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Abstract
Cardiac atlases play an important role in the computer-aided diagnosis of cardiovascular

diseases, in particular they need to deal with large and highly variable image datasets. In

this paper, we propose a new nonrigid registration algorithm incorporating shape informa-

tion, to produce comprehensive atlases. For one thing, the multiscale gradient orientation

features of images are combined to form the construction of multifeature mutual information.

Additionally, the shape information of multiple-objects in images is incorporated into the

cost function for registration. We demonstrate the merits of the new registration algorithm

on the 3D data sets of 15 patients. The experimental results show that the new registration

algorithm can outperform the conventional intensity-based registration method. The

obtained atlas can represent the cardiac structures more accurately.

Introduction
Cardiovascular diseases are now the most significant cause of death in China [1]. Their early
diagnosis and treatment is crucial in order to reduce mortality and to improve patients’ quality
of life. In recent years, some non-invasive imaging modalities are establishing the importance
of high resolution imaging of the cardiovascular system. Among them, Computed Tomogra-
phy(CT) has been widely used in not only the acquisition of 3D images which describe the car-
diac anatomy but also the acquisition of 3D+time image sequences which describe the cardiac
anatomy as well as function [2]. Both the multislice CT(MSCT) and dual-source CT(DSCT)
have a demonstrated high sensitivity and specificity in diagnoses [3, 4].

Cardiac atlases play an important role in computer-aided diagnoses of angiocardiopathy
[5]. Their abilities mainly focus on three profiles: First of all, the patient-specific biomarkers
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can be automatically extracted. Secondly, the multi-modal data can be integrated into a unified
space for visualization purposes. Thirdly, the patient-specific models can be generated for indi-
vidualized simulations of alternative treatment scenarios.

Recently, some approaches using the image registration technique have been developed for
the volumetric-based modeling of the heart [6]. Frangi et al. proposed a novel method for the
generation of 3D shape landmarks, in order to construct statistical shape models of the heart
[7]. It can treat multiple-part structures and requires less restrictive assumptions on the struc-
ture’s topology. Perperidis used voxel-based atlases of images to generate surface-based train-
ing data for a 3D+time statistical model [8]. Another 3D+time statistical model of the cardiac
shape was based on a direct bilinear decomposition of the surfaces in a training set, using
higher order singular value decomposition [9]. A construction method for a 4D atlas of the
human heart using cardiac MR imaging was proposed [10]. The probabilistic atlas captures the
cardiac anatomy and function of a healthy heart. A construction framework of a detailed atlas
based on a spatial-temporal statistical model of the human heart was presented [11]. It uses
spatial normalization based on a non-rigid image registration to synthesize a population mean
image and establish the spatial relationships between the mean and the subjects in the
population.

However, it is possible for largely variable image datasets to achieve a superior atlas without
the statistical shape models of organs. In this paper, we propose a novel nonrigid registration
algorithm for cardiac atlas construction. Multifeature mutual information incorporating multi-
scale gradient orientation features is employed as a similarity metric. The shape information of
the object instead of the statistical shape model is incorporated into the cost function of regis-
tration as a regularization term. The experiments performed on the 3D+time cardiac data set
of DSCT show that the new algorithm can achieve high registration accuracy. The synthetic
mean atlas can represent the anatomical variety of cardiac structures more accurately.

Materials and Methods

Ethics Statement
This study was reviewed and approved by the ethics committee of Guangzhou General Hospi-
tal of Guangzhou Military Area Command. Informed written consents have been obtained
from the participants.

2.1 Transformation Model
The goal of image registration in cardiac CT is to find the optimal transformation T:(x,y,z) 7!
(x0,y0,z0), which maps any point in the moving images I:(x,y,z) into its corresponding point in
the reference image I(x0,y0,z0). In this work, we adopt a combined transformation T:

Tðx; y; zÞ ¼ Tglobalðx; y; zÞ þ Tlocalðx; y; zÞ ð1Þ

The global transformation Tglobal is affine model, and the local transformation Tlocal is a
free-form deformation(FFD) model based on B-splines [12]. The affine registration result is
considered as the initial parameters for registration using the FFD model.

2.2 Multifeature Mutual Information
Normalized mutual information(MI) is generally calculated on the image intensities only,
whereas multifeature mutual information(α-MI) can measure higher-dimensional signals
through graph theory [13]. The fixed image is denoted as F and the moving imageM. The aim
of registration is to search the optimal parameter μ of transformation Tμ(x) between F andM.
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Let zf(xi) be the feature vector of F at a point xi, and z
m(Tμ(xi)) that ofM at the transformed

point Tμ(xi). Let z
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with γ = d(1-α), and 0<α<1. zf(xip), z
m(Tμ(xip)), and z

fm(xip,Tμ(xip)) are the pth nearest neigh-
bor of zf(xi), z

m(Tμ(xi)), and z
fm(xi,Tμ(xi)), respectively. N is the number of sample points.

It is crucial to select representative features for registration using an α-MI. A Cartesian
image set with 15 features was chosen for nonrigid registration by cervical MRI [14]. These fea-
tures consist of L, gTg, gTHg, gTHHg, tr(H), tr(HH), and tr(HHH). Here, L is the image inten-
sity, g = @L/@xg the spatial derivative, H is the Hessian of L, and tr(�) denotes the matrix trace.
They are all computed using Gaussian derivatives at scale σ. In fact, the boundaries of some
substructures in medical images often carry significant information. Although the gradient of
the boundaries might not have the same magnitude in some cases, the gradient orientation
should be the same [15, 16]. In this paper, we combine multiscale gradient orientation features
with Cartesian features to compute the α-MI. Assuming that the gradient vector for each voxel
is defined as (v1,v2,v3), the orientation described by two angles θ and φ is given by:

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ v23

p
; y ¼ arccos v3=r

� �
;φ ¼ arctan v1=v2

� �
ð6Þ

Finally, these features consist of the original intensity image, Cartesian features at scales σ =
1,2, and a corresponding gradient orientation at scales σ = 1,2. They are normalized to have a
zero mean and unit variance.

2.3 Cost Function
In atlas construction, some methods involve the statistical shape model. In some cases, an accu-
rate registration could perform better than the existing statistical shape models. In this section
we incorporate shape information into nonrigid registration. The cost function comprises two
competing goals, followed by:

C ¼ �Ca�MI þ oCP ð7Þ

The first term is the α-MI, while the second term CP represents the cost related to the con-
sistency of shape points. A weighting factor ω(0.01�ω�0.1) is used to balance the two terms.

Nonrigid Registration Regularized by Shape Information

PLOS ONE | DOI:10.1371/journal.pone.0130730 June 25, 2015 3 / 11



The extraction of corresponding shape points is very similar to [7]. Firstly, the marching
cubes [17] algorithm is applied to generate a dense triangulation of the boundary isosurfaces in
binary fixed image. Then the decimation process can be implemented in order to reduce the
amount of triangular nodes. We use the method by Schroeder et al. [18], and specify a target
decimation rate (96%) with respect to the original mesh. These nodes in the decimated triangu-
lation will form the landmarks of the shape. Finally, the shape points of the fixed image can be
propagated to the moving image through a volumetric registration of the two binary images
using a kappa statistics metric [19].

A parametric representation of N shape point pairs is denoted as {(pfi,pmi):i = 1,2,. . .,N},
where pfi = [xfi,yfi,zfi] in the fixed image and pmi = [xmi,ymi,zmi] in the moving image. So the
penalty term CP is defined as:

Cp ¼
1

N

XN
i¼1

kpmi � TmðpfiÞk ð8Þ

where Tμ(�) is the transformation and ||�|| is the Euclidean distance. For speed and efficiency,
most of free-form registration methods based on B-splines use gradient-based optimizers. Con-
sequently, the derivatives of the penalty term with respect to the transform parameters are
required. The derivative of CP reads:

@Cp

@m
¼ � 1

N

XN
i¼1

1

kpmi � TmðpfiÞk
ðpmi � TmðpfiÞÞ

@T
@m

ðpfiÞ ð9Þ

2.4 Atlas Construction
Atlas construction is a different and complicated topic outside the scope of image registration.
In this work, we construct a simple atlas to test the performance of the proposed registration
approach. Similar to Ref. [20], this simple atlas can be built without a statistical shape model,
because it is assumed that a nonrigid registration incorporating shape information could per-
form better when applied to highly variable cardiac datasets. This atlas can be produced from a
selected reference space such as the mean of a group of cardiac CT images.

In practice, a reference space is initially selected from a population of images. The other
images are then registered to this reference space. A mean intensity image, referred to as the
atlas intensity image, can be computed from this set of registered images. The labeling of each
anatomical region of the reference space has the corresponding segmentation information of
the atlas, referred to as the atlas label image. The process is outlined in Fig 1.

Experiments
The nonrigid registration as described above was implemented in Elastix version 4.6 [21]. The
extraction algorithm of shape points is based on the Visualization Toolkit(VTK) [22]. All pro-
grams were run on a Windows computer with an Intel Dual Core 3.40 GHz CPU and 16.0 GB
memory. The running time for each registration is about 2 hours.

3.1 Data
The cardiac data was acquired with a dual source CT scanner (Siemens Somatom Definition,
Germany). Fifteen patients were scanned. Each patient was scanned at twenty-one time phases.
Fig 2 shows the sequence image of a patient at ten time phases. As the goal of this work is to
test the performance of the proposed approach, the first time phase occurring during the
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Fig 1. Flow diagram for atlas construction.

doi:10.1371/journal.pone.0130730.g001

Fig 2. The sequence images of a patient at ten time phases.

doi:10.1371/journal.pone.0130730.g002
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diastole of all patients was used in the experiment. The image dimensions were 512×512×254
voxels of size 0.348×0.348×0.5mm. All the data are publicly available through http://figshare.
com/articles/cardiac_ct_data_15sets/1379059.

Manual segmentations of AO(Aorta), LV(Left Ventricle), LVM(Left Ventricle Myocar-
dium), LA(Left Atrium), RV(Right Ventricle), and RA(Right Atrium) were available for each
image. They were either used to extract shape points or considered as the gold standard. The
manual segmentation was completed by either a clinician or a research associate with an expert
knowledge of heart anatomy. Some of them are displayed in Fig 3. The baseline of the experi-
ment is a traditional mutual information method.

3.2 Evaluation Method
To evaluate the registration quality, automatic segmentation results of the fixed images were
created by transforming the manual segmentation of the moving images, with transformation
of the registration results. The Dice Similarity Coefficient (DSC) [23] as a measure of overlap,
was calculated between the automatic segmentations and manual segmentations of the fixed
image. DSC = 0 indicates no overlap while DSC = 1 indicates perfect agreement. The DSCs are
presented in box-and-whisker plots.

To compare registration results of the two algorithms, two-sided Wilcoxon tests [24] were
carried out on the corresponding DSC values. A value of p<0.05 was regarded as a statistically
significant difference.

3.3 Choice of Parameters
In order to validate the new algorithm, we randomly selected the image of the fourth patient as
the fixed image, and images of the other patients as the moving images. An affine initial regis-
tration using the MI of intensities, only was performed before the nonrigid registration, to get a
rough alignment. For the nonrigid registration of traditional MI and α-MI, a multiresolution
scheme with five levels was employed. Gaussian smoothing was applied with scales σ =
16,8,4,2,1, but no downsampling to more accurately interpolate the moving image. As for the
B-spline control points, the grid spacing of 80, 40, 20, 10, and 5 mm was applied to the five res-
olution levels, respectively. For the optimization procedure, A = 50, τ = 0.6, and a = 2000 were
set. 1000 iterations were used. The number of samples was set to N = 5000.

For the α-MI, the KD trees; a standard splitting rule; a bucket size of 50; and an error bound-
ing value of 10 was selected. The(k = 5) nearest neighbors were set while α = 0.99 was set.
About 1500 shape point pairs were extracted from five surfaces(including AO, LVM, LA, RV,
and RA) in manual segmentations. The balance coefficient ω = 0.05 was found to yield the best
registration result.

Fig 3. Manual segmentation results of registration images.

doi:10.1371/journal.pone.0130730.g003
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Results
In this section, the registration accuracy of traditional MI and our method was compared. Fig 4
shows the DSC results of registration for AO, LV, LVM, LA, RV, and RA. The improvement of
the average DSC for AO, LVM, LA, RV, and RA are found to be significant. For LV, the

Fig 4. The comparison of registration accuracy using traditional MI and our method. A star indicates a statistical significant difference of the median
DSC of the two methods.

doi:10.1371/journal.pone.0130730.g004

Table 1. A summary of the DSC value for six cardiac components.

Structure Method DSC

AO MI 0.8417 ± 0.0025

Our method 0.8524 ± 0.0027

LV MI 0.9199 ± 0.0002

Our method 0.9357 ± 0.0006

LVM MI 0.7281 ± 0.0061

Our method 0.8502 ± 0.0031

LA MI 0.7853 ± 0.0035

Our method 0.8169 ± 0.0200

RV MI 0.7572 ± 0.0063

Our method 0.9280 ± 0.0005

RA MI 0.7477 ± 0.0158

Our method 0.8655 ± 0.0033

doi:10.1371/journal.pone.0130730.t001
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Fig 5. Example of the registration result: the red contour surround LA region, the blue contour surround LVM region. (a) The fixed image. (b) The
moving image. (c) The deformed moving image using MI. (d) The deformed moving image using our method.

doi:10.1371/journal.pone.0130730.g005
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improvement of accuracy is minor. The overall mean and standard deviation of the DSCs in
the experiments are summarized in Table 1.

In Fig 5, a typical example of the registration result using MI (c) and our method (d) is illus-
trated. The LA and LVM of the fixed (a) and moving (b) image are very different. It can be
observed that our method can achieve better alignment with the reference image than using
the MI method. Fig 6 shows two views of the atlas mesh, corresponding to the synthesized
mean image by registration. They can clearly display the six structures of cardiac images.

Discussion
In this paper, we set out to improve the accuracy of a nonrigid registration for cardiac atlas
construction. Multiscale gradient orientation features of images are extracted to construct mul-
tifeature mutual information. Additionally, the shape information of multiple-objects in
images is incorporated into the cost function of registration. We have demonstrated the atlas
construction using this method over a population of 15 subjects. We validated the atlas through
a measure of registration accuracy. It was shown that the proposed method outperforms tradi-
tional MI.

There are some limitations in this work. Firstly, the computational burden of this method
needs to be decreased for use in the clinic, although the dimensionality of features is not high.
In this case it might be possible to parallelize the important parts of the algorithm making use
of multiple processors. Secondly, the number of structures in the atlas needs to be expanded.
The registration accuracy probably depends on the shape points of cardiac structures. The
improvement of AO and LV structures is less than that for other structures. Ascertaining the
reason for this provides an additional direction for future research. Finally, the subjects used in
our experiments may not be enough to represent the cardiac atlas with sufficient diversity.
More cases would make it more probable to display a wide diversity of morphologies and
pathologies.

In future work, compensative techniques will be considered to deal with these limitations.
The parallel computation such as using graphic processing units will be used to accelerate the

Fig 6. Two views of atlas mesh corresponding to the synthesized mean image.Different colors indicate different structures.

doi:10.1371/journal.pone.0130730.g006
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registration process. We will also investigate the stability of the algorithm with cardiac struc-
tures in clinical practice.
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