heliothis virescens and cytotoxicity of three
Cry1A toxins (Cry1Aa, Cry1Ab, Cry1Ac) in Spodoptera frugiperda Sf9 cells and found that ABCC2
is the central target of Cry1A toxin action [132]. Heterologous expression in D. melanogaster has
been used to validate the involvement of ABCC2 in Cry1Ac toxin binding [133]. An inactivating
mutation, such as mis-splicing of ABCC2 or a mutation causing a single amino acid change, could
reduce binding of Cry1Ac toxin, conferring high levels of Bt resistance in the target pest [25,124,134].
In a Cry1Ac-resistant strain of P. xylostella with a 30-bp deletion in exon 20, was expected to cause the
removal of the 12th transmembrane (TM) domain and carboxyl terminal of TM12 that is located outside
the cell. The mutation may result in the lack of function of a core ATP-binding loop [126]. In addition,
an ABCC transporter is also the receptor of Cry1Ca and Cry1Fa toxins [127,129]. A cytotoxicity
assay showed that the binding affinity of ABCC transporters to Cry toxin was largely linked to the
susceptibility of receptor-expressing cells to Cry toxin and that the extracellular loop (ECL) structures
determine the specificity of ABCC to Cry toxins [135].
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Bt resistance mediated by ABCC transporters involves not only different forms of gene mutations,
but also the regulation of ABCC gene expression. The study of Bt resistance in hybrid larvae of
B. mori revealed a trans-regulatory mechanism involved in the allele-specific expression of ABCC2 in
response to Cry1Ab toxin, which may play an important role in insect Bt resistance [122]. The binding
of Cry1Ac toxin to ABCC transporters that causes midgut membrane perforation is regulated by
a constitutively and transcriptionally activated upstream gene (MAP4K4) in the MAPK signaling
pathway [125]. In addition, Forkhead box protein A (FOXA) upregulates expression of ABCC2 and
ABCC3 genes in Sf9 cells [128]. ABCC2 and ABCC3 are important receptors of Cry1Ac toxin, and their
expression level has a significant influence on insect Bt resistance; thus, FOXA may be involved in the
regulation of insect resistance to Cry1Ac toxin.

ABCG1 (white) gene is one of the most widely studied members of the ABCG protein subfamily.
The white protein in P. xylostella is located on the cell membrane, and the expression of Pxwhite gene
in the midgut of a Bt-resistant population is significantly lower than in a susceptible population.
After RNAi silencing of the midgut Pxwhite gene, the sensitivity of the larvae to Bt-Cry1Ac toxin
significantly decreased [136]. Genetic linkage analysis confirmed that the decrease was closely linked
to the Bt-Cry1Ac resistance of the moth. Downregulated expression of ABCG subfamily genes in
Ostrinia furnacalis is also related to its resistance to Cry1Ab and Cry1Ac toxins [123].

6. Discussion

Functional study of insect ABC transporters and their role in resistance to chemical insecticides
and Bt toxins has shown that several ABC transporters are involved in toxin resistance. However, more
progress is needed to fully understand the functions and detailed mechanisms of action. Different
ABC transporters may recognize different chemicals or Bt toxins, and their TMDs have distinct binding
sites that recognize substrates with highly diverse chemical properties [137]. ABCA2 is the receptor
of Cry2Ab toxin [68,118,119], ABCB1 is the receptor of Cry3 toxin [130,131], and members of the
ABCC family are receptors of Cry1 toxin [25,124,132,134]. Thus, different pesticides, toxic secondary
metabolites of plants and Bt toxins may be recognized and transported by different ABC transporters.
The strategies and methods that are used to study human ABC transporters involved in drug transport
can also be used to investigate ABC transporter functions and mechanisms involved in insect resistance.
The sequencing of insect genomes provides unparalleled advantages over traditional methods for
revealing the molecular basis and mechanisms of insect resistance to pesticides and Bt toxins, and insect
genomics approaches will become the most important methods to analyze insect resistance mechanism.

ABC transporters are the main receptors for most Bt toxins, so it is not surprising that Bt resistance
in pests is commonly related to a mutation in an ABC transporter. Upstream regulatory factors
such as MAP4K4 and FOXA can also change gene expression for ABC transporters, thereby altering
susceptibility of pests to Bt toxins [125,128]. The regulatory pathways and corresponding mechanisms
that affect the expression of ABC transporter need to be further elucidated. If the regulation mechanism
of the expression of ABC transporter can be clearly understood, more efficient and convenient measures
can be developed for Bt resistance control. Insects that are resistant to chemical pesticides, plant toxic
secondary metabolites and Bt toxins may also be subject to a fitness cost. Any such physiological cost
correlated with resistance may also provide a target for pest control.

Plant-mediated RNA interference provides a new method and model for pest control in the field.
The dsRNA fragment targeting the β-actin gene in Colorado potato beetle was transferred to potato
chloroplasts, and the transgenic plants were lethal to Colorado potato beetle larvae [138]. The use of
dsRNA to knockdown the acetylcholinesterase (AChE) gene involved in neuronal transmission and the
ecdysone receptor (EcR) gene involved in transcriptional activation of development in transgenic plants
can effectively control whitefly populations [139]. Because insect resistance to chemical pesticides is
related to the upregulation of certain ABC transporters, silencing the genes for these ABC transporters is
expected to make the pest more susceptible to the pesticide. In addition, the development of inhibitors
specific for a particular ABC transporter might enhance the susceptibility of the target insect. Since
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ABC transporters can differ significantly among various species, the inhibitor must be highly specific
for the transporter involved in the target(s) species and not adversely affect other insects or organisms.

With the deepening of our knowledge on the structure and physiological function of insect ABC
transporters, the mechanism of action of these transporters in pesticide resistance, Bt insecticidal
activity and other physiological processes will become clearer, and new technologies will be developed
for the effective control of insect pests.
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