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Manual analysis of human high-resolution colonic manometry data is time consuming,
non-standardized and subject to laboratory bias. In this article we present a technique
for spectral analysis and statistical inference of quasiperiodic spatiotemporal signals
recorded during colonic manometry procedures. Spectral analysis is achieved by
computing the continuous wavelet transform and cross-wavelet transform of these
signals. Statistical inference is achieved by modeling the resulting time-averaged
amplitudes in the frequency and frequency-phase domains as Gaussian processes over
a regular grid, under the influence of categorical and numerical predictors specified
by the experimental design as a functional mixed-effects model. Parameters of the
model are inferred with Hamiltonian Monte Carlo. Using this method, we re-analyzed our
previously published colonic manometry data, comparing healthy controls and patients
with slow transit constipation. The output from our automated method, supports and
adds to our previous manual analysis. To obtain these results took less than two days.
In comparison the manual analysis took 5 weeks. The proposed mixed-effects model
approach described here can also be used to gain an appreciation of cyclical activity in
individual subjects during control periods and in response to any form of intervention.

Keywords: continuous wavelet transform, Bayesian mixed effects, Gaussian process, colonic manometry,
spatiotemporal analysis

INTRODUCTION

Colonic manometry is a procedure involving the placement of a flexible catheter incorporating
pressure sensors into the colon to record contractile activity. It has been used to distinguish normal
colonic contractions in healthy adult subjects (Bassotti et al., 1987; Bassotti and Gaburri, 1988;
Soffer et al., 1989; Bampton et al., 2001; Rao et al., 2001b) from the abnormal contractility that
may exist in patients with functional colonic disorders (Narducci et al., 1986; Bassotti et al., 1988;
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Chey et al., 2001; Dinning et al., 2010). More recently, several
research groups have published findings from high-resolution
colonic manometry. These catheters utilize a greater number
of more closely spaced recording sensors, that provide a
clearer picture of propagating contractile activity (Dinning, 2018;
Pervez et al., 2020).

Despite the improvements in catheter design, analysis
of manometric recordings still relies upon either visual
identification of propagating motor patterns or a generalized
approach using area under the pressure curve (AUC) or motility
index (MI) measurement. Visual identification of colonic motor
patterns has identified differences in the count, velocity and
amplitude of propagating pressure waves between health and
patient groups, however, this approach is also subject to some
fundamental problems. In some manometry traces the large
number of pressure events can make identifying individual motor
patterns very difficult. This is highlighted in Figure 1 which
shows manometry traces recorded in 3 of our subjects. Not only
is it time consuming to find each individual propagating event,
but determining where they start, end and their direction of
propagation can also be difficult.

Composite measures such as AUC or MI avoid visual
identification of motor patterns, however, their non-specific
nature makes useful interpretation of the data very limited. For
example, an increase or decrease in AUC or MI, within or
between subjects, tells us little about the altered characteristics of
specific motor patterns.

Automated approaches that identify and quantify changes in
motor patterns, standardize analysis between laboratories and
remove potential personal bias, all within a workable time frame
would be very beneficial to the international community. There
have been attempts to achieve this previously (De Schryver et al.,
2002; Pan et al., 2010; Wiklendt et al., 2013) but those developed
techniques have not been adapted by any other groups. Part of
the problem is the ability to determine the clinical worth of the
findings from these automated approached. For example, in two
approaches, the findings suggest disjointed or poorly coordinated
pressure waves in patients with slow transit constipation when
compared to healthy adults (Pan et al., 2010; Wiklendt et al.,
2013). While of potential interest the analysis does not allow us
to determine which pressure wave are poorly coordinated.

In this current article, we developed a computerized approach
for the analysis of high-resolution colonic data. The technique
is based upon a wavelet transform method, currently used in
analyzing time-series in fields such as neuroscience, geophysics,
meteorology and oceanography (Torrence and Compo, 1998;
Grinsted et al., 2004; Veleda et al., 2012). The wavelet transform
is a signal processing technique that can be used to transform
signals from the time domain to the time-frequency domain,
effectively decomposing them into constituent frequencies. Using
this approach, we are able to see in a single image changes
in colonic pressure waves, at all frequencies, in response to
any given stimulus (a meal in this instance). The images also
contain information on propagation direction and speed of
propagation and the statistical comparisons to determine if
any stimulus effects differ between subject groups. We have
applied this analytical method to data that we had previously

analyzed manually in healthy adults (Dinning et al., 2014) and
patients diagnosed with slow transit constipation (Dinning et al.,
2015). The findings in that original article are compared to
the findings from our developed automated approach in the
section “Discussion.”

The structure of the article is as follows. Section “Spectral
Decomposition” describes spectral decomposition with the
wavelet and cross-wavelet transforms. Section “Statistical
Framework” details the statistical framework that is used
to compare the spectra between groups of subjects. We
present an application of this technique to colonic manometry
data described in Section “Data,” with results shown in
Section “Results.” The article concludes with a discussion in
Section “Discussion.”

SPECTRAL DECOMPOSITION

Wavelet Transform
The continuous wavelet transform (Torrence and Compo, 1998;
Mallat, 2008) is a useful tool for analyzing non-stationary
quasiperiodic signals. It decomposes a time domain signal x(t) ∈
R into the time-scale domain w(t, s) ∈ C with equation (2.1):

w(t, s) =
∫
∞

−∞

x(τ)
1
√
s
ψ∗
(

τ− t
s

)
dτ (2.1)

where ψ(t) ∈ C is an admissible wavelet function, and the ∗
superscript represents the complex conjugate. An admissible
wavelet function is one which has zero mean and its Fourier
transform is continuously differentiable (Farge, 1992), with an
extra desirable property that it be localized in both time and
frequency. Intuitively, w(t, s) measures the variation of x(t)
within a neighborhood at t of size proportional to s.

In practice, we choose s from finite set of logarithmically
spaced scales S = {s1, . . . , sL}, specify the wavelet basis function
in the frequency domain, and perform the convolution in
equation (2.1) via fast Fourier transform (FFT) utilizing the
convolution theorem with:

w(t, s) = F−1 [X(ω)√s9∗(sω)] (t) (2.2)

where s ∈ S, 9 = F [ψ] is frequency-domain wavelet function,
X = F [x] is the frequency-domain signal, F and F−1 are the
Fourier and inverse Fourier transforms, and ω represents the
frequency-domain locations in radians per second. The wavelet
transform is susceptible to harmonic artifacts, and we solve this
problem by applying the “MesaClip” algorithm as described in
our recent article (Wiklendt et al., 2020).

To map from scales (seconds) to frequencies (Hz) we use
“Synchrosqueezing” (Daubechies et al., 2011). Synchrosqueezing
redistributes the wavelet coefficients based on the first
time-derivative of the phase (also known as “instantaneous
frequency”). For a given set of K equally and logarithmically
spaced frequency bins with centers F = {f1, . . . , fK},
synchrosqueezing can be described as:

v(t, f ) =
∑
s∈S

w(t, s)
√
s

binf

(
1

2π

∂φ(t, s)
∂t

)
(2.3)
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FIGURE 1 | 1 h, examples of high-resolution colonic manometry traces recorded in 3 of our subjects. Each example contains a high number of propagating motor
patterns. Expanded regions from within the red hatched rectangle are displayed below each 1 h example. In these expanded regions individual propagating
contractions can be identified (examples shown by blue arrows). The manual identification of each event, its start and end location and direction become time
consuming and, in some cases, (middle and right) increasingly difficult.

where φ(t, s) = unwrap(6 w(t, s)) represents the time-
differentiable “unwrapped-in-time” phase in radians with
the complex argument (or angle) denoted by the parentheses-less
function 6 : C→ (−π,π]. The function binf (x) returns 1 if x
and f are in the same bin, and 0 otherwise.

Switching to discrete-time representation with samples
recorded at times T = {t1, . . . , tN} we can view the wavelet
spectrum as v(t, f ) : T × F→ C. The time-average of the
squared amplitudes produces the global wavelet power spectrum:

v̂(f )2 =
1
N

∑
t∈T

∣∣v(t, f )∣∣2 (2.4)

Cross-Wavelet Transform
The cross-wavelet transform combines two wavelet spectra with
the complex-conjugated product:

vab(t, f ) = va(t, f )v∗b(t, f ) (2.5)

where va and vb are the synchrosqueezed wavelet transforms of
the two signals labeled a and b. The combined subscript vab
denotes the cross-wavelet transform between the two signals.

A global wavelet power cross-spectrum could be computed in
the same way for vab as shown for v in equation (2.4). However,
this discards the useful phase information contained in vab. The
effect of the complex-conjugated product is that the resulting
phase represents the difference in phase between the two signals.
For each frequency, computing a squared-amplitude-weighted
histogram of the phase-differences yields a 2D histogram in the

frequency-phase domain, analogous to the global wavelet power
spectrum but stratified by phase-differences.

Since phase-differences are actually phases, in the rest of this
section we will refer to them simply as “phases,” keeping in mind
that they represent the phase-difference between two signals,
rather than the phase of one or the other.

Given a set of M equally and linearly spaced phase bins
with centers H = {ϕ1, . . . ,ϕM}, we define the 2D histogram of
frequencies and phase-differences by:

v̂ab
(
f ,ϕ

)
=

1
|Tϕ(f )|

∑
t∈Tϕ(f )

|vab(t, f )| (2.6)

Tϕ(f ) = {t ∈ T|binϕ(6 vab(t, f )) = 1} (2.7)

where binϕ(x) returns 1 if x and ϕ are in the same bin, and 0
otherwise. Tϕ(f ) is the set of all time samples such that 6 vab(t, f )
is in the bin containing ϕ.

If pairs of sensors are spaced sufficiently close together
in the environment being recorded, then the cross-wavelet
transform between sensors in such a pair allows us to measure
propagating quasiperiodic activity. The sign of the phase-
difference determines the direction of propagation. The value of
the phase-difference ϕ (rad) at the frequency of interest f (Hz)
and the separation between the pair of sensors d (cm) can be used
to determine the apparent velocity of propagation u (cm/s) with
the simple formula:

u = d2πf /ϕ (2.8)
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FIGURE 2 | Representation of a manometry recording from the sigmoid colon
in a single healthy adult prior to (top; A–D) and after a meal (bottom; E–H).
Data from each study period is displayed using: (I) Color maps depicting raw
pressure data from the 30 sensors within the sigmoid colon (A,E). Higher
amplitude events are colored pale green. (II) The power across the frequency
range of 1/16th to 16 cycles per minute (cpm) is shown in panels (B,F). (III)
Graphs summarizing the power at each frequency are displayed in

(Continued)

FIGURE 2 | Continued
panels (C,G). (IV) A summary of the 2D cross-wavelet analysis is depicted in
panels (D,H), where the vertical line at 0 on the x axis indicates synchronous
activity. Retrograde propagation is displayed to the left of the midline, and
antegrade to the right of the midline. The curved dotted lines indicate the
speed of propagation, from 1 to 100 cm/min. The brightness of green pixels
represents an increase in power. In this healthy adult prior to the meal, multiple
frequencies were recorded, with no single frequency dominating (C,D); while
propagating activity at ∼1.5 cpm (white oval) and 1/2 cpm (red oval) exists, its
power is so low that it is barely visible. The timing of this propagating activity is
shown by white and red ovals in panel (B) and in the raw trace in panel (A).
After the meal there is a clear increase in the power of contractile activity
[compare (A,E)], especially in the 2–4 cpm range (G). This activity propagates
in a predominantly retrograde direction (H). The timing and location of this
propagating activity can be seen in the red ovals in panels (E,F). Another
motor pattern emerges at ∼ 1/4 cpm after the meal [aqua ovals in panels
(E,F,H)].

For quasiperiodic pressure signals in these data, a more
appropriate measure of propagation may be “pace” which is
the inverse velocity u−1 (s/cm), where synchronous events (or
phase-locking) between the two signals may have a more robust-
for-modeling pace of 0, rather than a velocity at±∞.

STATISTICAL FRAMEWORK

For each unit of statistical data, we obtain from the wavelet
analysis a 1D curve v̂(f ), or a 2D surface v̂(f ,ϕ). Such a curve
or surface is considered to be a response under the influence
of a set of predictors which can be any number of categorical
or numerical variables specified by the experimental design. We
want to measure and compare the effects of the given predictors.

An independent regression model could be fit for each
location x in either the frequency x ∈ F or frequency-phase
x ∈ F ×H domains. However, performing an independent fit at
each location would require a multiple-comparison adjustment,
and would fail to account for correlations between locations,
effectively weakening the power of the analysis.

Instead, we capture correlations between locations by treating
the response curves and surfaces as individual functions rather
than simply collections of independent points. We model these
functions as samples from Gaussian processes, which allow
us to specify a formula for correlation between locations,
without needing to specify a formula for the shape of the
functions themselves.

A Gaussian process (GP) is a probability distribution with
an infinite number of random variables, such that any finite
set of variables form a multivariate Gaussian distribution. This
is achieved by specifying a covariance kernel function k(x, x′),
which when given a finite set of locations x ∈ {x1, . . . , xN} allows
us to build an N × N covariance matrix 6 with elements 6ij =

k(xi, xj). We have only finite data, and so the kernel function
is evaluated only at the available data locations when fitting the
GP. However, we can inspect the GP at any number of arbitrary
locations in the kernel’s domain, hence the infinite nature of the
model as a step beyond a multivariate Gaussian. An analogy is
fitting a simple regression line. The line is fit only to a finite set of
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data, but once we have an intercept b and slope a we can define
a function y(x) = ax+ b, where y-locations can be calculated for
any choice of x-locations, not just those for which we have data.

Model
The latent GP function-on-scalar mixed-effect model we use can
be written in the form:

yi(x) ∼ GP(ηi(x), σi(x, x′)) (3.1)

σi
(
x, x′

)
= ωi(x)ωi(x′)(kσ(x, x′)+ σ2

ε ) (3.2)

ηi (x) = Xiβ(x)+ Zib(x)+ oη (3.3)

log (ωi (x)) =Wiγ(x)+ Uiu(x) (3.4)

where GP represents the Gaussian process distribution, kσ

is a kernel function describing the structured ω-standardized
noise covariance, σ2

ε represents unstructured ω-standardized
noise variance, and yi is the response function for observation
i ∈ {1, . . . ,N}. The responses are based on the transformed
power log(v̂). The intuition behind the ω-standardized noise
co/variance can be seen by rearranging the terms in equations
(3.1) and (3.2) to:

yi(x)− ηi(x)
ωi(x)

∼ GP(0, kσ(x, x′)+ σ2
ε ) (3.5)

which facilitates efficient inference by not requiring the
structured residuals on the right-hand-side of equation (3.5) to be
sampled, nor requiring a matrix inversion per observation. When
evaluating the likelihood specified by equation (3.5), for the 1D
case a simple Cholesky decomposition is sufficient, but for the
2D case an eigen decomposition is needed to separate the kernel
functions from the unstructured noise σ2

ε (see1 for a Stan model
source code example).

In the mean specified by equation (3.3), X ∈ RN×P is a design
matrix of P population-level predictors (a.k.a. fixed-effects) with
Xi ∈ R1×P representing the row vector of predictors pertaining
to observation i. β = (β1, . . . , βP) is a P × 1 vector of iid
latent GPs representing the P population-level effects. Z ∈ RN×J

is a design matrix of J group-level predictors (a.k.a. random-
effects). b = (b1, . . . , bJ) is a J × 1 vector of potentially correlated
latent GPs representing the group-level effects. Depending on the
experimental design, an optional offset term oη is included in
equation (3.3) which may be either set to the mean of all y as a way
of centring the data, inferred to include a measure of variability
in the centering, or given a different value per observation if some
measure of exposure needs to be incorporated that would not
otherwise fit as its own predictor in X or Z.

Analogous to the predictors X and Z for the mean,
the matrices W ∈ RN×Q and U ∈ RN×R are respectively, the
population-level and group-level predictors for the log standard
deviation equation (3.4), with corresponding effects γ and u. An

1https://github.com/lwiklendt/gp_kron_stan

explicit offset term is missing here since such an offset is implicitly
handled by the scale of kσ.

Each GP function in each vector of population-effects is given
an iid prior:

βp ∼ GP(0, kβp(x, x
′)) (3.6)

γq ∼ GP(0, kγq(x, x
′)) (3.7)

However, for the vectors of group-effects functions we include
correlations between functions via multivariate or multi-output
GPs:

bj ∼ GP(0, (6b)j,j′kbj(x, x
′)) (3.8)

ur ∼ GP(0, (6u)r,r′kur (x, x
′)) (3.9)

where 6b and 6u are covariance matrices dependent on the
structure of the Z and U design matrices. These 6 matrices will
generally be block-sparse, facilitating efficient computation.

The kernel functions k{σ,β,γ,b,u}(x, x′) and their parameters,
also known as hyperparameters of the GPs, will be covered in the
next subsection “Kernel Functions.”

The response functions yi, and the design matrices X, Z, W,
and U are the supplied “input” data. The vectors of functions β,
b, γ, u, and hyperparameters, are to be estimated and correspond
to “outputs” of the inference. The structure of the design matrices
depends on the experimental design, and we find it easiest to
derive the design matrices (also known as “model matrices”)
based on formula notation as specified in section 2 of Bates et al.
(2015). We provide an application in section “Results” using the
formulae (3.15) and (3.16).

We are interested in modeling power that was calculated
using the wavelet transform as described in sections “Wavelet
Transform” and “Cross-Wavelet Transform.” To fit the power
over frequencies, x = f is a scalar that represents frequencies.
To fit over frequencies and phase-differences, x = (f ,ϕ) is a 2D
point that represents frequencies in one dimension and phase-
differences in the other.

Kernel Functions
The form and parameters of the kernel functions k depend on
whether the response functions are 1D or 2D. There are many
potential kernels to choose from, and they can even be built up
from smaller kernels (Duvenaud, 2014), but for the sake of brevity
we will limit our exposition to one concrete kernel function for
each type of domain.

For the case of 1D curves over frequencies we use a log-space
squared-exponential kernel:

k(f , f ′) = τ2exp
(
−
|log(f )− log(f ′)|2

2λ2

)
(3.10)

with λ specifying the lengthscale of the correlation based on the
distance |log(f )− log(f ′)| between any two frequencies f and f ′.
At a distance of 0 we have equal frequencies f = f ′, where the
correlation is 1 and covariance is τ2. As the distance approaches
∞ the correlation and covariance approach 0.
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For the case of 2D surfaces over frequencies and phase-
differences we use a product of the log-space squared-exponential
kernel and a periodic kernel:

k(f ,ϕ, f ′,ϕ′) = τ2exp

(
−
|log(f )− log(f ′)|2

2λ2
f

)

exp

(
−

2sin2 ( 1
2 |ϕ− ϕ′|

)
λ2

ϕ

)
(3.11)

where λf and λϕ specify the log-frequency and phase-difference
lengthscales. When the difference in phase-differences ϕ and ϕ′

is either 0 or 2π, or any integer multiple of 2π, then the phase-
difference component of the kernel will be 1, identifying the
locations ϕ and ϕ ′.

For equations (3.6) and (3.7), k represents the kernel function
used in constructing a covariance matrix, but for equations (3.8)
and (3.9) k is a kernel function used in constructing a correlation
matrix by setting τ = 1, since including a free parameter for
variance in k would make the model non-identifiable due to the
variance parameters already defined in6b and6u.

The kernel in equation (3.11) is separable, such that we can
write it as:

k
(
f ,ϕ, f ′,ϕ′

)
= k(f , f ′)k(ϕ,ϕ′) (3.12)

k(ϕ,ϕ′) = exp

(
−

2sin2 ( 1
2 |ϕ− ϕ′|

)
λ2

ϕ

)
(3.13)

where with abuse of notation we are identifying kernel functions
based on their argument symbols, such that k(f , f ′) and k(ϕ,ϕ′)
are different functions, with k(f , f ′) defined in equation (3.10)
and k(ϕ,ϕ′) defined in equation (3.13). Since we can factorize
the 2D kernel equation (3.12), we can create a covariance
matrix using the Kronecker product of the individual covariance
matrices built from kernels equations (3.10) and (3.13):

6 = 6F
⊗
6H

(6F)ij = k(fi, fj)
(6H)ij = k(ϕi,ϕj)

The Kronecker factorization of the kernel matrices also allows
for a substantial speed up in the numerical calculation of the
Cholesky and eigen decompositions of the covariance matrices
(Saatçi, 2012) used in inference.

Prior distributions for hyperparameters λ and τ are
experiment dependent, and will in general depend on
the scale of the data. For the application presented in
section “Results,” each σ, β, γ, b, u (subscript omitted
for brevity) is treated independently, unless otherwise
specified. We used λ ∼ Lognormal(0, 1) with the exception
λσ ∼ Lognormal(−0.7, 1) while ensuring λσ < λ{f ,ϕ}. For the
correlation between λf and λϕ we used ρfϕ ∼ Beta(2, 2), and
τ ∼ 0(2, 1).

Implementation
A coarse grid was chosen for the functional domain so that
posterior sampling could complete within a reasonable time. The

grid can be refined relatively quickly after the expensive sampling
step. Rather than the naïve linear or cubic interpolation, we can
use GP prediction such that the covariance between locations is
faithfully preserved in the refinement.

Given a vector of N grid coordinates x, a vector of M refined
coordinates x∗, a vector of N function values y corresponding to
x, and the kernel function k, then we can produce a vector of M
refined function values y∗ at x∗ with:

y∗ = 6(x∗, x)6(x, x)−1y (3.14)

where 6(x, x) is the N × N covariance matrix obtained by
applying k to the coordinates in x, and 6(x∗, x) is the M × N
matrix given by the covariances obtained by applying k to x∗
and x.

Note, for the 2D case we can take advantage of:

(6F
⊗
6H)

−1
= 6−1

F
⊗
6−1

H

We use the Hamiltonian Monte Carlo sampler from the Stan
(Carpenter et al., 2017) package to obtain a posterior distribution
of GPs which can be inspected to detect where and how locations
may differ between various categorical predictors.

We apply the method to data (described in Section “Data”)
recorded from the descending and sigmoid colon of 11 healthy
volunteers and 12 patients with slow-transit constipation, during
1 h preprandial and postprandial periods. Using formula
notation:

η ∼ group∗region∗meal+(region∗meal|subject) (3.15)

log(ω) ∼ group ∗ region ∗meal+ nchan (3.16)

the design matrices X and Z are constructed from formula
equation (3.15), and W and U from equation (3.16), according
to the construction process described by Bates et al. (2015),
where the log in equation (3.16) is a transformation of ω. The
group predictor is a categorical variable indicating the group
each subject belongs to: healthy or slow-transit constipation. The
region predictor is a categorical variable indicating from which
region of the colon the unit of data was recorded: descending or
sigmoid. The meal predictor is a categorical variable indicating
whether a recording was obtained during the preprandial or
postprandial state, corresponding to a meal effect. The categorical
variable subject identifies the subject.

The nchan predictor in equation (3.16) is a real-valued
standardized count of the number of sensors (or channels)
in the recording, which varies per subject and per region.
When computing weighted-averages over time as specified in
sections “Wavelet Transform” and “Cross-Wavelet Transform,”
we average not only over time but over both time and channels
by effectively flattening the wavelet results into a single channel
of length c|T|, where c is the number of channels and |T| is the
number of time samples. Fewer channels are expected to result
in a greater variation in the global averages, which is why we
included it as a confounding factor of the signal variance. We
set U = 0 with the formula equation (3.16) since we don’t
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have repeated measurements, and so a within-subject variation
is poorly identified.

Two types of responses were analyzed, given by the 1D and
2D power from equations (2.4) and (2.6). The power was log-
transformed to obtain the y′s in model equations (3.1–3.4). For
the 1D responses 33 frequency-bins were used, and for the 2D
responses 17 frequency-bins and 18 phase-bins were used. After
sampling from the posterior, the 1D responses were subdivided
by a factor of 4 from 33 to 129 frequency2 bins, and the 2D
responses were subdivided by a factor of 6 from 17 to 97
frequency-bins and 18 to 108 phase-bins via GP interpolation
equation (3.14).

For each response type, the Hamiltonian Monte Carlo run
consisted of 500 warm-up iterations and 500 sampling iterations
over 8 (0-initialised) chains resulting in 4000 samples from the
posterior distribution. We used an adapt-delta of 0.9. Diagnostics
showed no divergent transitions, a top tree depth of 10, and
visual inspection of trace plots showed good convergence that
was validated by an R̂ ≈ 1. Data appeared consistent with the
posterior predictive distribution. On an i9-9900K processor
running Windows 10 with 32GB RAM using PyStan v2.19.1.1
(Stan Development Team, 2019) with 8 parallel CPU cores (1 per
chain), the 1D response type completed sampling in 75 min, and
the 2D response type completed in 44 h. The computation process
from raw pressure recording to time-averaged wavelet spectra for
the 88 individual observations took approximately 30 s each.

DATA

We apply the aforementioned spectral decompositions and
associated statistical analysis to colonic manometry data obtained
to compare healthy volunteers and patients with slow-transit
constipation. Pre-processing of the data was done to remove
baseline drift and synchronous pressure increase removal in the
same manner as detailed in Wiklendt et al. (2013). A synchronous
pressure increase was defined as a synchronous increase in
pressure waves that occurred across all manometry channels.
Synchronous pressure waves that did not span all recording
channels were not affected by this filtering. Pressures below
1mmHg were then clamped to 1mmHg, and log-transformed
so that high-amplitude events would not overpower potentially
interesting low-amplitude oscillations.

The details of the healthy subjects, constipated patients,
catheter types, placement, protocols and data collection have
been described in a previous publication (Dinning et al., 2015).
These are summarized briefly below.

Subjects
Colonic manometry was performed in 14 patients with
scintigraphically confirmed slow transit constipation (2 male;
median age 52 years; range 24–76 years). Colonic scintigraphy
studies indicated that 13 of the 14 patients had >90% retention
of isotope at 72 h. The remaining patient had no reading at 72 h

2Subdivision over frequencies is performed in log-space with n′ = (n− 1)s+ 1
where n′ is the new bin count, n is the old bin count, and s is the subdivision factor.

but had >50% retention at 96 h. These data were compared to
the colonic manometry recordings from 12 healthy adults (5 men;
median age 51 years; range 27–69 years). Abdominal x-rays, taken
at the end of each study, confirmed that the catheter tip was
clipped to the ascending or hepatic flexure in 8 patients and to the
transverse or splenic flexure in 6. In healthy subjects the catheter
tip was located distal to or at the hepatic flexure in 11 and at the
splenic flexure in 1. As all subjects had pressures sensors located
in the descending and sigmoid colon, we used data from these
regions for the analysis and results described in this article.

All participants in the study had given written, informed
consent and the studies were approved by the Human Ethics
Committees of the South Eastern Area Health Service, Sydney
and the University of New South Wales (05/122; May 2010),
and The Southern Adelaide Health Service / Flinders University
Human Research Ethics Committee (419.10; March 2011).

Colonic Manometry
Colonic manometry was recorded with a fiber optic catheter
containing 72 sensors spaced at one-centimeter intervals. On
the day prior to the manometric recording, the bowel was
cleared using sodium picosulphate and polyethylene glycol
(Pharmatel Fresenius Kabi Pty Ltd., Hornsby Australia). All
subjects drank clear fluids overnight. Lying in the left lateral
position, with conscious sedation using midazolam and fentanyl,
the manometry catheter was introduced with a colonoscope and
clipped to the mucosa using Endoclips (Resolution Clip R© Boston
Scientific, MA, United States).

Study Protocol
Recordings were commenced within 60 min of the subject waking
after the catheter placement. After a 2-h basal recording period,
all subjects were given a 700Cal meal (24% protein, 43% fat,
33% carbohydrate). The meal consisted of 300ml of TwoCal R©

HN Vanilla (Abbott Nutrition, Columbus, OH, United States)
and a chicken sandwich. Colonic pressures were then recorded
for a further 2 h.

RESULTS

An example of the analysis applied to a recording from the
sigmoid colon in a healthy adult is shown in Figure 2. The
images contain the manometric traces constructed as PMaps
(Figures 2A,E), the wavelet power spectrum of pressure waves
at each moment (Figures 2B,F), the global wavelet power
spectrum showing the dominant frequencies for the period
(Figures 2C,G) and the global wavelet power cross-spectrum
showing the dominant frequencies and their directions of
propagation (Figures 2D,H).

In this example, the meal induced a large increase in power at
2–4 cpm (Figures 2F,G), which propagated mostly in a retrograde
direction at 30–100 cm/min (Figure 2H; magenta oval). A second
major frequency (∼1 every 3 min) also occurred 30–50 min after
the meal (Figures 2E,F,H; aqua oval) and consists of individual
clusters each containing pressure waves occurring at 2–4 cpm;
clusters visible in Figure 2E.
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1D Group Analysis
In this section we constructed power vs. frequency plots of motor
events and compare them between healthy adults and patients in
the descending and sigmoid colon.

Healthy Adults vs. Patients With Slow Transit
Constipation; Descending Colon (Figure 3)
The 1D analysis provides an indication of the power of pressure
waves of different frequencies over a 1 h period. Preprandial
activity is compared to the 1 h postprandial period. Furthermore,
the difference between the periods can then be plotted to
reveal significant changes caused by the meal, or significant
differences between groups prior to or after the meal. During
the preprandial recordings for healthy adults (Figure 3A) and
patients (Figure 3D), a peak in power occurs at 2–4 cpm.
A comparison in preprandial power between healthy subjects
and patients is shown in Figure 3G. As can be seen there are
no significant differences, indicated by the ratio between the
two power densities not being outside of the 95% credible band
(dotted curves). In the postprandial period, the peak at 2–4 cpm
becomes more prominent (Figures 3B,E). The difference in post-
meal activity between healthy subjects and patients is plotted
in Figure 3H which shows that in patients, activity from 3 to
6 cpm is of lower power than in healthy subjects, as indicated
by the ratios within the 95% credible band being all below 1
(green shaded region).

The effect of the meal (relative to preprandial activity) is
shown in Figure 3C (healthy subjects) and Figure 3F (patients).
In both groups the meal induced a significant increase in power
across almost the full spectrum of frequencies tested (blue shaded
regions in Figures 3C,F). In Figure 3I, comparison of the meal
effect between the patients and healthy adults indicated no
significant differences, as indicated by a ratio of 1 remaining
within the 95% confidence band. This analysis clearly shows that
patients displayed a reduced power in the frequencies between 3
and 7 cpm after the meal compared to healthy adults. However,
a meal proportionally induces a similar increase in power across
the range of frequencies in both groups.

Healthy Adults vs. Patients With Slow Transit
Constipation; Sigmoid Colon (Figure 4)
As with the descending colon, peak frequencies in the
sigmoid colon were between 2 and 4 cpm, in both healthy
adults and patients, in the pre- and postprandial periods
(Figures 4A,B,D,E). The post-meal 3–5 cpm power is
significantly reduced in patients when compared to healthy
adults (green shaded region in Figure 4H). In both groups
the meal induced a significant increase in power across almost
the full spectrum of frequencies tested (blue shaded regions in
Figures 4C,F).

Healthy Adults vs. Patients With Slow Transit
Constipation; Synchronous Pressure Increase
Included
To determine if the automated removal of the synchronous
pressure increases had any impact upon these results we re-ran
the analysis without any removal of data. The results remained

unchanged (See Supplementary Figure 1), indicating that in
these data removal of the synchronous pressure increases has no
impact upon our findings in either descending of sigmoid colon.

2D Group Analysis
The data used in the 1D analysis can be re-analyzed using a 2D
group analysis which illustrates the direction of propagation of
pressure waves across the range of frequencies (1/16th to 16cpm).

Healthy Adults vs. Patients With Slow Transit
Constipation; Descending Colon (Figure 5)
Comparison of the preprandial recordings between the two
groups (Figures 5A,D) indicates a significant reduction in
retrograde and antegrade propagation across a wide range of
frequencies (4–16 cpm) in the patient group (ratios shown in
Figure 5G). During the postprandial period in healthy adults, the
retrograde cyclic activity between 2 and 8 cpm is of significantly
greater power than antegrade cyclic activity at the same frequency
(black and white hatched outline in Figure 5B). The propagated
frequencies between 1 and 16 cpm were significantly reduced
in patients compared to healthy adults during the meal period
(pale blue area at top of Figure 5H). The effect of consuming
a meal on propagation is shown in Figures 5C,F. In both
groups, the meal caused a significant increase in all propagated
frequencies, which did not differ between healthy adults and
patients (Figure 5I). Therefore, while there were significant
differences shown in the post-prandial motility between health
and patients (Figure 5H), the proportional meal effect size was
similar between the groups (Figure 5I).

Healthy Adults vs. Patients With Slow Transit
Constipation; Sigmoid Colon (Figure 6)
A comparison of the preprandial recordings (Figures 6A,D)
between the two groups indicates a significant reduction in
both retrograde and antegrade propagation across the full range
of frequencies in the patient group (Figure 6G; pale blue
area). During the postprandial period in healthy adults, the
retrograde cyclic activity between 2 and 8 cpm was of significantly
greater power than the antegrade cyclic activity in the same
frequency range (black and white hatched outline in Figure 6B).
Comparison of the post-prandial period indicates a significant
reduction in both retrograde and antegrade propagation across
the full range of frequencies in the patient group (Figure 6H;
pale blue area). The meal effect on propagation within each
group is summarized in Figures 6C,F. In both groups, the
meal caused a significant increase in the power of propagating
activity at all frequencies, with a peak effect at 2–6cpm in healthy
adults (Figure 6C; bright orange region). The meal also caused
a significant increase in the power of propagating activity with a
frequency between 2 and 6 cpm in patients (Figure 6F), but this
increase was not as marked as in healthy adults (Figure 6I; blue
region within the white circle).

Comparison Against Manual Analysis
Our original publication of these data used manual analysis to
identify propagating motor patterns in healthy adults (Dinning
et al., 2014). That article was the first to describe in detail
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FIGURE 3 | The one-dimensional (1D) analysis of pressure waves across a range of frequencies in the descending colon for healthy adults (top row; A–C) and
patients with slow transit constipation (middle row; D–F) during the preprandial (left column; A,D,G) and postprandial (middle column; B,E,H). Comparisons between
the two groups are shown on the bottom row (G–I), and the ratio between periods on the right column (C,F,I). In each image, frequency is shown on the Y-axis. In
panels (A,B,D,E) power is shown on the X-axis. 2000 overlapping gray lines in each panel represent posterior samples, and the dotted black lines form envelopes of
95% credible intervals. Panels (G,H) represent the power ratio across the frequency range, between patients and healthy adults. When the entire envelope lies to
one side of the vertical red line (which represents a ratio of 1), this shows a significant deviation. Thus, in the period after a meal, if we compare patients (E) with
health in panel (B) you can see a significant reduction in power of the 3–6 cpm activity in the patients [shown by green area in panel (H) for the frequencies where the
entire envelope lies to the left of the red vertical ratio line]. Panels (C,F) depict the ratio of power of postprandial activity to preprandial activity for healthy adults and
patients, revealing that both groups show a significant increase in power in frequencies ranging from 1/16th cpm to 9 cpm (the envelope lies to the right side of the
red vertical ratio line). Panel (I) shows that the pan-frequency increase in power did not differ significantly between patients and healthy adults.

the propagating motor pattern which consisted of pressure
waves with a frequency of 2–6/min. This motor pattern was
labeled the cyclic motor pattern and the key findings in that
article, centered upon this motor pattern, included; (i) the cyclic
motor pattern made up 69% of all propagating activity. (ii)
It propagated in predominately retrograde direction. (iii) A
meal was shown to increase the count of all motor patterns
however, the major effect of a meal upon colonic motility was
a significant (P < 0.001) increase in retrograde cyclic motor
pattern. With our novel, automated technique, we have also
shown at after a meal the retrograde cyclic activity between 2
and 8 cpm is of significantly greater power than antegrade cyclic
activity at the same frequency [see sections “Healthy Adults
vs. Patients With Slow Transit Constipation; Descending Colon
(Figure 5)” and “Healthy Adults vs. Patients With Slow Transit
Constipation; Sigmoid Colon (Figure 6)”]. The meal also resulted

in a significant increase power of all propagating activity, with a
peak effect at 2–6 cpm in healthy adults.

In our follow-up article, comparing the data from healthy
controls to patients with slow transit constipation, our manual
analysis showed that a meal induced a significant increase in the
cyclic motor pattern in patients, but the increase was significantly
reduced in comparison to increase observed in healthy adults
(Dinning et al., 2015). These findings are confirmed in this
current article (See Figure 6I).

DISCUSSION

In this article, we have presented a method for analyzing
high-resolution, spatiotemporal colonic manometry data by
computing various time-averaged spectra and using them as
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FIGURE 4 | The one-dimensional (1D) analysis of pressure waves across a range of frequencies in the sigmoid colon of healthy adults (top row; A–C) and patients
with slow transit constipation (middle row; D–F), during the preprandial (left column) and postprandial periods (middle column). The components of the figure are
identical to those for Figure 3, apart from the region of bowel studied. In the postprandial period, the power of 3–6 cpm contractions were increased compared to
preprandial, but this effect was smaller in the patient group compared to healthy adults [see green area in panel (H) for the frequencies where the entire envelope lies
to the left of the red vertical ratio line]. The meal caused a significant increase in power at frequencies ranging from 1/16th cpm to 9 cpm [see blue areas (C,F)]. This
overall effect of the meal did not differ between the groups (I).

responses in a functional mixed-effects model, inferred via
Hamiltonian Monte Carlo. This approach has allowed us to
identify the frequencies of colonic pressure waves and compare
differences in their characteristics between healthy adults and
patients with slow transit constipation. Our main findings
indicate that; (i) in both groups, prior to and after a meal, the
dominant frequency of pressure waves in the descending and
sigmoid colon is between 2 and 6 cpm and a meal results in
a significant increase in the power of pressure waves across
a wide range of frequencies (1/16 – 8 cpm); (ii) in healthy
adults only, the retrograde cyclic activity between 2 and 8 cpm
is of significantly greater power than antegrade cyclic activity
at the same frequency; (iii) in the sigmoid colon, the meal
induced an increase in the power of antegrade, synchronous, and
retrograde propagating activity with frequencies between 2 and
6 cpm, which was of significantly greater power in healthy adults
than in patients.

Previously we had presented our first step in the computerized
development of software for the analysis of colonic pressure

waves (Wiklendt et al., 2013). That work allowed us to separate
patients with slow transit constipation from healthy adults on
the basis of a single “indicator value” calculated from the colonic
manometry data. However, that indicator value provided no
information on the frequency of pressure waves, or their direction
and speed of propagation; all features provided by our current
automated approach. In addition, we have also previously used
fast Fourier transform (FFT) and wavelets to demonstrate a
postprandial increase power of colonic activity (Dinning et al.,
2015, 2016), but those publications lacked the rigorous statistical
analysis of the current article. The advantages of the wavelet
transform over the Fourier transform for our application are two-
fold. Firstly, the wavelet transform provides an instantaneous
spectrum at each time point, allowing us to remove harmonic
artifacts with the MesaClip algorithm (Wiklendt et al., 2020),
and also facilitating the comparison of spectra between adjacent
sensors for each time point to obtain the cross-wavelet transform
which can reveal propagation delays via phase differences.
Secondly, although the short-time Fourier transform (STFT)
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FIGURE 5 | Two-dimensional (2D) analysis of propagating pressure waves in the descending colon at frequencies between 1/16th – 16 cpm. Panels (A,B,D,E) are
identical in layout to Figures 2D,H. In panel (B), the black and white hatched outline indicates that the power of retrograde 2–8 cpm propagating motor activity is
significantly greater than the power of antegrade propagating contractions at the same frequency. The bottom row (G,H) compare power across the frequency range
between patients and healthy adults during preprandial (G) and postprandial (H) periods. Blue regions in (bottom row; G–I) indicate activity of lower power in patients
compared to healthy adults. The blue regions demarcated by the solid white line indicate frequencies that are significantly reduced in patients compared to healthy
adults. The faint diagonal lines in panel (G,H,C,F,I) indicate regions of non-significance. Panels (C,F) compare power of propagating waves across the frequency
range between preprandial and postprandial periods, for healthy adults and patients. The extensive red-shaded region in panels (C,F) indicates that propagating
activity increased in power after the meal at all measured frequencies. The area marked by the solid white lines indicates a significant increase. Panel (I) compares
the meal effect between patients and healthy adults, confirming that the comparative meal effect between the two groups was similar.

could be used to compute near-instantaneous spectra, it requires
one to choose (a) a window width, (b) a window function, and
(c) an overlap amount between adjacent-in-time windows. The
wavelet transform only needs the equivalent of (b), whereas
the window width adjusts naturally to each frequency being
analyzed, with the equivalent of maximum possible overlap
without the prohibitively high computational burden as would
be the case for the STFT.

Importantly, the outcomes of the colonic manometry analysis
provided in this article do not contradict our manual analysis
of these same data published previously (Dinning et al., 2014,
2015). To obtain the results in this article, less than two days
were required. In comparison the manual analysis of the control
and patient data took five weeks to perform. Thus, the detailed
analysis provided by our automated technique is orders of

magnitude beyond the methods currently available in both detail,
speed of analysis, and manual labor saved.

The cyclic nature of colonic pressure waves shown in this
analysis is not a new finding. Indeed, regular human rectal
pressure waves at approximately 2–3/min were reported in
Welch and Plant (1926). Nearly all colonic manometry studies
since then show figures or report findings of pressure waves
with similar frequencies. The physiological role of such motor
patterns remains undetermined, but it is likely to play a role
in mixing or retarding colonic flow (Spriggs et al., 1951; Rao
and Welcher, 1996; Rao et al., 2001a; Lin et al., 2017a,b; Pervez
et al., 2020). The frequency of 2–6 cpm is approximately the
same as the frequency of human colonic slow waves (Rae et al.,
1998; Carbone et al., 2013) which are generated by the interstitial
cells of Cajal (ICC) (Huizinga et al., 2011; Costa et al., 2013).
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FIGURE 6 | Two-dimensional (2D) analysis of propagating of pressure waves in the sigmoid colon at frequencies between 1/16th – 16 cpm. Panels (A,B,D,E) were
constructed as in Figure 5. In panel (B), the black and white hatched outline indicates that the power of retrograde propagating motor activity at 2–8 cpm was
significantly greater than the power of antegrade propagating motor activity at the same frequency. Comparing the preprandial and postprandial periods for healthy
adults and patients, the analysis shows that the power of propagating waves at all frequencies were reduced in patients (G,H). The meal resulted in a significant
increase in the power of waves at all frequencies in both groups (region demarcated by the solid white lines in panels (C,F)). Panel (I) shows that 2–6 cpm
post-prandial increase in patients was significantly reduced compared to the increase in this frequency shown in healthy adults [region within the solid white outline in
panel (I)].

The rapid increase (within 60 s) in this motor pattern after a
meal is commenced suggests that the slow wave activity can be
modulated by extrinsic neural pathways. Therefore, the ability
to accurately identify this motor pattern and determine the
influence of physiological stimuli upon it may help to unravel
both the normal physiology of healthy adult colonic motility
and provide insight into abnormalities that exist in patients with
functional colonic disorders.

In addition to the 2–6 cpm activity, a recent publication by
Pervez et al. (2020) showed a cyclic motor pattern consisting of
clusters of pressure waves at a frequency of 11–13 cycles/min.
This motor pattern was identified throughout the colon and
it occurred in isolation of other motor patterns or following
high-amplitude propagating contractions. In our grouped data,
a motor pattern of this frequency was not prominent either
before or after a meal. However, that does not mean this
higher frequency did not exist. Examples can be found in
some of the individual subjects. Figure 7 shows post-meal

sigmoid colon data from an individual patient in which a
peak in the global wavelet spectrum can be seen at ∼11/min
(Figure 7C; hatched box). The overall diminished prominence
of this frequency in our data, compared to the study by
Pervez et al. (2020) may reflect the different protocols used to
record colonic motor patterns. In our data, manometry was
recorded in a prepared colon (faces removed) with a fiber-
optic catheter and, apart from a meal, no other stimulation
was provided. The protocol used by Pervez et al., also recorded
from a prepared colon, however, they used water-perfused
manometry, colonic balloon distension, gave the subjects a meal
and the laxatives prucalopride and bisacodyl. This combination
of colonic stimulation may have initiated prominent 11–13
cycles/min motor activity. This highlights that differences in
protocols should always be considered when comparing data
between colonic manometry studies.

A common feature of many colonic manometry recordings
is the high amplitude propagating contraction (HAPC). These
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FIGURE 7 | Representation of a manometry recording from the sigmoid colon in a single patient after a meal. (A) Shows the color maps depicting raw pressure data
from the sensors within the sigmoid colon. (B) shows the power across the frequency range of 1/16th to 16 cycles per minute (cpm). (C) Shows graphs
summarizing the power at each frequency; and (D) shows a summary of the 2D cross-wavelet analysis with retrograde and antregrade propagation. Synchronous
activity is shown at 0 on the x-axis. Note that in panel (C) a peak can be seen at ∼11 cpm (hatched box). This higher frequency was seen in some of the subjects in
this study, but the power of this frequency is very low.
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events are associated with movement of content (Cook et al.,
2000), defecation (Herbst et al., 1997; Bampton et al., 2000) and
have been shown to be diminished or absent in patients with
constipation (Bassotti et al., 1988; Rao et al., 2001b; Dinning
et al., 2010). Therefore, their presence or absence in a manometry
recording is always noted. The approach described in this article
does not specifically identify these motor patterns, however,
if several occur sequentially within the 1/16 – 16cpm range
used in this analysis they will form part of the calculated
result. This should not be seen as a problem, in short duration
recording within the prepared colon, HAPC make up <2% of
the propagating activity, with many healthy adults not having any
(Dinning et al., 2014). For specific characteristics of the HAPC we
would still recommend manual analysis.

In addition to HAPCs, articles on colonic manometry
provide counts of all other propagating contractions and their
extent of propagation. Such data is not available with this
automated approach. However, software to both count the
number of individual propagating contractions and calculate
their propagation length, has been developed and validated by
our colleges in New Zealand (Paskaranandavadivel et al., 2018).
This work is currently submitted for publication elsewhere. It is
likely that a combination of both approaches will be used in the
future to provide a full description of colonic motor patterns.

It is also important to note that we have based our findings
upon these data after we removed synchronous pressure increases
that occurred across all recording channels. Recently there
have been publications in which these synchronous pressure
increases have been included in the analysis (Corsetti et al., 2017;
Chen et al., 2018; Pervez et al., 2020). However, synchronous
pressure increases can also be caused by abdominal strain,
diaphragmatic movement (laughing), coughs, sneezes or by
body movement. (Corsetti et al., 2017) discriminated between
synchronous pressure waves caused by colonic motor activity
and abdominal wall muscle activity using abdominal wall
electromyography (EMG). In our study, EMG was not used and
therefore we had no way of discriminating between artifact and
a genuine colonic motor pattern. As such our pre-processing of
the data prior to analysis involved the identification and removal
of the activity. However, as shown in Supplementary Figure 1,
such removal had no impact upon our findings. Synchronous
pressure waves that did not span the entire recording length
were always part of our data and can be seen in the 2-D
images as the activity recorded at phase 0 (Figures 2D,H, 5,
6, 7D). Whether or not our automated approach improves
the diagnostic potential of colonic manometry, remains to be
determined, as yet it has only been performed on a small
number of studies. As shown in Figure 2, our new approach
does allow for a rapid appreciation of the colonic contractile
activity in any given recording. Within 30 seconds figures can
be produced which show the dominant frequencies of pressure
waves, their propagation direction and speed and whether or
not a meal (or any other stimulus) changes these characteristics.
We are currently in the process of applying this analysis to
larger data sets, with different colonic stimulation techniques and
differing types of constipation. Such analysis may then allow us
to determine whether defined categories of constipation (slow

transit, normal transit, constipation predominant irritable bowel
syndrome) display characteristic differences compared to healthy
adults. Importantly this analytical approach will also allow us to
determine the effects of treatment upon colonic motility.
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