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Abstract: Alkynes are highly attractive motifs in organic
synthesis due to their presence in natural products and
bioactive molecules as well as their versatility in a plethora of
subsequent transformations. A common procedure to insert
alkynes into (hetero)arenes, such as the thiophenes studied
herein, consists of a halogenation followed by a Sonogashira
cross-coupling. The regioselectivity of this approach depends
entirely on the halogenation step. Similarly, direct alkynyla-
tions of thiophenes have been described that follow the same
regioselectivity patterns. Herein we report the development of
a palladium catalyzed C—H activation/alkynylation of thio-
phenes. The method is applicable to a broad range of thiophene
substrates. For 3-substituted substrates where controlling the
regioselectivity between the C2 and C5 position is particularly
challenging, two sets of reaction conditions enable a regiodi-
vergent reaction, giving access to each regioisomer selectively.
Both protocols use the thiophene as limiting reagent and show
a broad scope, rendering our method suitable for late-stage
modification.

The direct functionalization of thiophenes, to access their
valuable derivatives, is an important target in organic
chemistry due to the broad use of thiophenes in material
sciences and medicinal chemistry."! Alkynes are one of the
key motifs for organic chemists and the most commonly used
method for insertion of this motif into (hetero)arenes is the
Sonogashira cross-coupling,! where the regioselectivity of
the product formation depends on (pseudo)halogenation
step. Considering the importance of alkynylated thiophenes
in pharmaceuticals and organic materials,®! an alternative
direct access to these products is highly desirable since this
would not only make the method more atom- and step-
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economic, but could also deliver complementary products in
cases where there is a challenge in regioselectivity. In 2010,
Waser and co-workers reported a gold- and Brgnsted-acid-
catalyzed C5-alkynylation of 2-substituted thiophenes.* In
this study, they also reported one example of an electron-rich
3-substituted thiophene, which was selectively alkynylated in
the C2 position (Scheme 1). Furthermore, Su and co-workers
reported a Pd-catalyzed oxidative cross-coupling of 2-sub-
stituted thiophenes and phenyl acetylenes, the latter being
used as limiting reagent.’! However, to the best of our
knowledge no general method which enables the alkynylation
of thiophenes irrespective of the substitution pattern has been
reported to date. Especially for 3-substituted thiophenes, the
control over the regioselectivity between C5 and C2 position
remains unaddressed.

For such 3-substituted thiophenes, the regioselectivity of
the C—H activation is mainly governed by the steric and
electronic properties of the substituents as well as the
sensitivity of the catalyst system towards these effects.*®
For substrates bearing electron-donating substituents
(EDG) in the 3 position, the C2 product is electronically
favored and hence an electrophilic reagent or catalyst is
expected to induce the functionalization in this position. In
contrast, a catalyst that is more sensitive to steric hindrance is
expected to lead to C5-substitution through a pathway in
which the steric clash between the catalyst and the substituent
in the 3 position is avoided. For electron-withdrawing groups
(EWG) in the 3 position another effect comes into play. Since
many of these substituents are also Lewis-basic, they can act
as directing groups (DGs) thereby favoring the functionali-
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Scheme 1. Explored and unexplored areas of regioselective C—H alky-
nylation of 3-substituted thiophenes.
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zation in the neighboring C2 position (and in principle also
the often less reactive C4 position) through chelation control.
In 2017, Zeng and co-workers reported a directed Ir-catalyzed
ortho-alkynylation of arenes, which included one example of
such a carboxylate-directed, C2-selective alkynylation of a 3-
subsbtituted thiophene (Scheme 1).°!

Also in 2017, Echavarren and co-workers reported a Ru-
catalyzed ortho-alkynylation of arenes. As part of this study
they demonstrated the carboxylic acid-directed alkynylation
of 3-substituted thiophenes to get di-alkynylation at the C2
and C4 position.'”! One example of a C2-selective mono-
alkynylation employing 4-bromothiophene-3-carboxylic acid
as substrate was also reported (Scheme 1). In 2018, the same
group reported a Rh-catalyzed ortho-alkynylation of arenes,
which included one example of a 3-substituted thiophene with
benzyl ether as weak DG to deliver the C2 product
(Scheme 1).'' As highlighted above, the direct C—H alkyny-
lation of thiophenes remains a highly challenging yet attrac-
tive goal. For C2-substituted substrates substantial limitations
still exist with respect to the scope of substrates that can be
addressed. The more challenging 3-substituted substrates
have to date only been addressed in isolated cases leading to
C2-selective functionalization.

Based on these observations and our recent experience in
controlling the regioselectivity of C—H activations on hetero-
arenes, ™ we hypothesized that through the design of suitable
catalysts a regiodivergent reactivity enabling both a C2- and
a C5-selective alkynylation of thiophenes could be devel-
oped.” Additionally, we expected that one of these catalyst
systems would likely display a broad scope with respect to
thiophenes with simpler substitution patterns as well, thereby
allowing us to develop a general method for the alkynylation
of thiophenes.

We thus began our studies with 3-hexyl thiophene 1a as
model compound. We expected that by applying our dual
ligand-enabled catalyst design,'! which is known to deliver
products under steric control, we would be able to induce an
alkynylation in the C5 position. Although our initial experi-
ments delivered poor regioselectivities, we observed a highly
promising ligand control of the regioselectivity when we
increased the steric demand of the substituent on the amino-
acid-derived ligand (L1-L4, Scheme 2).

Using L4, we proceeded to optimize the reaction con-
ditions and identified the protocol shown in Entry 1 of

CEHde(OAc).Q (10 mol%), Ligand (30 m?l%), CeHia
Pyrazine (20 mol%), Ag,0 (2 equiv)
csfjc2 B
H H EtOH (2 mL), 40°C, 18 h = H
s @t s> S
1a Br———TIPS 2a (1.5equiv) 3a-C5

o}
CO,H )LN COH

L3 L4

H

o) o) f\ o
)Lu/\COZH )LN CO,H A N
L1 L2

Yield: 48%
Ratio (C5:C2) = 56:44

Yield: 37% Yield: 43% Yield: 51%
Ratio (C5:C2) = 67:33 Ratio (C5:C2) = 86:14 Ratio (C5:C2) = 91:9
Scheme 2. Effect of ligands on yield and regioselectivity. All reactions
were conducted on a 0.1 mmol scale. Yields and ratios were deter-
mined by GC-FID analysis using 1,3,5-trimethoxybenzene as an inter-
nal standard.
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Table 1. Under these conditions the target compound 3a-C5
was obtained in good yield (71 %) and regioselectivity (94:6).
Importantly, our control experiments revealed that the
reaction is indeed dual ligand-enabled, since in the absence
of either ligand, substantially worse reaction outcomes were
observed (Entries 2-4).

With the optimized reaction conditions in hand, we
proceeded to explore the scope of the reaction (Scheme 3).

The sterically controlled nature of the catalyst system is
visible if one compares the selectivity of the entries 3a-C5-
3¢-C5, where a decrease in the steric bulk of the alkyl
substituent somewhat decreases the CS5 selectivity, albeit still
remaining good even for the small methyl group. Electron-
withdrawing ester and ketone substituents are also tolerated
and give products with good C5 selectivity under both
electronic and steric control (Scheme 3, 3e-C5-3h-C5). Our
protocol works well for a series of 3-aryl substituted
thiophenes (Scheme 3, 3i-C5-3m-C5), which as well shows
that a number of common functional groups are well tolerated
under our reaction conditions, such as ethers, halides, and

Table 1: Control Experiments (C5 selectivity).

CeH Pd(OACc), (10 mol%), L4 (30 mol%), CeHia
e Pyrazine (20 mol%), Ag,0 (2 equiv)
C57 yC2 I/ \
H Ng” ~H Octanol (2 mL), 40 °C, 18 h . =" g H
1a Br————TIPS 2a (3equiv) 3a-C6
Conditions!? Conversion Yield Ratio
(961" (961" (C5/C2)"

As above 97 71 94:6
No Pd, L4, pyrazine 5 0 -
No L4 26 19 47:53
No pyrazine 22 9 67:33

[a] All reactions were conducted on a 0.1 mmol scale. [b] Conversions,
yields, and ratios were determined by GC-FID analysis using 1,3,5-
trimethoxybenzene as an internal standard.

R Pd(OAC), (10 mol%), L4 (20 mol%), R

Cﬂ‘ﬁ Pyrazine (20 mol%), Ag,0 (2 equiv) R

H™Ng” 7H Octanol (2 mL), 40 °C, 18 h TP =" g’ H
1 Br—=—TIPS 2a (3equiv)
CeHiz Et OMe CO,Me
3 s s S S
By H s H g H g H g
3a-C5,70%,C5:C2 = 16:1  3b-C5,64%  3¢-C5,61% 3d-C5,2 53% 3e-C5,2 69%
C5:C2=1311 C5C2=8:1

(63%, C5:C2 = 16:1)° C5:C2=8:1 C5:C2=8:1

H OMe
0 . Q,
CO,Pr o
Vaa B r I
H g H g H™ g H g H g

3i-C5,% 53%
C5:C2=13:1

3f-C5,2 63%
C5:C2=9:1

3g-C5, 65%
C5:C2=9:1

3h-C5.2 63%
C5:C2=3:1

3j-C5, 52%
C5:C2 = 25:1

CO,Et

.
CO,Me

B B B ,[‘g_('“’“‘“
H g H g H g H g H

3k-C5,2 53%
C5:C2=13:1

30-C5,2 41%
C5:C2=17:1

31-C5,2 50%
C5:C2= 1311

3m-C5,2 52%
C5:C2= 1311

3n-C5, 50%
C5:C2=5:1
Scheme 3. Scope of the C5-selective alkynylation of thiophenes. All
reactions were conducted on a 0.2 mmol scale. [a] For these reactions
‘Amyl-OH was used as solvent. [b] Reaction conducted on a 5 mmol
scale.
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esters. Finally, our method can be applied to alkynylate
a thiophene-containing unnatural amino acid derivative (3n-
C5) and an estrone derivative (30-C5) with good C5
selectivity.

After realizing a broad scope in Scheme 3, we proceeded
to attempt the development of a complementary, C2-selective
catalyst system. Although in our previous studies, dual ligand-
based catalysts always showed a preference for steric over
electronic control, we reasoned that by increasing the
electrophilicity of the catalyst, an electronically controlled
reaction might be enabled. In our previous optimization
studies, we noted that N-acetyl-f-alanine (L5) and
a COC4H,;-substituent on nitrogen of glycine as ligand (L6)
both led to increased amounts of the C2-alkynylated product
3a-C2 (Scheme 4).

Unfortunately, combining these effects in L7 did not
deliver satisfactory results. We thus proceeded to test stronger
electron-withdrawing substituents on the ligand. We installed
a COCF,; substituent (L8) and a SO,CF; substituent (L9) on
the nitrogen of glycine and, gratifyingly, L8 was able to deliver
a 4:1 selectivity in favor of the C2 product. Lastly, we tested
ligand L10, which constitutes a permutation of the positive
effects seen in LS and L8. However, this ligand gave a reduced
yield and no improvement in the regioselectivity compared to
L8, which was therefore chosen for further optimization
studies. We proceeded to screen various other parameters
which led us to identify reaction conditions under which
a satisfactory yield and good regioselectivity are obtained (for
details, see the Supporting Information).

These conditions were then used to explore the scope of
the C2-selective alkynylation (Scheme5). The trend in
C2 selectivity observed from hexyl to methyl substituent
(Scheme 5, 3a-C2-3¢-C2) shows that this catalyst system,
while predominantly controlled by electronics, is sensitive to
sterics as well, since the C2 selectivity is best when steric
hindrance at this position is low. Halide substituents (3p-C2
and 3@-C2) as well as a strong electron-donating methoxy (3r-
C2) group give the C2 product exclusively. We also tested
various aryl-substituted thiophenes (Scheme 5, entries 3i-C2-
3m-C2). In contrast to the CS-selective protocol and as

CaH Pd(OAc); (10 mol%), Ligand (30 mol%), CaHis
Pyrazine (20 mol%), Ag,0 (2 equiv)
C5/ \\C2 ]\
H Ng” ~H EtOH (1 mL), 40 °C, 18 h H N TIPS
1a Br—==—TIPS 2a (1.5 equiv) 3a-C2

o (o} (o}
)J\ A~ )?\ )j\ A COH A\
N™ "CO,H N”  COH N N “CO,H
H H 2 H H
L1 L4 L5 L6
Yield: 48% Yield: 51% Yield: 37% Yield: 56%
Ratio (C5:C2) = 56:44Ratio (C5:C2) =91:9  Ratio (C5:C2) = 28:72 Ratio (C5:C2) = 36:64
o} (o} Q.0 (0]
\ 4
COM oL
NP2 FacJ\N/\COZH FoC” N> CoH FacJ\N/\/COZH
H H H H
L7 L8 L9 L10
Yield: 32% Yield: 41% Yield: 6% Yield: 32%

Ratio (C5:C2) = 23:77  Ratio (C5:C2) = 20:80 Ratio (C5:C2) = 61:39  Ratio (C5:C2) = 20:80

Scheme 4. Ligand development for C2 selectivity. All reactions were
conducted on a 0.1 mmol scale. Yields and ratios were determined
using GC-FID analysis using 1,3,5-trimethoxybenzene as an internal
standard.
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R Pd(OAC), (10 mol%), L8 (20 mol%), R
cﬂgz Pyrazine (20 mol%), Ag,0 (2 equiv) J\
H H . H =
S MeOH (2 mL), 30 °C, 18 h st ==
b Br—=—TIPS 2a (5 equiv) 2

TIPS

CeH1s Et OMe Cl
O S S s G5 ¢
S H S H S H S H S H
3a-C2,261% 3b-C2259%  3¢-C2,°52% 3d-C2, 49% 3p-C2, 41%
C5:C2=16 C5:C2=1:7 C5C2=1:10 ol C5:C2=17 C2 only
(50%, C5:C2 = 1:6)° e
Br OMe
.. . O 5. O
s” H 5”7 H g7 H g7 H g7 TH
3q-C2, 43% 3r-C2, 52% 3i-C2,° 51% 3j-C2,° 50% 3k-C2,° 53%
C2 only C2 only C5:C2=1:14 C5:C2=1:10
F CO,Et
CO,Me
NPhth
B B [{(
s’ H s” H g7 H
31-C2,° 42% 3m-C2,° 53% 3n-C2, 41% 30-C2,°51%
ChC2= 15 C502= 14 C5:C2=15 C5:c2=1:13

Scheme 5. Reaction scope (C2 selectivity). All reactions were con-
ducted on a 0.2 mmol scale. [a] Reaction conducted at 35°C with

2 equivalents of reagent. [b] Reaction conducted at 50°C. [c] Reaction
conducted on a 1 mmol scale.

expected for an electronically controlled reaction, we
observed a much stronger dependence of the reaction out-
come on the electronic nature of the substituent. An electron-
donating methoxy substituent (3i-C2) on the phenyl ring
gives substantially higher C2 selectivity than an electron-poor
ester substituent (3m-C2). Irrespective of these effects on the
regioselectivity, the functional group compatibility was found
to be good for the C2 selective protocol as well. Finally, this
catalyst system can also be used to deliver alkynylation
product from an amino-acid-derived thiophene derivative
(3n-C2) and an estrone derivative (30-C2) with good
C2 selectivity.

Having established the thiophene scope for our regiodi-
vergent protocols, we were interested to evaluate the use of
other bromoalkynes with both protocols (Scheme 6).1 We
found that a range of bromoalkynes could be used in both
directions with satisfactory yields and selectivities. A TBS
group was well tolerated (4-C5 and 4-C2), as well as various
alkyl-substituted bromoalkynes as reagent (5-C5-12-C5 and
5-C2-12-C2). Bromoalkynes bearing o-non-quaternary sub-
stituents, such as a cyclohexyl or n-hexyl groups, as well as
phenylacetylene-derived bromoalkynes, gave no product
formation under our reaction conditions. However, the
regiodivergent reactivity developed herein can nevertheless
be harnessed for such target compounds. To this end the
TIPS-group can be removed, followed by a Sonogashira cross-
coupling. We demonstrated the feasibility of this approach
using our standard substrate (for details, see the Supporting
Information).

As mentioned earlier, we expected that once the chal-
lenging regioselective alkynylation of 3-substituted thio-
phenes would be addressed, the respective catalyst systems
would likely also be able to functionalize regioselectivity-wise
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Ph Ph
10-C5, 60% 11-C5, 46% 12-C5, 38% 10-C2,2 48% 11-C2,51% 12-C2, 26%
C5:C2=13:1 C5:C2=16:1 C5:C2=19:1 C5:.C2=16 C5C2=17 C5:C2=15

Scheme 6. Alkyne scope. All reactions were conducted on a 0.2 mmol scale. [a] Reaction conducted at 35°C with 2 equivalents of alkyne reagent.

less challenging thiophenes and thereby provide a general
method for the alkynylation of all types of thiophenes.

We tried the conditions developed for the C5- and C2-
selective alkynylations on 2-ethyl thiophene (13a, Scheme 7)
as model substrate and found that the latter delivered
satisfactory results, giving Product 14a in 68% yield. An
electron-donating methoxy substituent (14b) is well toler-
ated. Likewise, an aryl substituent in the 2 position led to
a good reaction outcome (14¢). Finally, halide substituents
(14d.,e) and 2,3-disubstitution (14f) were found to be well
tolerated.

In summary, we have developed a pair of general catalyst
systems for the Pd-catalyzed non-directed C—H activation/
alkynylation of thiophenes that are suitable for all kinds of
substitution patterns on the thiophene. For regioselectivity-
wise challenging 3-substituted substrates the protocols are
complementary, giving a regiodivergent access to the C5- and
C2-alkynylated products, respectively. Overall, a broad scope
with respect to the thiophene and alkyne reaction partner can
be addressed, including structurally complex examples. In all

Pd(OAC), (10 mol%), L4 (20 mol%),
Pyrazine (20 mol%), Ag,O (2 equiv)

[L

fAmyl OH (2mL), 40°C, 18 h
TIPS  2a (3 equiv)

Ao

Br

A

/&

TIPS~ TIPS~
14,2 68% 14b, 52% 14¢,2° 67%
A, ) /d
TIPS~ e =
TIPS TIPS~
14d, 68% 14e, 62% 14f, 80%

Scheme 7. Scope of C2-substituted thiophenes. All reactions were
conducted on a 0.2 mmol scale. [a] Pd(OAc), (10 mol %), L8

(20 mol %), pyrazine (20 mol %), Ag,O (2 equiv), MeOH (2 mL), 2a
(5 equiv), 30°C, 18 h. [b] Reaction conducted at 50°C instead of 30°C.
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cases the thiophene substrate is used as the limiting reagent,
which renders this protocol attractive in the context of late-
stage modification.
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